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Significant enhancement in refrigeration and entanglement in auxiliary-cavity-assisted
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We propose how to achieve significantly enhanced quantum refrigeration and entanglement by coupling a
pumped auxiliary cavity to an optomechanical cavity. We obtain both analytical and numerical results and find
optimal-refrigeration and -entanglement conditions under the auxiliary-cavity-assisted (ACA) mechanism. Our
method leads to a significant amplification in the net refrigeration rate and reveals that the ACA entanglement has
a much stronger noise robustness in comparison with the unassisted case. By appropriately designing the ACA
mechanism, an effective mechanical susceptibility can be well adjusted, and a genuine tripartite entanglement
of cooling-cavity photons, auxiliary-cavity photons, and phonons can be generated. Specifically, we show that
both optomechanical refrigeration and entanglement can be greatly enhanced for the blue-detuned driving of the
auxiliary cavity but suppressed for the red-detuned case. Our work paves a way towards further quantum control
of macroscopic mechanical systems and the enhancement and protection of fragile quantum resources.
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I. INTRODUCTION

Exploring radiation-pressure interactions between light
and mechanical motion in cavity optomechanics [1–4] has
lead to an impressive development of efficient methods
for generating and controlling photon blockade [5–13], op-
tomechanically induced transparency [14–19], the dynamical
Casimir effect [20–23], and nonreciprocal excitation transport
[24–32]. In particular, optomechanical cooling [33–35] and
entanglement [36–43] studied here are respectively a prereq-
uisite for observing and manipulating quantum mechanical
effects and a key element in quantum information processing.

So far, several cooling mechanisms based on optomechan-
ical systems, such as resolved-sideband cooling [33,34] and
feedback-aided cooling [35,44–53], have been proposed to
cool mechanical resonators to their quantum ground states.
To further develop cooling performance, various new cool-
ing schemes have been proposed, such as those based on
quantum interference [54–56], parity-time symmetry [57],
modulated pulses [58,59], domino effect [60,61], strong
couplings [62,63], and nonreciprocity [28,64]. Particularly,
cooling of mechanical resonators has also been simultane-
ously achieved in optical [65–69] and microwave [70–76]
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platforms. These theoretical and experimental advances en-
able the generation of nonclassical mechanical states and the
quantum manipulation of macroscopic mechanical systems.

In parallel, optomechanical interfaces also provide a pow-
erful tool for achieving quantum entanglement between, e.g.,
a cavity-field mode and a mechanical mode, two cavity-field
modes, and two mechanical resonators [36–42]. However, this
generated entanglement is often limited by the stability condi-
tions of the systems [36–38] and the amplification effect in the
unstable regime [77,78]. In particular, environmental thermal
noises can destroy fragile quantum entanglement in practi-
cal devices. To generate highly pure quantum entanglement,
reservoir engineering techniques [79–85], the quantum inter-
ference effect [86–91], time modulation of the driving laser
[92–95], photon counting techniques [96], and the Sagnac ef-
fect [97] have been proposed based on cavity optomechanical
systems. Despite such achievements, the enhancement of both
optomechanical cooling and entanglement and the protection
of fragile quantum correlations in practical devices still need
further studies.

In this paper, we study how to significantly enhance
the performances of refrigeration and entanglement in an
auxiliary-cavity-assisted (ACA) optomechanical system, re-
vealing the robustness of the ACA entanglement against
thermal noises. Inspired by optomechanical cooling and
entanglement in a single-cavity setup [33–36], we gen-
eralize the approach for a two-cavity system, where a
pumped auxiliary cavity is coupled to an optomechani-
cal cavity. Our study differs from what is known in the
double-cavity literature because we are interested not in
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FIG. 1. (a) Schematics of the optomechanical system. The cooling cavity ac with resonance frequency ωc is respectively coupled to a
mechanical resonator with the position operator x, via radiation-pressure coupling with strength g, and to an auxiliary cavity through the
tunneling coupling with strength J . A monochromatic laser with frequency ωL (ωR) and field amplitude �L (�R) is introduced to drive
the cooling (auxiliary) cavity. (b) Effective mechanical frequency �eff(ω) [see Eq. (21)] and (c) effective mechanical damping �eff(ω) [see
Eq. (21b)] versus the Fourier frequency ω in the auxiliary-cavity-unassisted (J = 0, blue solid curves) and the auxiliary-cavity-assisted
(J/ωm = 0.15 and PR = 50 mW, red dashed curves) cases. The parameters are � = ωm, �a = 0, ωm/2π = 10 MHz, κc/ωm = κa/ωm = 0.1,
γm/ωm = 10−5, ωc/ωm = 2.817 × 107, PL = 30 mW, m = 250 ng, n̄ = 103, L = 0.5 mm, and λ = 1064 nm.

an electromagnetically-induced-transparency-like mechanism
[88–90], but in a pumped-auxiliary-device engineering. Using
both analytical and numerical calculations based on the ACA
mechanism, more than a tenfold improvement can be achieved
for the net cooling rate, and the amplification factor almost
linearly depends on the pump power of the auxiliary cavity.
Physically, the ACA mechanism can significantly amplify the
effective optomechanical coupling strength and considerably
speed up the refrigeration process. Additionally, we show that
by appropriately designing the ACA mechanism, an effec-
tive susceptibility of the mechanical resonator can be tuned
largely. Moreover, by assuming experimentally reachable pa-
rameters, we find that cooling-cavity photons, auxiliary-cavity
photons, and phonons can be entangled with each other, such
that the steady state of the system exhibits a genuine tripartite
entanglement.

In particular, a significant enhancement can be achieved
for optomechanical cooling, quantum entanglement, and noise
tolerance of quantum resources. Remarkably, the cooling per-
formance of the mechanical resonator in the ACA case is
40% higher than that in cases without the auxiliary cavity.
Physically, the optomechanical cooling is mainly governed by
the net cooling rate, which directly determines the extraction
efficiency of the thermal excitations stored in the mechanical
resonator. The multiply amplified net cooling rate leads to a
significant enhancement of the cooling performance of the
resonator. We find that, for the blue-detuned driving of the
auxiliary cavity, both optomechanical cooling and entangle-
ment are significantly enhanced; while for the red-detuned
case, they are suppressed. Moreover, in comparison with
the auxiliary-cavity-unassisted case, our ACA optomechani-
cal entanglement has a stronger robustness against thermal
noises. We also reveal that due to the joint effect of op-
tomechanical and tunneling couplings, the indirectly coupled
cavity photons and phonons can be entangled strongly, and the
robustness of quantum entanglement against thermal noises
is even up to three times that of the directly coupled case.
These results provide the possibility to enhance or steer
the optomechanical refrigeration and entanglement, manipu-

late macroscopic mechanical coherence, generate nonclassical
mechanical states, and enhance and protect fragile quantum
resources against thermal noise.

The rest of this paper is organized as follows. In Sec. II, we
present the ACA optomechanical model and its Hamiltonians.
In Sec. III, we derive the Langevin equations, obtain the an-
alytical and numerical results of steady-state average phonon
numbers, and calculate the logarithmic negativity. In Sec. IV,
we analyze the cooling performance. In Sec. V, we study
bipartite and tripartite entanglements. Finally, we conclude
in Sec. VI. Two appendices include the detailed calculations
of the steady-state mean phonon numbers and the bistability
analysis.

II. MODEL AND HAMILTONIAN

We consider an ACA optomechanical system, where a
pumped auxiliary cavity is coupled to a standard optome-
chanical cavity through a tunneling coupling, as illustrated in
Fig. 1(a). A mechanical resonator is coupled to the cooling-
cavity field via radiation-pressure coupling. A monochromatic
laser with frequency ωL (ωR) and field amplitude �L (�R) is
applied to drive the cooling (auxiliary) cavity, so that the op-
tical and mechanical degrees of freedom can be manipulated.
The Hamiltonian of the system reads (h̄ = 1)

H = ωca†
cac + ωaa†

aaa + p2
x

2m
+ mω2

mx2

2
− ga†

cacx

+ J (a†
caa + a†

aac) + �L(a†
ce−iωLt + aceiωLt )

+�R(a†
ae−iωRt + aaeiωRt ), (1)

where ac and aa (a†
c and a†

a) are the annihilation (creation) op-
erators of the cooling-cavity and auxiliary-cavity field modes
with resonance frequencies ωc and ωa, respectively. The me-
chanical resonator is described by the momentum px and
position x operators with mass m and resonance frequency ωm.
The g term in Eq. (1) describes the optomechanical coupling
between the mechanical resonator and the cavity field, where
g = ωc/L is the strength of a single-photon radiation-pressure
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force, with L being the rest length of the optical cavity. The
tunneling coupling (with strength J) between the two cavity-
field modes is described by the J term. The last two terms in
Eq. (1) describe respectively the laser driving for the cooling
and auxiliary cavities. Their amplitudes are �L = √

2PLκc/ωL

and �R = √
2PRκa/ωR, with PL (PR) and κc (κa) being the

driving power and the cavity-field decay rate for the cooling
(auxiliary) cavity, respectively. Note that the photon-tunneling
interaction between the two cavity-field modes can be realized
by optical backscattering [97,98]. This backscattering of the
photons is induced by the surface roughness and material
defects in practical devices. Therefore, in realistic systems,
the value of the photon-tunneling coupling used in our simu-
lations should be of the same order of the decay rates of the
cavity-field modes [97,98].

For convenience, we introduce the dimensionless co-
ordinate and momentum operators q = √

mωmx and p =
px/

√
mωm ([q, p] = i). In a rotating frame defined by

exp(−iωLta†
cac − iωRta†

aaa) with ωL = ωR, Hamiltonian (1)
becomes

HI = �ca†
cac + �aa†

aaa + ωm

2
(q2 + p2) − g0a†

cacq

+ J (a†
caa + a†

aac) + �L(a†
c + ac) + �R(a†

a + aa), (2)

where �c = ωc − ωL (�a = ωa − ωR) and g0 = g/
√

mωm

are, respectively, the driving detuning of the cooling (aux-
iliary) cavity field and the strength of the optomechanical
coupling expressed in terms of the dimensionless momentum
and coordinate operators.

III. LANGEVIN EQUATIONS AND STEADY-STATE MEAN
PHONON NUMBERS

In this section, we derive the quantum Langevin equations
of the system and obtain the steady-state average phonon
numbers in the mechanical resonator.

A. Langevin equations

To include the damping and noise effects in this system,
we consider the case where the optical mode is coupled to
a vacuum bath and the mechanical mode is subjected to the
quantum Brownian force. In this case, the evolution of the
system can be described by the following quantum Langevin
equations:

q̇ = ωm p, (3a)

ṗ = −ωmq − γm p + g0a†
cac + ξ, (3b)

ȧc = −[κc + i(�c − g0q)]ac − iJaa − i�L +
√

2κcac,in, (3c)

ȧa = −(κa + i�a)aa − iJac − i�R +
√

2κaaa,in, (3d)

where γm is the decay rate of the mechanical resonator. The
operators ξ and ac,in (aa,in), respectively, denote the Brownian
force acting on the mechanical resonator and the noise oper-
ator of the cooling (auxiliary) cavity. These noise operators
have zero mean values and have the following correlation

functions [35,99]:

〈ac,in(t )a†
c,in(t ′)〉= δ(t − t ′), 〈a†

c,in(t )ac,in(t ′)〉 = 0, (4a)

〈aa,in(t )a†
a,in(t ′)〉= δ(t − t ′), 〈a†

a,in(t )aa,in(t ′)〉 = 0, (4b)

〈ξ (t )ξ (t ′)〉= γm

ωm

∫
e−iω(t−t ′ )ω

[
coth

( ω

2kBT

)
+ 1

]dω

2π
,

(4c)

where kB is the Boltzmann constant and T is the reservoir
temperature associated with the mechanical resonator. The
correlation function in Eq. (4) becomes a standard white
noise input with δ correlations for sufficiently high tem-
peratures kBT � h̄ωm. This function can be approximated
by 〈ξ (t )ξ (t ′)〉 ≈ (2n̄ + 1)γmδ(t − t ′), where the initial mean
thermal excitation number of the mechanical resonator is
given by n̄ = 1/[exp(h̄ωm/kBT ) − 1] ≈ kBT/h̄ωm. To cool
this mechanical resonator, we consider the strong-driving
regime for both cavities, so that our physical model can be
simplified by a linearization procedure. Then, we write the
operators in Eq. (3) as the sums of the steady-state averages
and the quantum fluctuations: o = 〈o〉ss + δo for operators ac,
a†

c , aa, a†
a, q, and p. By separating the quantum fluctuations

from the classical motion, the linearized quantum Langevin
equations become

δq̇ = ωmδp, (5a)

δ ṗ = −ωmδq − γmδp + G∗δac + Gδa†
c + ξ, (5b)

δȧc = −κ̄cδac + iGδq − iJδaa +
√

2κcac,in, (5c)

δȧa = −κ̄aδaa − iJδac +
√

2κaaa,in, (5d)

where κ̄c = κc + i� and κ̄a = κa + i�a. � = �c − g0〈q〉ss

is the normalized detuning of the cooling cavity, and
G = g0〈a〉ss is the effective optomechanical coupling. Here
〈ac〉ss = −i(�L + J〈aa〉ss )/(κc + i�) and 〈aa〉ss = −i(�R +
J〈ac〉ss)/(κa + i�a). Note that we have chosen the phase ref-
erence of the cavity field such that 〈ac〉ss is real and positive.

B. Analytical and numerical steady-state mean phonon numbers

Now, we derive both analytical and numerical results of
the steady-state mean phonon numbers in the mechanical
resonator.

1. Analytical steady-state average phonon numbers

The steady-state average phonon numbers of the mechani-
cal resonator can be obtained by the relation [35,60]

n f = 1
2 [〈δq2〉 + 〈δp2〉 − 1], (6)

where 〈δp2〉 and 〈δq2〉 are the variances of the mo-
mentum and position operators, respectively. We obtain
these variances by solving Eq. (5) in the frequency do-
main and integrating the corresponding fluctuation spectra
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[35,99],

〈δq2〉 = 1

2π

∫ ∞

−∞
Sq(ω) dω, (7a)

〈δp2〉 = 1

2πω2
m

∫ ∞

−∞
ω2Sq(ω) dω, (7b)

where the fluctuation spectra of the momentum and position
operators are defined by

So(ω) =
∫ ∞

−∞
e−iωτ 〈δo(t + τ )δo(t )〉ss dτ (o = q, p). (8)

In the frequency domain, the fluctuation spectra can also be
expressed as

〈δõ(ω)δõ(ω′)〉ss = So(ω)δ(ω + ω′). (9)

According to Eqs. (6) and (7), exact results of the steady-
state average thermal excitations can be obtained analytically,
which are presented in detail in Appendix A.

2. Numerical steady-state average phonon numbers

Now, we introduce the annihilation (creation) operator
for the mechanical resonator b = (q + ip)/

√
2 [b† = (q −

ip)/
√

2]], and then we study the cooling performance by
numerically evaluating the final mean phonon number. After
performing the linearization, the linearized quantum Langevin
equations can be rewritten as the following compact form:

u̇(t ) = Au(t ) + N(t ), (10)

where the fluctuation operator vector u(t ) =
(δac, δb, δaa, δa†

c, δb†, δa†
a)T , the noise operator vector

N(t ) = (
√

2κcac,in,
√

2γmbin,
√

2κaaa,in,
√

2κca†
c,in,

√
2γmb†

in,√
2κaa†

a,in)T , and the coefficient matrix A is given by

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ̄c −iG̃ −iJ 0 −iG̃ 0
−iG̃∗ −γ̄m 0 −iG̃ 0 0
−iJ 0 −κ̄a 0 0 0

0 iG̃∗ 0 −κ̄∗
c iG̃∗ iJ

iG̃∗ 0 0 iG̃ −γ̄ ∗
m 0

0 0 0 iJ 0 −κ̄∗
a

⎞
⎟⎟⎟⎟⎟⎟⎠

, (11)

where G̃ = G/
√

2 and γ̄m = γm + iωm. We then obtain the
formal solution of the linearized Langevin equation (10),

u(t ) = M(t )u(0) +
∫ t

0
M(t − s)N(s)ds, (12)

where M(t ) = exp(At ). From Eq. (12), the steady-state mean
phonon number of the mechanical resonator can be calculated
by solving the Lyapunov equation. In the following calcula-
tions, all the parameters satisfy the stability conditions which
are derived based on the Routh-Hurwitz criterion; i.e., the real
parts of all the eigenvalues of A are negative. Additionally,
we have confirmed that for the left pump power PL < 35 mW,
only a single stable solution exists and the compound system
has no bistability (see the stability analysis in Appendix B).

Mathematically, the steady-state mean phonon number can
be obtained by calculating the steady-state value of the covari-

ance matrix V, defined by the matrix elements

Vi j = 1
2 [〈ui(∞)u j (∞)〉 + 〈u j (∞)ui(∞)〉], i, j = 1–6.

(13)

Under the stability conditions, the steady-state covariance ma-
trix V fulfills the Lyapunov equation

AV + VAT = −Q, (14)

where the superscript T represents transposition and

Q = 1
2 (C + CT ), (15)

with C being the noise correlation matrix defined by the
matrix elements

〈Nk (s)Nl (s
′)〉 = Ck,lδ(s − s′). (16)

For the Markovian bath considered in our work, the constant
matrix C is expressed as

C =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 2κc 0 0
0 0 0 0 2γm(n̄ + 1) 0
0 0 0 0 0 2κa

0 0 0 0 0 0
0 2γmn̄ 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

. (17)

By calculating the covariance matrix V, we obtain the steady-
state mean phonon number

n f = 〈δb†δb〉 = V52 − 1
2 , (18)

where V52 is obtained by solving the Lyapunov equation (14).

IV. ACA OPTOMECHANICAL COOLING

In this section, we study the ACA cooling by analyzing the
effective mechanical susceptibility, the net laser-cooling rate,
and the noise spectra.

A. Analytical results of the effective susceptibility
and net cooling rate

We obtain the position fluctuation spectrum of the mechan-
ical resonator as

Sq(ω) = |χeff(ω)|2[Srp(ω) + Sth(ω)], (19)

where χeff(ω) is the effective susceptibility of the mechanical
resonator, given by

χeff(ω) = ωm
[
�2

eff(ω) − ω2 − iω�eff(ω)
]−1

, (20)

with �eff(ω) and �eff(ω) being respectively the effective
resonance frequency and the effective damping rate of the
mechanical resonator, defined as

�eff =
√

ω2
m − 2|G|2ωm(ϕ� + 2�κaω2�)/ζ , (21a)

�eff = γm + γC. (21b)

Here, γC denotes the net cooling rate of the mechanical res-
onator, defined as

γC = 2|G|2ωm(2�κa� − ϕ�)/ζ , (22)
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and other parameters are

� = β+β− + τ+τ−, (23a)

� = 2
[
κ2

c κa + J2(κc + κa) + κa(�2 − ω2)

+ κc
(
κ2

a − ω2 + �2
a

)]
, (23b)

ζ = (β2
+ + τ 2

+)(β2
− + τ 2

−), (23c)

ϕ = J2�a − �
(
κ2

a − ω2 + �2
a

)
, (23d)

with

β± = ±J2 ± κcκa ∓ (ω ± �)(ω ± �a), (24a)

τ± = κc(ω ± �a) + κa(ω ± �). (24b)

In Eq. (19), the thermal noise spectrum Sth(ω) is given by

Sth(ω) = γmω

ωm
coth

(
h̄ω

2κBT

)
, (25)

and the radiation-pressure noise spectrum Srp(ω) is so compli-
cated that we do not show it here.

B. Amplified net cooling rate

In the preceding subsection, the effective mechanical res-
onance frequency �eff, the mechanical damping rate �eff [see
Eq. (21)], and the expression of the steady-state average ther-
mal excitation [see Eq. (A1)] have been analyzed analytically.
Now, we study how the ACA mechanism improves the cool-
ing performance by analyzing the effective decay rate �eff and
the mechanical resonance frequency �eff.

When the system works in the auxiliary-cavity-unassisted
(J = 0, see solid curves) and auxiliary-cavity-assisted
(J/ωm = 0.2 and PR = 30 mW, see dashed curves) cases, we
plot the effective mechanical resonance frequency �eff and the
decay rate �eff as a function of the frequency ω, as shown
in Figs. 1(b) and 1(c). We find that the modification of the
mechanical frequency, mainly determined by the optomechan-
ical coupling shown in Eq. (21), is the so-called “optical
spring effect,” which may lead to significant frequency shifts
in the case of low-frequency mechanical resonators. However,
for our higher-resonance frequency (ωm/2π = 10 MHz), the
optical spring term in Eq. (21) does not significantly alter the
mechanical frequency; i.e., �eff ≈ ωm when ω/ωm = ±1 [see
Fig. 1(b)]. Moreover, we show in Fig. 1(c) that, by using the
ACA mechanism, �eff is significantly increased at ω = ±ωm.
For example, when we switch the unassisted to assisted cases,
the effective mechanical decay rate �eff at ω = ±ωm can be
increased from ≈104γm to ≈4.5 × 104γm. This significant
enhancement of the effective mechanical damping �eff plays
an important role in improving the cooling performance of the
mechanical resonator.

To further understand the underlying physics of the ACA
cooling, we consider the red-sideband resonance case, i.e.,
� = ωm and ω = ωm, and then define a net-cooling-rate am-
plification factor,

� = γC,assisted

γC,unassisted
. (26)

In Fig. 2(a), we plot the net-cooling-rate amplification factor
� with respect to the tunneling coupling J and the pump
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FIG. 2. (a) Net-cooling-rate amplification factor � [see Eq. (26)]
versus the tunneling coupling J and the drive laser power PR of the
auxiliary cavity. The white dashed curve denotes � = 1. (b) � versus
J when PR = 50 mW (blue solid curve) and PR = 100 mW (red solid
curve). (c) � versus PR when J = 0 (black horizontal dashed line)
and J/ωm = 0.2 (red symbols). Here the black horizontal dashed
line denotes the auxiliary-cavity-unassisted case, i.e, J = 0. Other
parameters are the same as those used in Fig. 1.

power PR of the auxiliary cavity. It shows that the ACA
method can significantly amplify the net cooling rate of the
mechanical resonator. For example, in the unassisted case
(i.e., when J = 0), there is no cooling-rate amplification (i.e.,
� = 1), while in the assisted case, the amplification of the
net cooling rate emerges and even the amplification factor
can increase up to � = 15. In particular, when PR → 0 and
J/ωm → 0.6, we obtain 0 < � < 1 [see the upper left cor-
ner in Fig. 2(a)], which is due to the optical backscattering
losses in practical devices. Physically, various imperfections
of devices, such as material defects and surface roughness,
can induce backscattering of photons, as described by the
tunneling coupling J [97,98]. In a recent experiment [100],
a dynamical suppression of backscattering was already ob-
served by breaking the time-reversal symmetry with Brillouin
devices. The dependence of the net-cooling-rate amplification
factor � on the tunneling coupling J between the two cavities
is shown in Fig. 2(b). We find that in the region 0 < J/ωm <

0.25 (0.25 < J/ωm < 0.5), � increases (decreases) with in-
creasing J , and the optimal amplification factor emerges at
J/ωm = 0.25. Particularly, in comparison with the typical
optomechanical systems, a proportional amplification of the
net cooling rate can be observed with the pump power PR

when J ≈ 0.2ωm [see Fig. 2(c)]. Physically, the effective
optomechanical coupling strength can be amplified and the
refrigeration process can be accelerated by utilizing the ACA
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FIG. 3. (a) Steady-state average phonon number nf versus the
effective driving detuning �a when κa/κc = 1. Curves show our
analytical predictions and symbols are the numerical results. Here
the black horizontal solid line denotes the auxiliary-cavity-unassisted
case, i.e, J = 0. (b) Steady-state average phonon number nf as a
function of κa when �a = 0. Other parameters are the same as those
used in Fig. 1.

mechanism. This study provides a different strategy to im-
prove the net cooling rate of the mechanical resonator by just
using a pumped auxiliary device.

C. ACA optomechanical cooling

The foremost task of studying cooling properties in such
an ACA optomechanical system is to find the optimal driving
detuning �a and the decay rate κa of the pumped auxiliary
cavity. In Fig. 3(a) we show the steady-state average phonon
numbers n f of the mechanical resonator versus the driving de-
tuning �a of the pumped auxiliary cavity. We find a significant
enhancement for the cooling performance for blue-detuned
driving, �a < 0, and that the optimal cooling is located at
�a = 0. In contrast, the red-detuned driving, �a > 0, leads
to the suppression of the cooling efficiency. Here, the black
horizontal solid line denotes the auxiliary-cavity-unassisted
case, i.e, J = 0. Additionally, we plot the steady-state mean
phonon numbers n f as a function of the decay rate κa of
the auxiliary cavity, as shown in Fig. 3(b). We can see that
the optimal cooling efficiency of the mechanical resonator
emerges in 0.5 < κa/κc < 1. Note that our numerical (marked
by symbols) and analytical (solid curves) results exhibit an
excellent agreement, as shown in Fig. 3. These results indicate
a large improvement of the cooling performance, which is
realized by an appropriate design of the auxiliary cavity.

In Fig. 4(a) the final average phonon numbers n f are
plotted as a function of the effective driving detuning �

of the cooling cavity when the system works in both the
auxiliary-cavity-unassisted (see the blue curve) and auxiliary-
cavity-assisted (see the red curve) regimes. We can see that,
when the system is in the assisted case, the cooling perfor-
mance is much better than that in the unassisted case [see
Fig. 4(a)]. This is because the use of the pumped auxiliary
cavity can significantly amplify the net-cooling rate of the
mechanical resonator and, then, considerably improve its re-
frigeration performance. Note that for the unassisted case,
the mechanical resonator is cooled in the same manner as in
a typical optomechanical sideband-cooling scheme [33–35].
The optimal driving detuning is located at � ≈ ωm, which
indicates the maximum energy extraction efficiency between
the cooling-cavity-field mode and the mechanical resonator.

In realistic simulations, we find a small deviation of the
exact value of ωm. This is caused by the counter-rotating-wave
term in the linearized coupling between the cooling-cavity
field and the mechanical resonator. The underlying physics is
that the generation of an anti-Stokes photon leads to the cool-
ing of the mechanical resonator by taking away a phonon from
this resonator. For the optimal cooling � ≈ ωm, the frequency
ωm of the phonon exactly matches the driving detuning �, and
hence � ≈ ωm corresponds to the optimal cooling.

To further elucidate this cooling improvement, we plot the
final average phonon numbers n f as functions of the tunneling
coupling J and the pump power PR of the auxiliary cavity,
as shown in Fig. 4(b). By using the ACA mechanism, the
mechanical resonator can be cooled efficiently (n f  1), and
the lowest final average occupancies are 0.09, which is much
smaller than that of the auxiliary-cavity-unassisted case. We
can see from Figs. 4(c) and 4(d) that the cooling performance
is fully unchanged (see the black dashed lines, n f = 0.15) in
the unassisted case, but in stark contrast is improved strongly
(see the solid curves and symbols, n f = 0.09) in the as-
sisted case. Note that the numerical (symbols) and analytical
(solid curves) results show an excellent agreement, as seen in
Figs. 4(c) and 4(d).

To determine how large of a significant improvement of
the cooling performance can be reached, we here introduce
the cooling-performance improvement rate χ , defined as

χ = n f ,assisted − n f ,unassisted

n f ,unassisted
. (27)

Based on Eq. (27), we investigated the dependence of the
cooling-performance improvement rate χ on the parameters
J and PR, as shown in Fig. 5. We can see for the ACA system
that the rate χ can reach 40% compared with the unassisted
case and that the optimal cooling performance is for 0.07 <

J/ωm < 0.2 and 35 < PR < 140 mW. Physically, the optome-
chanical cooling is mainly governed by the net cooling rate,
which directly determines the extraction efficiency of thermal
excitations stored in the mechanical resonator and, therefore,
the greatly amplified net cooling rate leads to a significant
improvement of the cooling performance.

In the above simulations, we have found that the optimal
cooling performance is observed at � ≈ ωm [see Fig. 3(a)],
corresponding to the maximum phonon extraction efficiency.
Thus, based on our analytical expression in Eq. (A1) of the
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final mean phonon number, the analytical result of the mini-
mum occupation number can be achieved by setting � = ωm

and γm = 0. However, the analytical expression of the min-
imum occupation number is so complicated that we do not
show it here. Below, we study this by numerical simulations.

Under the optimal effective driving detuning, � = ωm, we
plot the steady-state average phonon number n f as a function
of the mechanical decay rate γm in the auxiliary-cavity-
unassisted (blue solid curve) and auxiliary-cavity-assisted
(red dashed curve) cases, as shown in Fig. 6(a). We find
that in both unassisted and assisted cases, the redundant
single-phonon probability could be further suppressed by
choosing the mechanical resonator with a smaller decay
rate. Physically, the thermal phonon extraction rate (between
the mechanical resonator and its heat bath) is faster for a
larger value of the mechanical decay rate, and, then, the
thermal excitations in the heat bath increase the phonon num-
bers in the mechanical resonator. In particular, we observe
that the cooling efficiency of the mechanical resonator in
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that in the unassisted case when γm → 0. This is because
our ACA mechanism can significantly amplify the effective
optomechanical coupling strength and considerably improve
the refrigeration performance.

In Fig. 6(b), the final steady-state mean phonon number n f

is plotted as a function of the cavity-field decay rate κc, when
the system operates in both unassisted and assisted cases.
To clearly study the influence of the sideband-resolution
condition on the cooling performance, we also choose the
mechanical frequency ωm as the frequency scale. We can see
that in both unassisted and assisted cases, the phonon side-
bands can be well resolved from the cavity-emission spectrum
when κc/ωm  1 [see the left area of the dashed black line
in Fig. 6(b)], which is called the resolved-sideband limit. In
the unresolved-sideband regime κc/ωm > 1, the cooling per-
formance of the mechanical resonator becomes much worse
for a larger cavity-field decay rate κc [see the right area of
the dashed black line in Fig. 6(b)]. This is due to the de-
crease of the net-cooling rate γC. In particular, the optimal
cooling performance is observed for κc/ωm ≈ 0.1−0.3, and
the cooling performance of the assisted case is better than
that of the unassisted case (i.e., n f ,assisted < n f ,unassisted). When
κc/ωm < 0.1, the cooling performance becomes worse with
the decrease of κc, because the net cooling rate γC → 0 when
κc/ωm → 0 [101]. Physically, the thermal excitations stored
in the mechanical resonator are mainly first transferred to the
cavity and then leak from the cavity through the bath coupled
to the cavity. When κc/ωm → 0, the thermal energy leakage
from the cavity is too weak and one could not obtain a strong
cooling. These findings provide a method to develop the cool-
ing performance of the mechanical resonator by appropriately
designing an auxiliary device.

V. ACA QUANTUM ENTANGLEMENT AND ITS
IMPROVED NOISE ROBUSTNESS

Now we study the effect of the ACA cooling mechanism
on quantum entanglement and its robustness against thermal
noises by calculating the logarithmic negativity.

A. Logarithmic negativity and minimum residual contangle

Let us define the quadrature fluctuations with δXo = (δo† +
δo)/

√
2 and δYo = i(δo† − δo)/

√
2 for o ∈ ac, aa, and the

corresponding Hermitian input noise operators with δX in
o =

(o†
in + oin )/

√
2 and δY in

o = i(o†
in − oin )/

√
2. Then, the lin-

earized equations of fluctuations can be written as

˙̃u(t ) = Ãũ(t ) + Ñ(t ), (28)

where ũ(t ) = [δXac , δYac , δXaa , δYaa , δq, δp]T is
the vector of fluctuation operators, Ñ(t ) =
(
√

2κcX in
ac

,
√

2κcY in
ac

,
√

2κaX in
aa

,
√

2κaY in
aa

, 0, ξ )T is the vector
of input noises, and the coefficient matrix A is given by

Ã =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κc � 0 J 0 0
−� −κc −J 0

√
2G 0

0 J −κa �a 0 0
−J 0 −�a −κa 0 0
0 0 0 0 0 ωm√
2G 0 0 0 −ωm −γm

⎞
⎟⎟⎟⎟⎟⎟⎠

. (29)

The formal solution of Eq. (28) is ũ(t ) = M̃(t )ũ(0) +∫ t
0 M̃(t − s)Ñ(s)ds, where M̃(t ) = exp(Ãt ). Now we can cal-

culate the steady-state value of the covariance matrix Ṽ, which
is defined by the matrix elements Ṽkl = 1

2 [〈ũk (∞)ũl (∞)〉 +
〈ũl (∞)ũk (∞)〉], for k, l = 1–6. Under the stability condition,
the covariance matrix Ṽ fulfills the Lyapunov equation ÃṼ +
ṼÃT = −Q̃, where Q̃ = diag{κc, κc, κa, κa, 0, γm(2n̄ + 1)}.
To study the bipartite entanglement of the system, we adopt
quantitative measures of the logarithmic negativity EN , de-
fined as [102–104]

EN = max[0,−ln(2ζ−)], (30)

where ζ− ≡ 2−1/2{�(Ṽ′) − [�(Ṽ′)2 − 4detṼ′]1/2}1/2, with
�(Ṽ′) ≡ detA+ detB− 2detC. Here the matrix Ṽ′ is written
as

Ṽ′ =
(
A C
CT B

)
, (31)

whereA, B, and C are 2 × 2 subblock matrices of Ṽ′.
For studying the tripartite entanglement of the system, we

first apply a quantitative measure of the residual contangle
Ē r|s|t

τ [105–107], which is given by

Ē r|s|t
τ ≡ Er|(st )

τ − Er|s
τ − Er|t

τ (r, s, t ) ≡ (ac, aa, b), (32)

where Eu|v
τ denotes the contangle of subsystems u (u contains

only one mode) and v (v contains one or two modes). Eu|v
τ

is a proper entanglement monotone and it can be defined as
the squared logarithmic negativity [105–107]. The residual
contangle satisfies the monogamy property of quantum entan-
glement, Er|(st )

τ � 0, i.e.,

Er|(st )
τ � Er|s

τ + Er|t
τ . (33)

This inequality is analogous to the popular Coffman-Kundu-
Wootters monogamy inequality, which holds for three qubits
[106].

A bona fide quantification of continuous-variable tripartite
entanglement is provided by the minimum residual contangle
[105–107]

Er|s|t
τ ≡ min

(r,s,t )

[
Er|(st )

τ − Er|s
τ − Er|t

τ

]
, (34)

where (r, s, t ) ≡ (ac, aa, b) denotes all the permutations of the
three mode indexes [105]. The nonzero minimum residual
contangle Er|s|t

τ > 0 means that the genuine tripartite entan-
glement is generated.

B. ACA bipartite entanglements

To study quantum entanglement properties of this sys-
tem, the foremost task is to find the optimal detuning �a

and the decay rate κa of the pumped auxiliary cavity. In
Figs. 7(a), 7(b), and 7(c), we present a quantum entanglement
measure, i.e., the logarithmic negativity, versus the driving
detuning �a and the decay rate κa: Eaab, Eacb, and Eaaac

are the auxiliary-cavity-phonon, cooling-cavity-phonon, and
photon-photon entanglements, respectively. Note that all the
parameters satisfy the stability conditions, which are derived
from the Routh-Hurwitz criterion; i.e., the real parts of all the
eigenvalues of Ã are negative. We can see from Figs. 7(a) and
7(c) that, for the red-detuned driving of the auxiliary cavity,
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i.e., �a > 0, there is no quantum entanglement between the
auxiliary cavity and the mechanical resonator (the optome-
chanical cavity), i.e., Eaab = 0 (Eaaac = 0). In contrast to this,
they become strongly entangled for the blue-detuned case,
i.e., �a < 0, and the highest quantum entanglement can be
achieved for �a/ωm ≈ −1.

Physically, the combined effect of the optomechanical and
tunneling couplings leads to strong entanglement between the
indirectly coupled cavity photons and phonons. We also find
that the optomechanical entanglement Eacb can be greatly en-
hanced for the blue-detuned driving of the auxiliary cavity, but
suppressed for the red-detuned case, and that the maximum
entanglement is generated at �a/ωm ≈ 0.

In particular, the complementary distribution of the entan-
glement in Figs. 7(a), 7(b), and 7(c) indicates that the initial
cooling-cavity-phonon entanglement is partially transferred to
the auxiliary-cavity-phonon and photon-photon subsystems.
This effect is prominent when the auxiliary-cavity detuning
�a/ωm = −1. In addition, Fig. 7 shows that the entanglement
is higher for a smaller decay rate κa of the auxiliary cavity.

Because the above enhancement of the entanglement re-
sults from the ACA mechanism, it is natural to ask the
question: can we further explore the quantum entanglement
by tuning the parameters of the ACA mechanism? To further
elucidate this aspect, we plot the logarithmic negativities Eaab,
Eacb, and Eaaac as functions of the tunneling coupling J and the
pump power PR of the auxiliary cavity, as shown in Figs. 7(d),
7(e), and 7(f), respectively. We find that, by using the ACA
mechanism, both photon-phonon and photon-photon entan-
glement are generated, and the photon-phonon entanglement
is much larger than the photon-photon entanglement, i.e.,
Eaab, Eacb > Eaaac . The highest entanglements Eaab and Eaaac

are observed for 0.3 � J/ωm � 0.6 and 45 � PR mW, and
Eacb is observed for 0.15 � J/ωm � 0.3 and 50 � PR mW.

This offers a different method to generate and enhance fragile
quantum resources by utilizing auxiliary devices.

C. ACA-improved noise robustness

Thermal noises in practical devices can destroy fragile
quantum resources. To protect quantum resources from en-
vironmental thermal perturbations, we introduce the ACA
mechanism, which can significantly improve the robustness
of quantum entanglement against thermal noises.

When the system works in both auxiliary-cavity-unassisted
(the green solid line) and auxiliary-cavity-assisted (marked by
green symbols) cases, we plot the logarithmic negativities Eaab

and Eacb as a function of the thermal excitation number n̄ of
the mechanical resonator, as shown in Fig. 8. We find that
the optomechanical entanglement Eacb is greatly improved by
the ACA method, and its robustness against thermal noises is
much stronger than that of the unassisted case. For example,
when we switch the auxiliary-cavity-unassisted to -assisted
cases, Eacb can be increased from Eacb ≈ 0.07 to Eacb ≈ 0.17
when n̄ = 0. This means that the ACA mechanism can signif-
icantly enhance the optomechanical entanglement.

In addition, we can see from Fig. 8 that, in the unassisted
case, quantum entanglement only emerges when n̄  200
(see the green solid line), while in the assisted case, it can
persist for thermal phonons near n̄ = 900 (see the green sym-
bols), which means that the noise robustness in the ACA
case is 4.5 times greater than that in the unassisted case.
This indicates that the ACA mechanism provides a feasible
method to protect fragile quantum resources from environ-
mental thermal perturbations in practical devices and to build
noise-tolerant quantum processors. Moreover, we find that due
to the combined effect of the optomechanical and tunneling
couplings, the indirectly coupled cavity photons and phonons

043521-9



LAI, QIN, HOU, MIRANOWICZ, AND NORI PHYSICAL REVIEW A 104, 043521 (2021)

0

0

Unassisted

0.05

0.1

0.15

1000 2000 3000

Assisted

a ba

a b

n-

L
o
g
ar

it
h
m

ic
 n

eg
at

iv
it

y

Noise robustness

c

Thermal phonon number

a a a c

FIG. 8. Logarithmic negativities Eacb (green), Eaab (blue), and
Eaaac (red) versus the thermal phonon numbers n̄ of the mechanical
resonator in the auxiliary-cavity-unassisted and auxiliary-cavity-
assisted cases, when κa = 0.5κc. Other parameters are the same as
those used in Fig. 7.

can be entangled strongly (Eaab, marked by blue symbols),
and the robustness of quantum entanglement against noise
is even up to 3 times that of the directly coupled case, as
shown in Fig. 8. In particular, owing to the tunneling coupling
between the cooling and auxiliary cavities, the cooling-cavity
photons and the auxiliary-cavity photons can be entangled,
and this entanglement is strongly robust against thermal noise
(Eaaac , marked by the red symbols). These findings provide a
useful strategy to improve the performance of fragile quantum
resources by just utilizing auxiliary devices.

D. Tripartite entanglement

Besides bipartite entanglements, the application of the
ACA mechanism can lead to a genuinely tripartite entan-
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glement, as demonstrated by the nonzero minimum residual
contangle in Eq. (34). In Fig. 9, we plot the tripartite en-
tanglement, quantified by the minimum residual contangle
Er|s|t

τ , versus the scaled effective driving detuning �a/ωm

when J = 0 (see the horizontal black solid line), J/ωm =
0.15 and PR = 0 (blue solid curve), and J/ωm = 0.15 and
PR = 50 mW (red dashed curve). We find that, without the
ACA mechanism (i.e., J = 0), no tripartite entanglement is
generated (i.e., Er|s|t

τ = 0, see the horizontal black solid line);
while with the ACA mechanism (i.e., J/ωm = 0.15), strong
tripartite entanglement is generated (i.e., Er|s|t

τ > 0, see the
blue or red curves). In particular, the tripartite entanglement
in the PR �= 0 case (see the red dashed curve) is much stronger
than that in the PR = 0 case (see the blue solid curve). Very
recently, the tripartite entanglement has been achieved in a
cavity magnomechanical system, which consists of cavity mi-
crowave photons, magnons, and phonons [107–109].

Finally, we remark that, in experiments, quantum entan-
glement can be detected by measuring the covariance matrix
Ṽ under a proper readout choice via a filter [110–112]. The
optical quadratures can be measured via the homodyne or het-
erodyne detection of the output [112–114], and the readout of
mechanical quadratures requires a probe being resonant with
the anti-Stokes sideband, mapping the mechanical motion to
the output field [112].

VI. CONCLUSION

In conclusion, we have shown how to achieve a significant
amplification in the net cooling rate of a mechanical resonator
and how to realize significantly enhanced optomechanical
refrigeration and entanglement in an auxiliary-cavity-assisted
optomechanical system. We have demonstrated that the
genuine tripartite entanglement of cooling-cavity photons,
auxiliary-cavity photons, and phonons can be generated by
using the ACA method. Specifically, we have revealed that
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the tripartite entanglement arises from the ACA mechanism,
without which it vanishes. We also found that the blue-
detuned driving of the auxiliary cavity leads to an enhanced
cooling and entanglement, while the red-detuned driving sup-
presses them.

More importantly, we have revealed that the ACA en-
tanglement has a much stronger robustness against thermal
noises in comparison with the auxiliary-cavity-unassisted
case. Our work could potentially be used for further manip-
ulating and observing quantum mechanical effects, protecting
fragile quantum resources from environmental thermal noises,
and building noise-tolerant quantum processors.
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APPENDIX A: ANALYTICAL EXPRESSIONS OF THE
STEADY-STATE MEAN PHONON NUMBER

In this Appendix, we show the exact analytical expressions
of the steady-state average phonon numbers in the mechanical
resonator. As shown in Sec. III B, by calculating the integral
in Eq. (7) for the position and momentum fluctuation spectra,
the exact steady-state mean phonon number can be obtained
in the form [35,51]

n f = 1

2

( iD6

2�6
+ iM6

2�6
− 1

)
. (A1)

Here, we introduce the variables

�6 = a5
{
a4

(−a1a2a3 + a2
3 + a2

1a4
) + [−a2a3 + a1

(
a2

2 − 2a4
)]
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5

}
− [

a3
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1(a3a4 + 2a2a5)
]
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1a2
6, (A2)

D6 = [−a3a4a5 + a2
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]
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a1a4a5 − a2
5 − a1a3a6

)
b2

+ (−a1a2a5 + a3a5 + a2
1a6

)
b3 + [−a2

3 − a2
1a4 + a1(a2a3 + a5)

]
b4

+ 1

a6

[
a2

3a4 − a2a3a5 + a2
5 + a2

1

(
a2

4 − a2a6
) + a1

(−a2a3a4 + a2
2a5 − 2a4a5 + a3a6

)]
b5, (A3)

and

M6 = 1
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where the coefficients are defined by

a0 = 1,

a1 = −i[2(κc + κa) + γm],
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and

b0 = 0,
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APPENDIX B: BISTABILITY ANALYSIS

By separating the degrees of classical motion from the
quantum fluctuations in Eq. (3), the classical-motion equa-
tions can be written as

d

dt
〈ac〉 = −[κc + i(�c − g0〈q〉)]〈ac〉 − i�L − iJ〈aa〉,

d

dt
〈aa〉 = −(κa + i�a)〈aa〉 − iJ〈ac〉 − i�R,

d

dt
〈p〉 = −ωm〈q〉 + g0〈a†

c〉〈ac〉 − γm〈p〉,
d

dt
〈q〉 = ωm〈p〉. (B1)

The steady-state mean values of the dynamical variables
can be obtained as

〈ac〉ss = i(�L + J〈aa〉ss)

−(κc + i�)
,

〈aa〉ss = i(�R + J〈ac〉ss)

−(κa + i�a)
,

〈p〉ss = 0,

〈q〉ss = g0〈a†
c〉ss〈ac〉ss

ωm
,

〈x〉ss = 〈q〉ss√
mωm

, (B2)

where

� = �c − g0〈q〉ss,

�a = ωa − ωR. (B3)

In Fig. 10, we plot the steady-state average displacement
〈x〉ss of the mechanical resonator as a function of the left
optical power PL. One can see that the steady-state average
displacement 〈x〉ss varies with the driving power PL of the left
driving field by solving Eqs. (B2) numerically. It is shown
that, when PL < 35 mW, only one solution of 〈x〉ss exists and
the system is not bistable. When 35 < PL < 150 mW, three
solutions of 〈x〉ss exist and the green dashed curve corresponds
to the unstable solutions. So the system exhibits bistability in
this case. To obtain the cooling and entanglement, a single
solution region should be chosen, and we set PL < 35 mW
throughout this work.
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