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Optomechanical dynamics in the PT - and broken-PT -symmetric regimes
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We theoretically study the dynamics of an optomechanical system, consisting of a passive optical mode and
an active mechanical mode, in the PT - and broken-PT -symmetric regimes. By fully analytical treatments
for the dynamics of the average displacement and particle numbers, we reveal the phase diagram under
different conditions and the various regimes of both PT symmetry and stability of the system. We find that
by appropriately tuning either mechanical gain or optomechanical coupling, both phase transitions of the PT
symmetry and stability of the system can be flexibly controlled. As a result, the dynamical behaviors of the
average displacement, photons, and phonons are radically changed in different regimes. The presented physical
mechanism is general and this method can be extended to a general model of dissipative and amplified coupled
systems. Our study shows that PT -symmetric optomechanical devices can serve as a powerful tool for the
manipulation of mechanical motion, photons, and phonons.
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I. INTRODUCTION

Cavity optomechanics, which explores the radiation-
pressure interaction between electromagnetic and mechanical
systems, has attracted considerable attention both theoret-
ically and experimentally in the past decades [1–3]. Due
to optomechanical interaction, many interesting phenomena
have been shown, such as cooling of mechanical oscillators to
their quantum ground states [4–16], photon blockade [17–25],
generation and transfer of squeezed light [26–30], measure-
ments with a high precision within the standard quantum limit
[31–33], optomechanically induced effects of nonreciprocity
[34–37], transparency (OMIT) [38–42], absorption (OMIA)
[43], and amplification [44,45].

It is usually assumed in quantum mechanics that the
Hamiltonian must be Hermitian in order to ensure that
their eigenvalues are real and that the time evolution op-
erator is unitary. However, for parity-time (PT )-symmetry
quantum mechanics [46–48], the effective Hamiltonian of a
quantum system can be non-Hermitian, which is useful to
describe a quantum system interacting with its environment.
Note that this generalized approach to quantum mechan-
ics does not lead to any violations of no-go theorems in
standard quantum mechanics, including quantum informa-
tion [49]. A phase transition from the PT -symmetric regime
to the broken-PT -symmetric regime can occur, when the
PT -symmetric condition is broken, and some eigenvalues
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become complex [50,51]. The phase transition between the
two regimes has been observed experimentally using various
gain-loss-balanced systems, such as PT -symmetric waveg-
uides [52,53], active LRC circuits [54], and PT -symmetric
whispering-gallery microcavities [55].

As an emerging frontier, optical-PT -symmetric optome-
chanical systems [56–64], which are realized by coupling
an active (gain) cavity to a passive (lossy) optomechanical
cavity, have led to various unconventional phenomena, such
as phonon lasers [56,65,66], PT -enhanced OMIT [67–69],
PT -induced amplification [70], and coherent perfect absorp-
tion [71–73]. Compared to these steady-state behaviors of
PT -symmetric systems, their dynamics can provide a more
versatile description of these systems.

So far, the dynamics of photons have been predicted
in optical-PT -symmetric systems consisting of two waveg-
uides [74] or two coupled cavities [75,76]. Subsequently,
the dynamical behavior of the mechanical resonators has
been studied in mechanical-PT -symmetric four-mode hy-
brid optomechanical systems [77]. Despite these advances,
the dynamics of a typical optomechanical system, consisting
of a passive optical mode coupled to an active mechanical
mode, in thePT - and broken-PT -symmetric regimes, and the
phase diagram under different conditions, have not yet been
revealed.

In this paper, we focus on a comparative study of the
dynamics of a typical optomechanical system, which con-
sists of a passive optical mode and an active mechanical
mode implemented by a mechanical gain, in the PT - and
broken-PT -symmetric regimes. Note that the mechanical
gain can be achieved by phonon lasing or by coupling the
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mechanical mode to another cavity mode driven with a blue-
detuned driving field [51,78]. In contrast to previous work [77]
investigating the dynamics of mechanical modes in four-mode
hybrid optomechanical systems, the aim here is not only to
study the dynamics of both optical and mechanical modes by
fully analytical treatments in typical optomechanical systems
which have more fundamental properties, but also to reveal in
detail the phase diagram under different conditions.

We find that by appropriately adjusting either the effective
optomechanical coupling or the mechanical gain, phase tran-
sitions can be clearly observed. We obtain the phase diagram
under different conditions and the various regimes of both
PT symmetry and stability of the system. Using our exact
analytical solutions of the average displacement and parti-
cle numbers, their dynamical behaviors in different regimes
can be understood adequately. We find that the energy ex-
change between the cavity and the mechanical oscillator is
rapid (slow) for thePT (broken-PT )-symmetric regime. This
opens up the prospect to manipulate the exchange velocity of
the excitations usingPT -symmetric optomechanical systems.

Moreover, spontaneous generation of the number of par-
ticles is discussed not only when gain compensates loss, but
also when gain is not equal to loss. Finally, we also find that
(i) the average displacement and the average particle numbers
approach their steady-state values in the asymptotically stable
regime, (ii) they increase exponentially in the unstable regime,
and (iii) the average displacement oscillates periodically in
the finite-time stable regime, but not asymptotically stable.
Our study reveals that PT -symmetric systems can be used
for the control of mechanical motion, photons, and phonons.
Our method is universal and can be generalized to study the
related dynamics in a general model of coupled systems (e.g.,
two oscillators or waveguides) with loss and gain.

The remainder of the paper is organized as follows: In
Sec. II we obtain the master equation of the PT -symmetric-
like optomechanical system by using a linearization pro-
cedure, when the dissipation and gain rates of the system
are phenomenologically considered, and the differential
equations for the average values are obtained from the master
equation. In Sec. III, the PT symmetry and stability of the
PT -symmetric-like optomechanical system are investigated
through a phase diagram. In Sec. IV, the dynamics of the aver-
age displacement of the mechanical oscillator are investigated
in different regimes for the PT -symmetric-like optomechani-
cal system. And the dynamics of the average particle numbers
in different stability regimes for the system are considered in
Sec. V. The effect of spontaneous generation of particles is
also studied in this section. In Sec. VI, we discuss an exten-
sion of the present method to a general gain-loss model, and
an experimental realization of our system. Conclusions are
presented in Sec. VII. Two Appendixes include the detailed
calculations.

II. MODEL AND EQUATIONS OF MOTION OF AVERAGE
VALUES

As schematically shown in Fig. 1, the considered optome-
chanical system consists of a passive cavity (with a loss rate
κ) and an active mechanical oscillator (with a mechanical gain
rate γ ), which is called the PT -symmetric-like optomechani-
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FIG. 1. Schematic of the PT -symmetric-like optomechanical
system, which consists of a passive cavity (with photon operator a,
loss rate κ , and resonant frequency ωc), and an active mechanical
oscillator (with phonon operator b, mechanical gain strength γ , and
resonant frequency ωm). The cavity is driven by a control field with
frequency ωL and amplitude �L .

cal system [51]. The cavity is driven by a control field with
amplitude �L = √

PLκ/h̄ωL, in which the input power and
the frequency of the control field are given by PL and ωL,
respectively.

The Hamiltonian of the system in the rotating reference
frame at the frequency ωL of the control field reads

Ĥ = h̄�câ†â + h̄ωmb̂†b̂ − h̄gâ†â(b̂ + b̂†) + ih̄�L(â† − â),
(1)

where â (â†) and b̂ (b̂†) are the annihilation (creation) op-
erators of the cavity field and the mechanical oscillator,
respectively; ωm is the resonance frequency of the mechanical
oscillator, and g is the single-photon optomechanical coupling
strength. Moreover, �c = ωc − ωL is the detuning between
the cavity field of frequency ωc and the control field of fre-
quency ωL.

Due to the fact that the control field driving the cavity
is strong, the Hamiltonian can be linearized by neglecting
higher-order terms. Under the rotating-wave approximation
(RWA), the linearized Hamiltonian is given by

Ĥlin = h̄�â†â + h̄ωmb̂†b̂ − h̄G(â†b̂ + âb̂†), (2)

where � = �c − g(βs + β∗
s ) is the effective detuning be-

tween the cavity field and the control field, and G = gαs is
the effective optomechanical strength, and αs and βs are the
steady-state solutions of the system given by

αs = �L

i� + κ
and βs = igα∗

s αs

iωm − γ
. (3)

The dynamics of the system, including the loss of cavity
field and the gain of the mechanical resonator, can be de-
scribed by the master equation in the Lindblad form, which
is given by

d

dt
ρ = 1

ih̄
[Hlin, ρ] + κ (2aρa† − a†aρ − ρa†a)

+ γ (2b†ρb − bb†ρ − ρbb†). (4)

The equations of motion of the mean values of an opera-
tor ô can be calculated from the master equation in Eq. (4)
via d

dt 〈ô〉 = tr(ô ˙̂ρ). Combining the commutation relations of
operators [î, ĵ†] = δi, j , [î, ĵ] = 0, and [î†, ĵ†] = 0 (î, ĵ =
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â, b̂), the equations of motion of 〈â〉 and 〈b̂〉 can be obtained
as

d

dt
〈â〉 = −i�〈â〉 + iG〈b̂〉 − κ〈â〉, (5a)

d

dt
〈b̂〉 = −iωm〈b̂〉 + iG〈â〉 + γ 〈b̂〉. (5b)

Correspondingly, the equations of motion of forms 〈î† ĵ〉
are given by

d

dt
〈â†b̂〉 = (i� − iωm − κ + γ )〈â†b̂〉 + iG(〈â†â〉 − 〈b̂†b̂〉),

(6a)
d

dt
〈â†â〉 = −2κ〈â†â〉 + iG〈â†b̂〉 − iG〈âb̂†〉, (6b)

d

dt
〈b̂†b̂〉 = 2γ 〈b̂†b̂〉 − iG〈â†b̂〉 + iG〈âb̂†〉 + 2γ . (6c)

III. PT SYMMETRY AND STABILITY

A. PT symmetry

Taking the cavity loss rate κ and the mechanical gain
strength γ into consideration, the effective Hamiltonian is
obtained as

Ĥeff = h̄(� − iκ )â†â + h̄(ωm + iγ )b̂†b̂ − h̄G(â†b̂ + âb̂†).
(7)

The properties of the space reflection (parity) operator P
and the time-reversal operator T are demonstrated as follows
[46–48]. The action of the parity operator P on Ĥeff is given
by [55,58]

P : â ↔ −b̂, â† ↔ −b̂†, (8)

and the action of the time-reversal operator T on Ĥeff is

T : â ↔ â, â† ↔ â†, b̂ ↔ b̂, b̂† ↔ b̂†, i ↔ −i. (9)

After the combined actions of the parity and time-reversal
operations, i.e., the PT operations, the effective Hamiltonian
in Eq. (7) becomes

ĤPTeff = PT Ĥeff (PT )−1

= h̄(� + iκ )b̂†b̂ + h̄(ωm − iγ )â†â − h̄G(â†b̂ + âb̂†).
(10)

From Eq. (10), we can obtain Heff = HPTeff if and only if
the relations � = ωm = ω1 and κ = γ are satisfied. In fact,
the PT symmetry can be generalized to the case where the
cavity decay rate κ is not exactly equal to the mechanical
gain strength γ . Therefore, in the latter case, only the relation
� = ωm = ω1 is always satisfied. The Hamiltonian of Eq. (7)
is rewritten as

Ĥ = h̄
(
â† b̂†

)(ω1 − iκ −G
−G ω1 + iγ

)(
â
b̂

)
. (11)

FIG. 2. (a) Phase diagram under different conditions of the me-
chanical gain rate γ and the effective optomechanical strength G =
gαs, in units of the cavity decay rate κ . There are two borders. The
red line shows the border between the PT -symmetric phase (PT , on
the right hand) and the broken-PT -symmetric phase (BPT , on the
left hand). The black dashed curve and black solid line are the border
between the asymptotically stable (AS, below the border) phase and
the unstable (US, above the border) phase. (b) Various regimes of the
PT symmetry and stability of the system. The new parameter f in
the table is defined as f ≡ G2 − γ κ .

By diagonalizing the matrix in Eq. (11), the eigenfrequencies
of the supermodes Â± = (â ± b̂) can be obtained as

ω± = ω1 − i

2
(κ − γ ) ±

√
G2 − 1

4
(κ + γ )2. (12)

When G > (κ + γ )/2, the eigenfrequencies have two dif-
ferent real parts and an identical imaginary part, the system
possesses the PT symmetry with two different frequencies
and an identical linewidth, which is described by the regimes
(2) and (4) in the phase diagram shown in Fig. 2(a).

If the parameters satisfy the relation G < (κ + γ )/2, the
eigenfrequencies have two different imaginary parts and an
identical real part. The frequencies of the supermodes are
the same, while their linewidths are different. Then the PT
symmetry of the system is broken. The broken-PT symmetry
corresponds to the regimes (1) and (3) in the phase diagram
shown in Fig. 2(a).

The phase transition of the PT symmetry takes place
around the border point G = (κ + γ )/2, which is termed
as an exceptional point (EP) [79–84] as shown by the red
line and blue point in the phase diagram. Note that this is
a semiclassical EP, which corresponds to a spectral degen-
eracy of a non-Hermitian Hamiltonian. The prediction of a
quantum EP would require the inclusion of quantum noise
by finding degeneracies of, e.g., a Liouvillian, as proposed in
Refs. [79,81,82].
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B. Stability

The linearized equations of motion can be compactly writ-
ten in a matrix form as

˙̂u = Aû, (13)

where û is the column vector of ûT = (â, â†, b̂, b̂†), and the
square matrix A is

A =

⎛
⎜⎝

−iω1 − κ 0 iG 0
0 iω1 − κ 0 −iG

iG 0 −iω1 + γ 0
0 −iG 0 iω1 + γ

⎞
⎟⎠. (14)

The eigenvalues λ of the matrix A are

λτ,s = 1

2
[γ − κ + τ

√
(γ + κ )2 − 4G2 + is2ω1], (15)

where τ = ±1 and s = ±1.
The stability of the system can be discussed in the follow-

ing cases [85,86].
(i) If the parameters satisfy the relations f < 0 ( f = G2 −

γ κ) or γ > κ , some eigenvalues of A have a positive real part,
so the system is unstable. This corresponds to the regimes (1)
and (2) in the phase diagram in Fig. 2(a).

(ii) When f > 0 and γ < κ , all of the eigenvalues of A
have a negative real part, so the system lies in the asymptoti-
cally stable regime. This situation is described by the regimes
(3) and (4) in Fig. 2(a).

(iii) When f = 0 and γ < κ , the real parts of the two
eigenvalues of A are zero and those of the other two are
negative; so the system is stable, and is described by the black
dashed curve (5) in Fig. 2(a).

(iv) When f > 0 and γ = κ , we find λτ,s = τ
√

κ2 − G2 +
isω1. In this case, all the eigenvalues of A have a vanishing
real part and the corresponding four eigenvectors are lin-
early independent; thus, the system is in the finite-time stable
regime, but not asymptotically stable, and shown by the black
solid curve (6) in Fig. 2(a).

(v) When f = 0 and γ = κ , the real parts of the eigenval-
ues of A are zero and A has only two linearly independent
eigenvectors. In this case the system is unstable. This corre-
sponds to the blue point in Fig. 2(a).

Note that PT symmetry and stability of the system can
be obtained by analyzing either the eigensystem of the
Hamiltonian [given by Eqs. (11) and (12)] or the coefficient
matrix A [given by Eq. (14)] of the linearized Langevin equa-
tions. For a non-Hermitian Hamiltonian, its eigenvalues are
real or imaginary, which can describe unbroken-PT sym-
metry or broken-PT symmetry. The boundary between the
unbroken- and broken-PT symmetries corresponds to the ex-
ceptional point. On the other hand, based on the eigenvalues of
the Hamiltonian, the main stability properties can be demon-
strated. For example, when the eigenvalue of the Hamiltonian
is complex, the system will be exponentially amplified. For
the real eigenvalue, the system takes nondecaying oscillations.
However, the effects of the noise source and the nonlinearity
will be not demonstrated by analyzing the eigenvalues of
the Hamiltonian. Thus, we here discuss in detail the stability
conditions, based on the coefficient matrix A of the linearized
Langevin equations, via the Routh-Hurwitz criterion [85,86].

IV. DYNAMICS OF THE AVERAGE DISPLACEMENT OF
THE MECHANICAL OSCILLATOR

Now, we consider the dynamics of the average displace-
ment of the mechanical oscillator. Here, the initial state of the
system is assumed to be a coherent state |α〉|β〉, where the am-
plitudes of the coherent state are given, respectively, by α0 and
β0 with θ1 and θ2 being the initial phases. The average value
of the mechanical displacement, x = 〈x̂〉 = √

h̄/2mω1(〈b̂〉 +
〈b̂〉∗), can be calculated by solving Eq. (5b) in the case of
� = ωm = ω1 as

x = 1

�

√
h̄

2mω1
exp

[
1

2
(γ − κ − 2iω1)t

][
β� cosh

(
�

2
t

)

+ (βγ + βκ + 2iGα) sinh

(
�

2
t

)]
+ c.c., (16)

where � =
√

(γ + κ )2 − 4G2, which is an imaginary number
in the PT -symmetric regime [G > (κ + γ )/2], and the terms
cosh( �

2 t ) and sinh( �
2 t ) are transformed into the form of a

sinusoidal time function; � is a real number in the broken-
PT -symmetric regime [G < (κ + γ )/2] and the expression
can remain the same.

Based on the expression shown in Eq. (16), we investi-
gate the dynamics of the mechanical displacement by plotting
the time evolution of the average value of the displacement
operator. First, we consider the dynamics of the average dis-
placement in the PT -symmetric regime. In Fig. 3(a), we
set the parameters γ = 0.6κ and G = 1.2κ which lead the
system to the asymptotically stable regime (4). We can see
here that the oscillations of the displacement exhibit collapses
and revivals with a decaying amplitude and asymptotically
approach zero (at the equilibrium position) for a certain time.
When the values of the parameters are set as γ = κ and G =
1.5κ , as shown in Fig. 3(b), the system lies in the finite-time
stable regime (6), but not asymptotically stable. It is shown
here that the oscillations of the average displacement exhibit
collapses and revivals periodically. The dynamical behavior
of the average displacement in the unstable regime (2) are
displayed in Fig. 3(c) with the parameters given by γ = 1.8κ

and G = 2.1κ . It is shown that the average displacement of the
mechanical oscillator oscillates with periodic collapses and
revivals with increasing amplitude.

Second, we consider the dynamical evolution of the av-
erage displacement in the broken-PT -symmetric regime. In
Fig. 3(d), the parameters are set as γ = 0.6κ and G = 0.798κ

which enables the system to be in the asymptotically stable
regime (3). It is shown that the oscillations of the average
displacement increases with time and then decreases to the
equilibrium value 0. When the parameters are given by γ =
0.6κ and G = √

0.6κ , as shown in Fig. 3(e), the system is
in the finite-time stable regime (5), the oscillation amplitude
of the average displacement increases with time and then
approaches the constant value,

As = 2

κ − γ

√
h̄

2mω1
[κ2|β|2 + κγ |α|2

− iκ
√

κγ (α∗β − β∗α)]
1
2 . (17)
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FIG. 3. Dynamics of the average displacement in the PT -symmetric (first row) and broken-PT -symmetric (second row) regimes.
Examples for different stable regimes shown in Figs. 2(b) and 2(c): (a) and (d) correspond to the asymptotically stable regime, (b) and (e)
correspond to the finite-time stable regime, but not asymptotically stable, (c) and (f) correspond to the unstable regime. The gain rate γ of the
mechanical oscillator and the effective optomechanical coupling strength G are given by (a) γ = 0.6κ and G = 1.2κ , (b) γ = κ and G = 1.5κ ,
(c) γ = 1.8κ and G = 2.1κ , (d) γ = 0.6κ and G = 0.798κ , (e) γ = 0.6κ and G = √

0.6κ , (f) γ = 1.8κ and G = 1.2κ . Other parameters are
set as κ = 6.45MHz, m = 5 × 10−11kg, ω1 = 23.4 × 2πMHz [55,58], α = 2 exp(iπ/6), and β = 2 exp(iπ/3).

In Fig. 3(f), we consider the dynamical evolution of the av-
erage displacement in the unstable regime (1) with parameter
γ = 1.8κ and G = 1.2κ . In this regime (f), the average dis-
placement oscillates with an increasing amplitude with time.

By comparing the dynamics in the PT -symmetric regime,
shown in Figs. 3(a)–3(c), with those in the broken-PT -
symmetric regime, shown in Figs. 3(d)–3(f), we can see that
the periodic collapses and revivals appear in the former case,
while they do not exist in the latter case. In the three stable
regimes, the different types of the dynamical behavior exhibit
amplitude oscillations with time. Specifically, the oscillation
amplitude of the average displacement x decreases to 0 as
t → ∞ when the system is asymptotically stable [regimes
(3) and (4)]. However, the oscillation amplitude exponentially
grows in the unstable regimes (1) and (2). While it periodi-
cally oscillates, with a constant amplitude, when the system
is finite-time stable, but not asymptotically stable [regimes (5)
and (6)]. These results open up an avenue to the manipulation
of the mechanical motion by utilizingPT -symmetric optome-
chanical devices.

V. DYNAMICS OF THE AVERAGE PARTICLE NUMBERS

In the following, we discuss the dynamics of the average
particle numbers in terms of the photon number na = 〈â†â〉
and the phonon number nb = 〈b̂†b̂〉 by solving Eq. (6c) evolv-
ing from a coherent state |α〉|β〉 under the condition � =
ωm = ω1. In order to understand the source of the generated
particles more clearly, we divide the total average particle
numbers ni (i = a, b) into two parts:

ni = nst
i + nsp

i , (18)

where nst
i is the number of particles generated by stimulated

emission, which depends on the initial values, and quantum
noises are not considered. This part can be obtained from a
semiclassical theory. The other term nsp

i is the number of par-
ticles generated by spontaneous emission, which is induced
by quantum noise [74,77]. We shall investigate the dynamics
in the two cases γ = κ and γ 
= κ , in which the expressions
of the average numbers are different.

A. Dynamics of the average particle numbers for γ = κ

First, we consider the dynamics of the average numbers of
particles, na and nb, in the case of γ = κ . The expressions of
the photon numbers generated by stimulated emission nst

i and
spontaneous emission nsp

i are given by

nst
a = 1

4�2
1

[m1 + 2o1C1 + 2o2S1],

nst
b = 1

4�2
1

[m1 + 2o3C1 + 2o4S1],

nsp
a = 1

4�2
1

[
− 4G2κt + 2

κG2

�1
S1

]
, (19)

nsp
b = 1

4�2
1

[
−4G2κt + 4κ2(C1 − 1) + 2

(
κ�1 + κ3

�1

)
S1

]
,

where C1 = cosh(2�1t ) and S1 = sinh(2�1t ), with �1 =√
κ2 − G2; �1 is imaginary in thePT -symmetric regime, and

the terms C1 and S1 transform into the form of a sinusoidal
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FIG. 4. The dynamics of the photon numbers (solid red curves) and phonon numbers (dashed blue curves) for the PT -symmetric regime
(first row with G = 1.5κ) and the broken-PT -symmetric regime (second row with G = 0.8) in the case of γ = κ . The total average particle
numbers na and nb are given by (a) and (d); the numbers of particles generated by stimulated generation, nst

a and nst
b , are given by (b) and (e);

and those generated by spontaneous emission, nsp
a and nsp

b , are given by (c) and (f), respectively. Other parameters are the same as Fig. 3.

time function, while �1 is real in the broken-PT -symmetric
regime and the expression remains the same. Other coeffi-
cients are as follows:

m1 = 2iκδ − 2G2(|α|2 + |β|2),
o1 = (

κ2 + �2
1

)|α|2 + G2|β|2 − iκδ,

o2 = i�1δ − 2κ�1|α|2, (20)
o3 = (

κ2 + �2
1

)|β|2 + G2|α|2 − iκδ,

o4 = −i�1δ + 2κ�1|β|2,
where δ = G(α∗β − β∗α).

In the case of γ = κ , the system remains in the two
regimes: (i) the finite-time stable regime, but not asymp-
totically stable and the PT -symmetric regime, when the
parameters satisfy the relation of G > (κ + γ )/2 [the regime
(6)]; and (ii) the unstable and broken-PT -symmetric regimes
for G < (κ + γ )/2 [the regime (5)].

In the regime (6), it is shown in Figs. 4(a)–4(c) that the
photon numbers (red solid curve) and phonons (blue dashed
curve) oscillate periodically with a monotonously increasing
equilibrium value. This is quite different from the dynamics
around the constant value in the semiclassical theory (corre-
spond to stimulated generation), and the phenomenon of the
monotonically increasing photon and phonon numbers gener-
ated by spontaneous generation. The average particle numbers
from spontaneous generation dominate the total generation of
the average particle numbers after a long-enough time.

From Figs. 4(d)–4(f), it is seen that the average particle
numbers increase exponentially with time but without os-
cillations in the regime (5). Although the average particle

numbers from spontaneous generation play an important role
in the total number of particles, they do not dominate the
total generation of the average particle numbers. We can see
from Eq. (19) that the contribution of spontaneous emission
decreases as the initial value increases in this case. Our find-
ings indicate that PT -symmetric optomechanical devices can
serve as a powerful tool for controlling photons and phonons.

Compared with the previous work [74] focused on the
dynamics of photons in PT -symmetric optical systems, our
work does not only study the dynamics of both photons and
phonons, but also reveals in detail the phase diagram shown
in Fig. 2, which has nine different regimes depending on
the gain-to-loss ratio and the coupling strength. We show in
detail (i) the dynamics of particles (i.e., photons and phonons)
generated by both stimulated generation and spontaneous
emission; and (ii) the dynamics of the total average particle
numbers. Note that spontaneous generation of both photons
and phonons is discussed both in the gain-loss balanced (see
Fig. 4) and unbalanced (see Figs. 5 and 6) regimes.

B. Dynamics of the average particle numbers for γ �= κ

Now, we investigate the dynamical behavior of the average
particle numbers, na and nb, when γ 
= κ . The expressions of
the average particle numbers are given by

nst
a = Et

d�2
(m2 + 2l1C + 2l2S),

nst
b = Et

d�2
(m2 + 2l3C + 2l4S),
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b ; and (c), (f), (i) these photons and phonons generated by spontaneous
emission, nsp

a and nsp
b , when γ < κ . Here we assumed different values of the gain rate γ and the effective optomechanical coupling strength G:

(a)–(c) γ = 0.6κ and G = 1.2κ , (d)–(f) γ = 0.6κ and G = 0.798κ , (g)–(i) γ = 0.6κ and G = 0.6κ . Other parameters are the same as Fig. 3.
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(dashed curves) regimes in the case of γ > κ . (a) The total average particle numbers na and nb, (b) the particle numbers generated by stimulated
emission, nst
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b . Here, the PT -symmetric case is shown for γ = 1.8κ and

G = 2.1κ , and the broken-PT -symmetric case is shown for γ = 1.8κ and G = 1.2κ . Other parameters are the same as in Fig. 3.
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nsp
a = 4γ G2

d�2
Et [(γ − κ )2C − �(γ − κ )S − 4 f ] − 4γ G2

d
,

nsp
b = 4γ (γ − κ )G2

d�2
Et

[(
γ − κ − κ�2

G2

)
C − 4 f

(γ − κ )

−κ2 − f

G2
�S

]
− 4

d
γ (κ2 + f ), (21)

where Et = exp[(γ − κ )t], C = cosh(�t ), and S = sinh(�t ).
Similarly to the former case, � is imaginary in the
PT -symmetric regime, and the terms C and S transform into
the form of sinusoidal time function; while � is real in the
broken-PT -symmetric regime and the expression remains the
same. Other coefficients are

d = 4(γ − κ ) f ,

m2 = 4 f
[
i(γ 2 − κ2)δ + 2G2(κ − γ )(|α|2 + |β|2)

]
,

l1 = 2(γ − κ ) f
[
(�2 + 2G2)|α|2 + 2G2|β|2 − i(κ + γ )δ

]
,

l2 = 2�(γ − κ ) f
[
iδ − (κ + γ )|α|2],

l3 = 2(γ − κ ) f
[
2G2|α|2 + (�2 + 2G2)|β|2 − i(κ + γ )δ

]
,

l4 = 2�(γ − κ ) f [(κ + γ )|β|2 − iδ]. (22)

When γ < κ and f > 0, the system lies in the asymptotically
stable regime. Meantime, the parameters satisfy the relation
G > (γ + κ )/2, the system is PT symmetric corresponding
to the regime (4), which is illustrated by Figs. 5(a)–5(c).
These figures show that the total average particle numbers
oscillate in different phase regimes in a certain interval after
which it asymptotically approaches an equilibrium value. The
oscillation behavior is mainly contributed by the average par-
ticle numbers of stimulated generation, while the equilibrium
values are only determined by spontaneous generation.

On the other hand, if the parameters satisfy the relation
G < (γ + κ )/2, the system is in the broken-PT -symmetric
regime [the regime (3)], which is illustrated by Figs. 5(d)–5(f).
Here, the average particle numbers of stimulated generation
start to increase with time, and then decrease to zero; the aver-
age particle numbers due to spontaneous generation increase
with time and reach an equilibrium value.

When f < 0 and G < (γ + κ )/2, the system is in the
unstable and broken-PT -symmetric regimes [the regime (1)],
which are shown in Figs. 5(g)–5(i). The average particle num-
bers increase exponentially with time, and the spontaneous
generation plays an important role only in the total average
particle numbers. From Eq. (21) we find that the contribution
from spontaneous emission decreases with the initial values.

When the parameters satisfy the relation γ > κ , the system
is always unstable, the average particle numbers na and nb

have periodic oscillation and their amplitudes increase expo-
nentially with time in thePT -symmetric regime (2), while the
oscillation disappears in the broken-PT -symmetric regime
(1), which are shown in Fig. 6, respectively. The effect of
spontaneous generation on the average particle numbers also
decreases with the initial values when γ > κ .
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FIG. 7. (a) Equilibrium average values na,s (solid red curves) and
nb,s (dashed blue curves) with respect to the dimensionless normal-
ized coupling strength G/κ when γ = 0.6κ . (b) Equilibrium values
of na,s (solid red curve) and nb,s (dashed blue curve) with respect to
the dimensionless normalized gain strength γ /κ when G = 0.798κ .

We also consider the steady behavior of the average parti-
cle numbers na and nb, which are given by

na,s = G2γ

(κ − γ ) f
, (23a)

nb,s = na,s + κγ

f
. (23b)

From Eqs. (23a) and (23b), the equilibrium values na,s and
nb,s are independent of their initial values. We consider the
variations of the steady values with the normalized coupling
strength G/κ and normalized gain strength γ /κ , which are
shown in Figs. 7(a) and 7(b). It is seen that the steady-state
values na,s and nb,s decrease with G and approach γ /(κ − γ ),
while the na,s and nb,s increase with γ /κ .

VI. DISCUSSIONS

Finally, we here discuss a generalization of the present
study to a general gain-loss model. Based on the fact that the
linearized Hamiltonian in this work is not unique to cavity
optomechanics, we can extend the present method to a general
model for gain-loss coupled systems, e.g., two oscillators,
waveguides, or cavities. This is because the related dynamics
of a general coupled two-mode system has flexibility and scal-
ability. Recently, the dynamics in the PT -symmetric regime
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TABLE I. Different ways of realizing the mechanical gain. Its value is also listed. The eleven symbols used here are explicitly described
in Table II.

Method Effective mechanical gain γeff Value

Coupled with a blue-detuned phonon cavity [91]
4|Gph|2

γm
∼10 Hz

Phonon lasing with NV centers [92]
4λ2

⊥��2

(�2+4λ2
⊥r)2 ∼103 Hz

Adiabatically eliminating a blue-detuned cavity [77] 4G2

κ

16ω2
m

κ2+16ω2
m

+ γm ∼105 Hz

Photoelastic scattered by two-optical modes [51,93] G2

κa
∼106 Hz

has been studied in coupled cavities [55,75,76,87], two cou-
pled fiber loops [88], two coupled waveguides [74,89,90], in
which the discussed mechanism can also be observed.

Moreover, we have added two tables to show several means
of realizing the mechanical gain with different value scales,
as shown in Tables I and II. It shows that the PT -symmetry
optomechanics has a flexible gain, which can be generalized
to an arbitrary coupled two-oscillator/waveguide system.

Let us also briefly discuss an experimental realization of
our system. In the optical domain, a generic optomechan-
ical system consists of a laser-driven optical cavity and a
vibrating-end mirror [1–3]. In the microwave domain, it con-
sists of a vibrating capacitor, where a microwave drive is
applied along a transmission line that is inductively coupled
to the LC circuit representing a microwave resonator [1–3].
At present, typical cavity optomechanical systems have been
experimentally implemented by employing cantilevers, mi-
cromirrors, microcavities, nanomembranes, and macroscopic
mirror modes [1,2]. For example, in the membrane-in-the-
middle setup, a mechanical membrane is inserted between two
fixed cavity mirrors, and this mechanical membrane can be
coupled to the cavity mode via radiation-pressure interaction
[2]. In the Fabry-Pérot cavity optomechanical configurations,
composed of a movable mirror and a fixed mirror, the mov-
able mirror is coupled to a single optical mode through an
optomechanical coupling [2]. Currently, the active mechanical
resonator can be implemented by a mechanical gain, which
can be realized by using phonon lasing, a blue-detuned optical
pump, or a direct driving of the mechanical mode [51,78].
In addition, two tables are presented to show in detail vari-
ous methods for realizing the mechanical gain, as shown in
Tables I and II.

TABLE II. The eleven symbols used in Table I.

Symbol Parameter

κ Decay rate of the optical cavity
γm Mechanical damping rate
γeff Effective mechanical gain
κa Average decay rate of the optical modes
Gph Parametric intermodal coupling
G Effective optomechanical coupling
� Radiative decay of the NV defect
� Rabi frequency
λ⊥ Coupling between the vibrational modes
ωm Mechanical frequency
r Amplitude of the coherent state

VII. CONCLUSIONS

In summary, we have theoretically investigated the dynam-
ics of the average numbers of particles (i.e., photons and
phonons) and the average value of the displacement of the
mechanical resonator for a PT -symmetric-like optomechani-
cal system. The analytical expressions of these quantities were
obtained from the master equation in the full quantum regime,
including quantum noise. The dynamics of the number of
particles and displacement in different regimes have shown
the following characteristics of each regime.

(i) In the PT -symmetric regime, the energy is exchanged
rapidly between the cavity and the mechanical oscillator.
Moreover, the periodic collapse and revival of the average dis-
placement and the oscillations of the average particle numbers
were obtained. In contrast to this regime, all of the studied
averages disappear in the broken-PT -symmetric regime.

(ii) In the asymptotically stable regime, the average dis-
placement and the average particle numbers reach their
equilibrium values after some evolution time. The average dis-
placement oscillates periodically around zero, and the average
particle numbers also oscillate with a monotonously increas-
ing equilibrium value in the finite-time stable regimes (5) and
(6), but not asymptotically stable. In the unstable regime, both
average particle numbers and displacement increase exponen-
tially.

(iii) Spontaneous emission does not only play an important
role for the case of γ = κ , but also for the case of γ 
= κ . And
this emission dominates the total generation of the average
particle numbers after a long enough time in the finite-time
stable regime even in the asymptotic limit, while not in the
unstable regime. Otherwise, the contribution of spontaneous
emission decreases with the initial values.

These results indicate that PT -assisted optomechanical
devices can provide a versatile platform to manipulate the
mechanical motion, photons, and phonons.
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APPENDIX A: DERIVATION FROM EQ. (1) TO EQ. (2)

In this Appendix, we show in detail how to obtain Eq. (2)
from Eq. (1). Based on Eq. (1), the equations of motion of the
system, which include the gain and loss terms, are

dâ

dt
= − i�câ + igâ(b̂ + b̂†) + �L − κ â, (A1)

db̂

dt
= − iωmb̂ + igâ†â + γ b̂. (A2)

Here, we consider the strong-driving regime for the cavity, so
that our physical model can be simplified by a linearization
procedure. Then, we write the operators in Eqs. (A1) and
(A2) as the sums of the steady-state averages and the quantum
fluctuations: â = αs + δâ and b̂ = βs + δb̂. By separating the
quantum fluctuations and the classical motion, we can obtain
the classical equations of motion:

dαs

dt
= − i�cαs + igαs(βs + β∗

s ) + �L − καs, (A3)

dβs

dt
= − iωmβs + igα∗

s αs + γ βs. (A4)

By setting the left-hand sides of Eqs. (A3) and (A4) equal to
zero, the steady-state mean values of the dynamical variables
can be obtained as

αs = �L

i� + κ
, βs = igα∗

s αs

iωm − γ
, (A5)

where � = �c − g(βs + β∗
s ) is the normalized detuning of

the cavity field.

Then, the equations of motion for quantum fluctuations can
be obtained as

d

dt
δâ = − i�cδâ + igδâ(βs + β∗

s ) + igas(δb̂ + δb̂†) − κδâ,

(A6)

d

dt
δb̂ = − iωmδb̂ + iga∗

s δâ + igasδâ† + γ δb̂, (A7)

where the strong driving field has been considered. Thus, the
higher order terms of the fluctuation parts could have been
neglected safely. Then, using the Langevin equations,

d

dt
δâ = 1

ih̄
[δâ, Ĥf ] − κδâ, (A8)

d

dt
δb̂ = 1

ih̄
[δb̂, Ĥf ] + γ δb̂, (A9)

and applying the rotating wave approximation (RWA), we can
obtain the Hamitonian of the quantum fluctuation parts as

Ĥf = h̄�δâ†δâ + h̄ωmδb̂†δb̂ − h̄G(δâ†δb̂ + δâδb̂†), (A10)

where G = gαs is the effective optomechanical coupling
strength. The symbol “δ” is always dropped, because we are
concerned about the fluctuation parts of system. Then, the so-
called “linearized” optomechanical Hamiltonian is obtained
from Eq. (A10) as

Ĥlin = h̄�â†â + h̄ωmb̂†b̂ − h̄G(â†b̂ + âb̂†). (A11)

APPENDIX B: MORE DETAILS OF EQ. (7)

Here, we present more details on the derivation of Eq. (7).
When the system includes the loss of cavity field and the
mechanical gain, the Langevin equations of the quantum fluc-
tuation parts of the total system are

d

dt
δâ = 1

ih̄
[δâ, δĤeff ], (B1)

d

dt
δb̂ = 1

ih̄
[δb̂, δĤeff ]. (B2)

By combining Eqs. (A6) and (A7), and Eqs. (B1) and (B2),
and applying the RWA, the effective Hamiltonian of the total
system is obtained as

Ĥeff = h̄(� − iκ )â†â + h̄(ωm + iγ )b̂†b̂ − h̄G(â†b̂ + âb̂†),
(B3)

where we have dropped the symbol “δ”.
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[61] F. Quijandría, U. Naether, Ş. K. Özdemir, F. Nori, and D. Zueco,
PT -symmetric circuit QED, Phys. Rev. A 97, 053846 (2018).

[62] I. I. Arkhipov, A. Miranowicz, O. Di Stefano, R. Stassi, S.
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