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Quantum information scrambling describes the delocalization of local information to global information in
the form of entanglement throughout all possible degrees of freedom. A natural measure of scrambling is the
tripartite mutual information, which quantifies the amount of delocalized information for a given quantum
channel with its state representation, i.e., the Choi state. In this work, we show that quantum information
scrambling can also be witnessed by temporal quantum steering for qubit systems. We can do so because there is
a fundamental equivalence between the Choi state and the pseudodensity matrix formalism used in temporal
quantum correlations. In particular, we propose a quantity as a scrambling witness, based on a measure of
temporal steering called temporal steerable weight. We justify the scrambling witness for unitary qubit channels
by proving that the quantity vanishes whenever the channel is nonscrambling.
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I. INTRODUCTION

Quantum systems evolving under strongly interacting
channels can experience the delocalization of initially local
information into nonlocal degrees of freedom. Such an effect
is termed “quantum information scrambling,” and this new
way of looking at delocalization in quantum theory has found
applications in a range of physical effects, including chaos
in many-body systems [1–8] and the black-hole information
paradox [9–19].

One can analyze the scrambling effect by using the state
representation of a quantum channel (also known as the Choi
state), which encodes the input and output of a quantum
channel into a quantum state [20,21]. Within this formula-
tion, quantum information scrambling can be measured by the
tripartite mutual information (TMI) of a Choi state [22–28]
which is written as

−I3 = I (A:CD) − I (A:C) − I (A:D). (1)

Here A denotes a local region of the input subsystem whereas
C and D are partitions of the output subsystem. The mutual in-
formation I (A:X ) quantifies the amount of information about
A stored in the region X . When I (A:CD) > I (A:C) + I (A:D)
or −I3 > 0, it means that the amount of information about A
encoded in the whole output region CD is larger than that in
local regions C and D. Therefore, −I3 > 0 implies the delo-
calization of information or quantum information scrambling
[22]. Note that the TMI and the out-of-time-ordered correlator
are closely related, suggesting that one can also use the out-of-
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time-ordered correlator as an alternative witness of quantum
information scrambling [22,29–37].

From another point of view, because TMI is a multipar-
tite entanglement measure, Eq. (1) can also be seen as a
quantification of the multipartite entanglement in time, i.e.,
the entanglement between input and output subsystems [22].
Motivated by such an insight, one could expect that the scram-
bling effect can also be investigated from the perspective of
temporal quantum correlations, i.e., temporal analog of space-
like quantum correlations.

Moreover, Ku et al. [38] has shown that three notable tem-
poral quantum correlations (temporal nonlocality, temporal
steering, and temporal inseperability) can be derived from
a fundamental object called pseudodensity matrix [39–42],
while elsewhere it was noted that there is a strong relationship
between the Choi state and the pseudodensity matrix itself
[42]. Taking inspiration from these connections, in this work,
we aim to link the notion of scrambling to one particular
scenario of temporal quantum correlation called temporal
steering (TS) [38,43–49].

Partly inspired by the Leggett-Garg inequality [50,51],
temporal steering was developed as a temporal counterpart
of the notion of spatial EPR steering [52–61]. Recent work
has shown that TS can quantify the information flow between
different quantum systems [45], further suggesting it may also
be useful in the study of scrambling. Here our goal is to
demonstrate that one can witness information scrambling with
temporal steering, which implies that the scrambling concept
has nontrivial meaning in the broader context of temporal
quantum correlations. In addition, we wish to show that one
can use “measures” developed to study temporal steering as a
practical tool for the study of scrambling.
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FIG. 1. Illustration of the extended temporal steering scenario
involving five qubits labeled by {q1, . . . , q5}. Initially, Alice encodes
her information in q1 and lets the total system evolve. After the
evolution, Bob divides the evolved system into two local regions C
and D and tests the temporal steerability for each region to find out
how the information spread throughout the whole system.

We will restrict our attention to unitary channels of qubit
systems, where the structure of nonscrambling channels can
be well characterized [23]. More specifically, a unitary chan-
nel is nonscrambling, i.e., −I3 = 0, if and only if the unitary
is a “criss-cross” channel that locally routes the local infor-
mation from the input to the output subsystems. For qubit
systems, a criss-cross channel can be described by a sequence
of local unitaries and SWAP operations.

The main result of this work is that we propose a quantity,
−T3, as a scrambling witness based on a measure of temporal
steering called temporal steerable weight. We justify −T3 to
be a scrambling witness by proving that −T3 = 0 when the
global unitary channel is nonscrambling as mentioned above.
We then compare the −T3 with −I3 by numerically simulating
the Ising spin-chain model and the Sachdev-Ye-Kitaev (SYK)
model. Finally, based on the one-sided device independent
nature of steering, we point out that obtaining −T3 requires
less experimental resource than −I3.

II. EXTENDED TEMPORAL STEERING SCENARIO AND
SCRAMBLING WITNESS

A. Temporal steering scenario

Let us review the TS scenario [43] with the schematic
illustration shown in Fig. 1. We focus on the reduced system
q1 and treat other qubits as the environment. In general, the
TS task consists of many rounds of experiments. For each
round, Alice receives q1 with a fixed initial state ρ0. Before
the system evolves, Alice performs one of the projective mea-
surements {Ea|x}a,x on q1. Here x stands for the index of the
measurement basis, to which Alice can freely choose, and
a is the corresponding measurement outcome. The resulting
postmeasured conditional states can be written as{

ρa|x(0) = Ea|xρ0E†
a|x

tr(Ea|xρ0E†
a|x )

}
a,x

, (2)

where {p(a|x) = tr(Ea|xρ0)}a,x predicts the probability of ob-
taining the outcome a conditioned on Alice’s choice x. Alice

then sends the system to Bob through the quantum channel �t ,
which describes the reduced dynamics of q1 alone by tracing
out other qubits. Finally, Bob performs another measurement
on q1 after the evolution.

After all rounds of the experiments are finished, Alice
sends her measurement results to Bob by classical com-
munication, such that Bob can also obtain the probability
distribution p(a|x). Additionally, based on the knowledge
(x, a) for each round of the experiment, Bob can approximate
the conditional state ρa|x(t ) = �t [ρa|x(0)] by quantum state
tomography. The aforementioned probability distribution and
the conditional states can be summarized as a set called the
TS assemblage {σa|x = p(a|x)ρa|x(t )}a,x. Note that the assem-
blage can also be derived from the pseudodensity matrix (see
Appendix A for the derivation). In Appendix A we also show
that the Choi matrix and the pseudodensity matrix are related
by a partial transposition.

Now, Bob can determine whether a given assemblage
is steerable or unsteerable; that is, whether his system is
quantum mechanically steered by Alice’s measurements. In
general, if the assemblage is unsteerable, it can be generated
in a classical way, which is described by the local hidden state
model:

σ LHS
a|x (t ) =

∑
λ

p(a|x, λ)p(λ)σλ(t ) ∀a, x, (3)

where {p(λ), σλ(t )} is an ensemble of local hidden states,
and {p(a|x, λ)} stands for classical postprocessing. Therefore,
the assemblage is steerable when it cannot be described by
Eq. (3).

Bob can further quantify the magnitude of temporal steer-
ing [61,62]. Here we use one of the quantifiers called temporal
steerable weight (TSW) [45]. For a given TS assemblage
{σa|x(t )}, one can decompose it into a mixture of a steerable
and unsteerable parts, namely,

σa|x(t ) = μσ US
a|x (t ) + (1 − μ)σ S

a|x(t ) ∀a, x, (4)

where {σ S
a|x(t )} and {σ US

a|x (t )} are the steerable and unsteerable
assemblages, respectively, and μ stands for the portion (or
weight) of the unsteerable part with 0 � μ � 1. The TSW for
the assemblage is then defined as

TSW[σa|x(t )] = 1 − μ∗, (5)

where μ∗ is the maximal unsteerable portion among all possi-
ble decompositions described by Eq. (4). In other words, TSW
can be interpreted as the minimum steerable resource required
to reproduce the TS assemblage (e.g., TSW = 0 for minimal
steerability, and TSW = 1 for maximal steerability). Note that
Eq. (5) can be numerically computed through semidefinite
programming [62]. We also refer to the similar measures on
spatial steering (spatial-temporal steering) in Refs. [63–65].

According to Ref. [45], the TSW can reveal the direction
of the information flow between an open quantum system and
its environment during the time evolution. When the infor-
mation irreversibly flows out to the environment, TSW will
monotonically decrease. Accordingly, the temporal increase
of TSW implies information backflow. Recall that Alice steers
q1’s time evolution by her measurement Ea|x. In other words,
the measurement encodes the information about (a, x) in q1.
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Therefore, after the evolution, Bob can estimate the amount of
the information preserved in q1 by computing the TSW.

B. Extended temporal steering as a witness of scrambling

As shown in Fig. 1, the evolution for the total system is still
unitary, meaning that the information initially stored in q1 is
just redistributed (and localized) or scrambled after the evolu-
tion. Therefore, if we extend the notion of TS, which allows
Bob to access the full system (regions C and D), he can, in
general, find out how the information localized or scrambled
throughout the whole system. To be more specific, we now
consider a global system with N qubits labeled by {qn}n=1,...,N .
Before Alice performs any measurement, we reset the total
system by initializing the qubits in the maximally mixed state
ρ tot

0 = 1⊗N/2N , where 1 is the two-dimensional identity ma-
trix. In this case, no matter how one probes the system, it gives
totally random results, and no meaningful information can be
learned. Then Alice encodes the information (a, x) in q1 by
performing {Ea|x}, which results in the conditional states of
the total system:{

ρ tot
a|x(0) = 1

2N
(2Ea|x ⊗ 1⊗N−1)

}
a,x

(6)

with

{p(a|x) = tr

(
Ea|x

1

2

)
= 1/2}a,x. (7)

After that, let these conditional states evolve freely to time t ,
such that

ρ tot
a|x(t ) = Ut ρ tot

a|x(0)U †
t ∀a, x, (8)

where Ut can be any unitary operator acting on the total
system. The assemblage for the global system then reads{

σ tot
a|x(t ) = p(a|x) ρ tot

a|x(t )
}

a,x
. (9)

Because the global evolution is unitary, it is straightforward
that

TSW
[
σ tot

a|x(t )
] = TSW

[
σ tot

a|x(0)
]
, (10)

which means that the information is never lost when all the
degrees of freedom in the global system can be accessed by
Bob.

In order to know how the information spread through-
out all degrees of freedom, Bob can further analyze the
assemblages obtained from different portions of the total
system. For instance, he can divide the whole system into
two local regions C and D as shown in Fig. 1, where C
contains nc qubits {q1, . . . , qnc} and D contains nd = N −
nc qubits {qnc+1, . . . , qN }, such that Bob obtains two ad-
ditional assemblages: {σC

a|x(t ) = trD[σ tot
a|x(t )]} and {σ D

a|x(t ) =
trC[σ tot

a|x(t )]}. Therefore, he can compute TSW[σC
a|x(t )] and

TSW[σ D
a|x(t )], estimating the amount of information localized

in regions C and D.
In analogy with Eq. (1), we propose the following quantity

to be a scrambling witness:

−T3(t ) = TSW
[
σ tot

a|x(t )
] − TSW

[
σC

a|x(t )
] − TSW

[
σ D

a|x(t )
]
,

(11)
where the minus sign for the quantity aims to keep the con-
sistency with the TMI scrambling measure in Eq. (1). It can

be interpreted as the information stored in the whole system
minus the information localized in regions C and D, namely,
the information scrambled to the nonlocal degrees of freedom.

As mentioned in the introduction section, for a non-
scrambling channel consisting of local unitaries and SWAP
operations, the information will stay localized (nonscram-
bled). Therefore, we further justify that −T3(t ) can be a
scrambling witness, under the assumption of global unitary
evolution, by proving that under nonscrambling evolutions,
this quantity will vanish, i.e., −T3 = 0. Accordingly, any
nonzero value of −T3 can be seen as a witness of scrambling.

Theorem 1. If the global unitary evolution U is local for
regions C and D, that is, U = UC ⊗ UD, the resulting −T3 is
zero.

The proof is given in Appendix B.
Theorem 2. If the global unitary U is a SWAP operation

between qubits, then −T3(t ) = 0.
The proof is given in Appendix C.
According to the results of Theorem 1 and Theorem 2, we

conclude that −T3(t ) will vanish if the global evolution is any
sequence of local unitaries and SWAP operations, as required
for a witness of scrambling.

III. NUMERICAL SIMULATIONS

In this section, we present the numerical simulations for
the Ising spin chain and the SYK model. For simplicity, we
consider {Ea|x} to be projectors of Pauli matrices {σx, σy, σz}
such that TSW[σ tot

a|x(0)] = 1 [45].

A. Example 1: The Ising spin chain

We now consider a one-dimensional Ising model of N
qubits with the Hamiltonian

H = −
N−1∑
i=1

σ z
i σ z

i+1 − h
N∑

i=1

σ z
i − g

N∑
i=1

σ x
i . (12)

The key feature is that one can obtain chaotic behavior by
simply turning on the longitudinal field parametrized by h.

Here we consider the system containing seven qubits
{q1, . . . , q7} and compare the dynamical behavior of informa-
tion scrambling for chaotic (g = 1, h = 0.5) and integrable
regimes (g = 1, h = 0) by encoding the information in q1.

As shown in Fig. 2, we plot the information scrambling
measured by −I3 and witnessed by −T3 and the amount
of information stored in region C (D) with the quantities
I (A:C) and TSW(σC

a|x ) [I (A:D) and TSW(σ D
a|x )] for different

partitions of the output system. For a fixed output partition
[Figs. 2(a3), 2(b3), and 2(c3), for instance], one can find
that the local minima of the scrambling corresponds to the
local maxima of the information stored in either region C or
region D. Therefore, we can conclude that the decrease of the
scrambling during the evolution results from the information
backflow from nonlocal degrees of freedom to local degrees
of freedom.

Moreover, information scrambling behaves differently for
chaotic and integrable evolutions. For chaotic evolution, the
scrambling will remain large after a period of time, because
the information is mainly encoded in nonlocal degrees of
freedom. However, for integrable systems, we can observe
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FIG. 2. Information scrambling and localization with different output partitions [ (nc = 2, nd = 5) for (a1, b1, c1); (nc = 3, nd = 4) for (a2,
b2, c3); (nc = 4, nd = 3) for (a3, b3, c3); (nc = 3, nd = 4) for (a4, b4, c4)] for the chaotic (g = 1, h = 0.5) and the integrable (g = 1, h = 0)
spin chain dynamics. (a) Information scrambling measured by −I3 and witnessed by −T3. (b) Information stored in region C and measured by
I (A:C) and TSW({σC

a|x}). (c) Information stored in region D and measured by I (A:D) and TSW({σ D
a|x}). Here nc and nd denote the number of

qubits involved in region C and region D, respectively.

that both −I3 and −T3 show oscillating behavior. Furthermore,
as the dimension of region C becomes larger, the oscillating
behavior of the scrambling for integrable cases significantly
increases, whereas the scrambling patterns for chaotic cases
remain unchanged.

B. Example 2: The Sachdev-Ye-Kitaev model

We now consider the SYK model which can be realized by
a Majorana fermionic system with the Hamiltonian

H =
∑

i< j<k<l

Ji jklχiχ jχkχl ,

J2
i jkl = 3!

(N − 1)(N − 2)(N − 3)
J2, (13)

where the χi represent Majorana fermions with j, k, l, m =
1, . . . , N . Meanwhile, Ji jkl in the Hamiltonian follow the

random normal distribution with zero mean and variance J2
i jkl .

To study this model in qubit system, we can use the Jordan-
Wigner transformation

χ2i−1 = 1√
2

X1X2 . . . Xi−1Zi,

χ2i = 1√
2

X1X2 . . . Xi−1Yi (14)

to convert the Majorana fermions to spin chain Pauli op-
erators. In our numerical results, we consider N = 14 (a
seven-qubit system) and J = 1. Figure 3 shows the time evo-
lutions of the information scrambling and the information
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FIG. 3. Information scrambling and localization of the Sachdev-Ye-Kitaev model with different partitions of the output system [ (nc = 2,
nd = 5) for (a1, b1, c1); (nc = 3, nd = 4) for (a2, b2, c3); (nc = 4, nd = 3) for (a3, b3, c3); (nc = 3, nd = 4) for (a4, b4, c4)]. (a) Information
scrambling measured by −I3 and witnessed −T3. (b) Information localized in region C and measured by I (A:C) and TSW(σC

a|x). (c) Information
localized in region D and measured by I (A:D) and TSW(σ D

a|x).

localized in region C and D for different partitions of the
output system similar to those in Example 1.

The main difference between these examples is that,
in Example 1, the qubits interact only with their nearest
neighbors; whereas in example 2, the model includes the
interactions to all other qubits. Therefore, we can observe that
in the spin chain model, the scrambling is sensitive to the
dimension of the output system. However, in the SYK model,
the scrambling is not susceptible to the partition of the output
system, namely, the scrambling time and the magnitude of the
tripartite mutual information after the scrambling period of
different output partitions are similar (asymptotically reaching
the Harr-scrambled value [22]). Note that in Appendix E,
we also provide numerical simulations involving a different
number of qubits for the above examples. We find that when
decreasing (increasing) the number of qubits, the tendency
of information backflow [45] from global to local degrees of
freedom will increase (decrease) for both chaotic and inte-
grable dynamics.

Finally, for the scrambling dynamics (chaotic spin chain
and SYK model), we can find that TSW(σC

a|x ) degrades more

quickly to zero than I (A:C). In addition, TSW(σ D
a|x ) remains

zero all the time, while I (A:D) could reach some nonzero
value. The different behavior between the TSW(σC/D

a|x ) and
I (A:C/D) results from the hierarchical relation between these
two quantities [38], which states that temporal quantum steer-
ing is a stricter quantum correlation than bipartite mutual
information. In other words, we can find some moments where
I (A:C/D) has nonzero value whereas TSW(σC/D

a|x ) is zero, but
not vice versa. The situation when TSW(σC

a|x ) = TSW(σ D
a|x ) =

0 [I (A:C) = I (A:D) = 0] implies that −T3 [−I3] reaches its
maximum. Therefore, for scrambling dynamics we can ob-
serve that −T3 reaches its maximum earlier than −I3.

IV. SUMMARY

In summary, we demonstrate that the information scram-
bling can be verified by not only the spatial quantum
correlations encoded in a Choi matrix but also the temporal
quantum correlations encoded in a pseudodensity matrix (see
Table I for the comparison between the spacelike and time-
like structures). Moreover, we further provide an information
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TABLE I. Relations between spacelike and timelike structures.
In the diagrams, the vertical line with a dot in the middle for the
spacelike structure represents the bipartite entanglement as the re-
source of the input state. The red boxes represent the measurements
required for the spatial or temporal quantum state tomography for
different scenarios.

scrambling witness, −T3, based on the extended temporal
steering scenario.

A potential advantage of using −T3 as a scrambling wit-
ness, over −I3, is that −T3 requires fewer measurement
resources than −I3. More specifically, when measuring −T3,
we do not have to access the full quantum state of the input
region A, because in the steering scenario Alice’s measure-
ment bases are characterized by only the classical variable x.
From a practical point of view, the number of Alice’s mea-
surement basis can be less than that required for performing
quantum state tomography on the region A. For the examples
presented in this work, we consider that region A contains
only a single qubit (q1), in which the standard choice of the
measurement bases is the set of Pauli matrices, {σx, σy, σz}.
For the steering scenario, we can choose only two of these
matrices as Alice’s measurement bases, though for the numer-
ical simulations presented in this work, we still consider that
all three Pauli matrices are used by Alice.

Once the dimension of region A increases, the number
of the measurements required to perform quantum state to-
mography and obtain −I3 will also increase. However, as
aforementioned, for the steering scenario, the dimension of
the region A is not assumed, implying that we can still choose
a manageable number of Alice’s measurements to verify the
steerability and compute −T3.

Finally, it is important to note that we claim only that −T3

is a witness of scrambling rather than a quantifier, because
we prove only that −T3 vanishes whenever the evolution is
nonscrambling. An open question immediately arises: Can
−T3 be further treated as a quantifier from the viewpoint
of resource theory [66]? To show this, our first step would
be to prove that −T3 monotonically decreases whenever the
evolution is nonscrambling, and we leave it as a future work.

Note added. Recently, we became aware of [67], which
independently showed that the temporal correlations are con-
nected with information scrambling, because the out-of-time-

ordered correlators can be calculated from pseudodensity
matrices.
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APPENDIX A: RELATION BETWEEN CHOI MATRIX
AND PSEUDODENSITY MATRIX

To illustrate the main idea behind the TMI scrambling
measure in Ref. [22], let us now consider a system made up
of N qubits, labeled by {q1, . . . , qN }, with a Hilbert space
HIn

q = ⊗N
i=1 HIn

qi
. We then create N ancilla qubits, labeled

with {q̃1, . . . , q̃N }, where each q̃i is maximally entangled with
the corresponding qubit qi. Therefore, the Hilbert space of the
total 2N qubits system is HIn

q̃ ⊗ HIn
q . The corresponding den-

sity operator is ρCJ
0 ∈ L(HIn

q̃ ) ⊗ L(HIn
q ), where L(HX

q ) denotes
the set of linear operators on the Hilbert state HX

q . We can
expand ρCJ

0 with Pauli matrices such that

ρCJ
0 = 1

4N

3∑
i1,···iN =0

Ti1···iN

(
N⊗

m=1

σim

)
⊗

(
N⊗

m=1

σim

)
, (A1)

where Tμ1···μN = Vμ1 · · ·VμN , V = (+1,+1,−1,+1), and
σ = (1, σx, σy, σz ). Let us now send the original qubits into
a quantum channel (completely positive and trace-preserving
map) �t :L(HIn

q ) → L(HOut
q ). Here we consider the channel

to be unitary; namely, �t (ρ) = UtρU †
t , where Ut is a unitary

operator. The evolved density matrix (known as the Choi
matrix) then reads

ρCJ
t = (1 ⊗ �t )

[
ρCJ

0

]
= (1 ⊗ Ut )ρ

CJ
0 (1 ⊗ U †

t ) ∈ L
(
HIn

q̃

) ⊗ L
(
HOut

q

)
. (A2)

In general, Ut can be expanded as

Ut =
∑

μ1···μN

uμ1···μN

N⊗
m=1

σμm . (A3)
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We therefore can expand the Choi matrix into

ρCJ
t = 1

4N

∑
i1···iN

∑
j1··· jN

�
i1···iN
j1··· jN

(
N⊗
m

σim

)
⊗

(
N⊗
n

σ jn

)
,

�
i1···iN
j1··· jN

= 1

2N

∑
μ1···μN

∑
ν1···νN

[Ti1···iN uμ1···μN u∗
ν1···νN

×
N∏

m=1

tr(σ jmσμmσimσνm )]. (A4)

We now construct the pseudodensity matrix (PDM)
through a temporal analog of quantum state tomography
(QST) between measurement events at two different moments
[39]. A PDM for an N qubits system in an initially maximally
mixed state undergoing �t is given by

Rt = 1

4N

∑
i1···iN

∑
j1··· jN

Ci1···iN
j1··· jN

(
N⊗
m

σim

)
⊗

(
N⊗
n

σ jn

)
,

Ci1···iN
j1··· jN

= E

[ {
N⊗
m

σim ,

N⊗
n

σ jn

}]

= 1

2N

∑
μ1···μN

∑
ν1···νN

[
uμ1···μN u∗

ν1···νN

×
N∏

m=1

tr
(
σ jmσμmσimσνm

)]
, (A5)

where E[ {⊗N
m σim ,

⊗N
n σ jn} ] is the expectation value of

the product of the outcome of the measurement
⊗N

m σim
performed on the initial time and the outcome of the mea-
surement

⊗N
n σ jn performed at the final time t . Similarly,

Rt ∈ L(HIn
q̃ ) ⊗ L(HOut

q ).
By comparing the coefficients of the N qubits Choi matrix

(�i1···iN
j1··· jN

) in Eq. (A4) with those of the PDM in Eq. (A5)

(Ci1···iN
j1··· jN

), one can find that these two matrices are related
through a partial transposition of the input degree of freedom,

(
ρCJ

t

)TIn

= Rt . (A6)

According to Ref. [38], the TS assemblage can also be
derived from the pseudodensity matrix Rt [which is defined
in Eq. (A5)] by the following Born’s rule:

σa|x(t ) = trIn[(Ea|x ⊗ 1⊗2N−1)Rt ], (A7)

where trIn denotes the partial trace over the input Hilbert
space.

As mentioned in the main text, the notion of scrambling
can be understood as the multipartite entanglement in the
Choi state. Therefore, the insight inferred from Eq. (A6) sug-
gests that it should be possible to reformulate the information
scrambling with multipartite temporal quantum correlations.

APPENDIX B: PROOF OF THEOREM 1

Proof. Let us start from the evolved assemblage for the
total system (region CD):

σ tot
a|x(t ) = UC ⊗ UD

[
1

2N
(Ea|x ⊗ 1⊗N−1)

]
U †

C ⊗ U †
D

= UC

[
1

2nc
(Ea|x ⊗ 1⊗nc−1)

]
U †

C ⊗ UD
1⊗nd

2nd
U †

D, (B1)

σC
a|x(t ) = UC

[
1

2nc
(Ea|x ⊗ 1⊗nc−1)

]
U †

C , (B2)

σ D
a|x(t ) = UD

1⊗nd

2nd +1
U †

D. (B3)

Since UC and UD are unitary, leading to the invariance of the
TSW, we find the following results:

TSW
[
σ tot

a|x(t )
] = TSW

[
σ tot

a|x(0)
] = TSW

(
Ea|x ⊗ 1⊗N−1

2N

)
,

(B4)

TSW
[
σC

a|x(t )
] = TSW

[
σC

a|x(0)
] = TSW

(
Ea|x ⊗ 1⊗nc−1

2nc

)
,

(B5)

TSW
[
σ D

a|x(t )
] = TSW

[
σ D

a|x(0)
] = TSW

(
1⊗nd

2nd +1

)
. (B6)

It is straightforward to conclude that TSW[σ D
a|x(0)] = 0, since

{σ D
a|x(0)} can be decomposed as the local hidden state model

shown in Eq. (3). In addition,

TSW

(
Ea|x ⊗ 1⊗n−1

2n

)
= TSW

(
Ea|x

2

)
(B7)

for arbitrary positive integer n. Therefore, we can deduce that

−T3(t )=TSW
[
σ tot

a|x(t )
] − TSW

[
σC

a|x(t )
]−TSW

[
σ D

a|x(t )
] = 0.

(B8)
�

APPENDIX C: PROOF OF THEOREM 2

Proof. We can find that the sum of the TSW for regions C
and D is invariant under any permutation between qubits such
that

TSW
[
σC

a|x(t )
] + TSW

[
σ D

a|x(t )
]

= TSW

(
Ea|x

2

)
+ TSW

(
1

4

)
. (C1)

Therefore, under the SWAP operation, −T3(t ) =
TSW( Ea|x

2 ) − TSW( Ea|x
2 ) = 0. �

APPENDIX D: THE QUBIT CLIFFORD SCRAMBLER

In this section, we numerically analyze the qubit Clifford
scrambling circuit, proposed in Ref. [29]. The setting involves
only three qubits with a quantum circuit depicted in Fig. 4,
which is parametrized by θ . By changing the angle θ , one
can scan the angle from nonscrambling (θ = 0) to maxi-
mally scrambling (θ = ±π

2 ), which can be described by the
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FIG. 4. (a) The circuit diagram of the Clifford scrambling circuit, where XX stands for the Ising (XX ) coupling and Rz stands for the
rotation-z gate. One can obtain different degrees of scrambling by changing the angle θ : θ = 0 for the nonscrambling case and θ = π/2 ± nπ

for the maximum scrambling case. Here n is an arbitrary integer. (b) Numerical simulations of −I3 (black solid) and −T3 (red dashed) for the
Clifford scrambler for different angles θ .

following unitary matrix:

Us = i

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 −1 0 −1 −1 0
0 1 −1 0 −1 0 0 1
0 −1 1 0 −1 0 0 1
1 0 0 1 0 −1 −1 0
0 −1 −1 0 1 0 0 1
1 0 0 −1 0 1 −1 0
1 0 0 −1 0 −1 1 0
0 −1 −1 0 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(D1)

According to Ref. [29], the scrambling unitary delocalizes
all single qubit Pauli operators to three qubit Pauli operators
in the following way:

Us(σx ⊗ 1 ⊗ 1)U †
s = −σx ⊗ σy ⊗ σy,

Us(σy ⊗ 1 ⊗ 1)U †
s = −σy ⊗ σz ⊗ σz,

Us(σz ⊗ 1 ⊗ 1)U †
s = −σz ⊗ σx ⊗ σx,

FIG. 5. We numerically simulate −I3 and −T3 of the integrable spin chain (a1, b1), the chaotic spin chain (a2, b2), and the SYK model
(a3, b3), for a different number of qubits. We find that (for both the integrable and chaotic systems) the oscillations of information scrambling
are enhanced when the system size decreases. It suggests that the tendency of information backflow from nonlocal to local degrees of freedom
increases when the system size decreases. Note that the numbers of qubits in region C for three-qubit, four-qubit, five-qubit, and eight-qubit
systems are 1, 2, 3, and 4, respectively.
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TABLE II. The total amount of information backflow for different systems and different numbers of qubits. The top table considers −I3,
whereas the bottom one is for −T3. Here T = 40/g and T = 148/J for the spin chains and the SYK models, respectively. As a result, we can
conclude that the system with a larger number of qubit tends to have smaller amount of information backflow.

II3 (T ) Three-qubit Four-qubit Five-qubit Eight-qubit

Spin chain (integrable) 5.295 2.602 1.764 0.557
Spin chain (chaotic) 1.945 0.692 0.266 0.038
SYK model 2.311 0.265 0.057 0.001

IT3 (T )

Spin chain (integrable) 7.589 4.240 2.894 0.329
Spin chain (chaotic) 1.340 0 0 0
SYK model 1.194 0 0 0

Us(1 ⊗ σx ⊗ 1)U †
s = −σy ⊗ σx ⊗ σy,

Us(1 ⊗ σy ⊗ 1)U †
s = −σz ⊗ σy ⊗ σz,

Us(1 ⊗ σz ⊗ 1)U †
s = −σx ⊗ σz ⊗ σx,

Us(1 ⊗ 1 ⊗ σx )U †
s = −σy ⊗ σy ⊗ σx,

Us(1 ⊗ 1 ⊗ σy)U †
s = −σz ⊗ σz ⊗ σy,

Us(1 ⊗ 1 ⊗ σz )U †
s = −σx ⊗ σx ⊗ σz. (D2)

Such a delocalization is often known as operator growth,
which can be viewed as a key signature of quantum scram-
bling. In Fig. 4 we plot the values of −T3 and −I3 by changing
the angles θ . We can see that both −I3 and −T3 display an
oscillating pattern with period π . The value of −I3 reaches its
maximum scrambling value at θ = π/2, while −T3 reaches its
maximum scrambling value earlier than −I3 due to the sudden
vanishing of the TSW for local regions.

APPENDIX E: NUMERICAL SIMULATIONS FOR
DIFFERENT SYSTEM SIZES

In Fig. 5 we plot the numerical simulations of −I3 and −T3

for the integrable spin chain, chaotic spin chain, and the SYK
model, involving different numbers of qubits. We can observe

that as the qubit number decreases (increases), the oscillation
magnitude of information scrambling for both integrable and
chaotic dynamics increases (decreases). The result suggests
that when the system size decreases (increases), it would be
more likely (unlikely) to observe information backflow from
nonlocal to local degrees of freedom.

Because any decrease of −I3 (−T3) signifies the back-
flow of information, we can quantify the total amount of
information backflow within a time interval by summing up
the total negative changes of the scrambling witnesses. More
specifically, we define a quantity IQ(T ), which quantifies the
total amount of information backflow for a given time interval
t ∈ [0, T ], as follows:

IQ(T ) =
∫ t=T

t=0,σQ>0
σQ(t ) dt, (E1)

where Q ∈ {I3, T3} and σQ(t ) = d
dt Q(t ). In other words, IQ(T )

integrates all positive changes of Q (or equivalently, all
negative changes of −Q) for t ∈ [0, T ]. Note that this quan-
tification of information backflow is consistent with that in
the framework of quantum non-Markovianity (see Ref. [45],
for instance). We summarize the results in Table II, which
show that as the number of qubit increases, the amount of
information backflow IQ(T ) decreases, implying a stronger
scrambling effect.
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