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Domino cooling of a coupled mechanical-resonator chain via cold-damping feedback
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We propose a domino-cooling method to realize simultaneous ground-state cooling of a coupled
mechanical-resonator chain through an optomechanical cavity working in the unresolved-sideband regime. This
domino-effect cooling is realized by combining the cold-damping feedback on the first mechanical resonator
with nearest neighbor couplings between other neighboring mechanical resonators. We obtain analytical re-
sults for the effective susceptibilities, noise spectra, final mean phonon numbers, and cooling rates of these
mechanical resonators, and find the optimal cooling condition for these resonators. In particular, we analyze a
two-mechanical-resonator case and find that by appropriately engineering either the laser power or the feedback,
a flexible switch between symmetric and asymmetric ground-state cooling can be achieved. This could be
used for preparing symmetric quantum states in multimode mechanical systems. We also simulate the cooling
performance of a coupled N-mechanical-resonator chain and confirm that these resonators can be simultaneously
cooled to their quantum ground states in the unresolved-sideband regime. Under proper parameter conditions,
the cooling of the mechanical-resonator chain shows a temperature gradient along the chain. This study opens a
route to quantum manipulation of multiple mechanical resonators in the bad-cavity regime.
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I. INTRODUCTION

Cavity optomechanical systems [1–3], addressing the
radiation-pressure coupling between mechanical motion of
mesoscopic or even macroscopic objects and electromagnetic
degrees of freedom, provide a promising platform for ma-
nipulating cavity-field statistics by mechanically changing
the cavity boundary or controlling the mechanical proper-
ties through optical means [4–19]. Optomechanical cooling
[20–40], as a prominent application closely relevant to this
platform, has become an important research topic in this
field. This is because a prerequisite for observing the signa-
ture of quantum mechanical effects is to cool the systems
to their quantum ground states, such that thermal noise can
be suppressed. So far, the ground-state cooling of a sin-
gle mechanical resonator based on optomechanical platforms
has been mainly achieved by two cooling mechanisms: (i)
resolved-sideband cooling [20–29], which is preferable in the
good-cavity regime, and (ii) feedback-aided cooling [30–40],
which is more efficient in the bad-cavity regime. Alternatively,
cooling can also be achieved in superconducting quantum
circuits [41–47]. Note that the ground-state cooling of the me-
chanical resonators means that the final average occupancies
in these resonators are well below unity [20,21].

*jqliao@hunnu.edu.cn

In recent years, much attention has been paid to the multi-
mode optomechanical systems involving multiple mechanical
resonators [48–72]. The motivations for exploring these sys-
tems include the study of macroscopic mechanical coherence
in multimode mechanical systems [48–57], the engineering
of complex long-range interactions among the mechanical
components [58,59], the investigation of quantum many-body
phenomena [60–63], and the implementation of nonreciprocal
photon or phonon transport [64–72]. However, these applica-
tions are fundamentally limited by thermal noise. To suppress
these thermal effects, the simultaneous ground-state refriger-
ation of these mechanical resonators becomes an urgent and
important task. Although some schemes for cooling multiple
mechanical resonators in the good-cavity regime have been
proposed using the cavity resolved-sideband-cooling mecha-
nism [73–75], the answer to the question of whether we can
utilize the feedback-cooling technique to simultaneously cool
these mechanical resonators to their quantum ground states is
yet unclear.

In this paper, we demonstrate that an array of N mechanical
resonators coupled in series can be simultaneously cooled
to their quantum ground states with cold-damping feedback.
Here, the feedback technique is applied to the optomechanical
cavity via a feedback loop, which is utilized to design a direct
force applied on the first resonator. This leads to the freezing
of thermal fluctuations of the first mechanical resonator (cold-
damping effect). Other neighboring mechanical resonators
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FIG. 1. (a) Schematic of the cascade optomechanical system. A cavity field with resonance frequency ωc couples to the first mechanical
resonator in a coupled mechanical-resonator chain via radiation-pressure coupling with coupling strength λ. Other neighboring mechanical
resonators are coupled to each other through a position-position coupling with strength η j for j = 1-(N − 1). A monochromatic laser with
frequency ωL and field amplitude �L is introduced to drive the cavity. The output field of the driven optomechanical cavity is measured via
the homodyne detection. A feedback loop is utilized to design a direct force applied upon the first resonator, which can lead to the freezing of
its thermal fluctuations (cold-damping effect). (b) By performing a linearization, the model (a) can be simplified to a cascade-coupled bosonic
system where a cavity-field mode a couples to an array of N mechanical modes connected in series. The entire chain is cooled via a domino
effect or chain reaction through the system. The nearest neighboring mechanical modes are coupled to each other through an effective nearest
neighbor coupling with strength η̃ j for j = 1-(N − 1). The cavity-field mode a is coupled to a vacuum bath (N̄ = 0 and the decay rate κ), and
each mechanical mode is connected to its own heat bath (with thermal phonon numbers n̄ j and decay rates γ j). The feedback loop applied on
the first mechanical mode b1 is characterized by the linearized optomechanical coupling G and the feedback gain gcd.

are connected to each other via position-position interactions
(namely nearest neighbor interactions). Physically, the feed-
back loop applied on the first mechanical resonator acts as
a cooling channel of the first mechanical resonator. Succes-
sively, the former resonator provides a cooling channel for
the next resonator via the nearest neighbor coupling, as a
cascade-cooling process. This acts like a domino-effect or
chain-reaction cooling through the system.

By deriving analytical results of the effective suscep-
tibilities, noise spectra, final mean phonon numbers, and
cooling rates of these mechanical resonators, we obtain
the optimal-cooling condition for this coupled mechanical-
resonator chain. Our proposal allows both degenerate and
nondegenerate mechanical resonators to reach simultaneous
ground-state cooling in the unresolved-sideband regime. We
also find that a flexible switch between asymmetric and sym-
metric ground-state coolings can be achieved by appropriately
engineering either the laser power or the feedback parameters
(e.g., feedback gain and feedback bandwidth) applied on the
first mechanical resonator. Note that the asymmetric (sym-
metric) cooling means that the final mean phonon numbers
of the two mechanical resonators are different (the same).
The symmetric cooling case will be helpful to the creation of
symmetric quantum states in the two mechanical resonators,
because their initial states are almost the same.

Additionally, we extend this domino cooling method to the
simultaneous cooling of N mechanical resonators. The results
show that, when the mechanical coupling strength is much
smaller than the mechanical frequency, the cooling efficiency
is higher for the mechanical resonator which is closer to the
cavity. Physically, the feedback loop extracts the thermal ex-
citations from the first resonator though the feedback cooling
channel and then the feedback-cooled resonator extracts the
thermal excitations from the next one via the mechanical
cooling channel. In this case, the feedback cooling rate should
be much larger than the mechanical cooling rates, which leads
to the highest cooling efficiency for the feedback-cooled res-
onator. However, by increasing the mechanical coupling, an
anomalous cooling occurs, i.e., the feedback-cooled resonator

is not the coldest. This is because the counter-rotating-wave
(CRW) interaction terms will create more phonon excitations
with the increase of the mechanical coupling strength, and
then the cooling of the first resonator is suppressed. This study
will pave a way toward quantum manipulation of multimode
mechanical systems in the bad-cavity regime.

The rest of this paper is organized as follows. In Sec. II,
we introduce the physical model and the Hamiltonians. In
Sec. III, we derive the Langevin equations and the final mean
phonon numbers. In Secs. IV and V, we study the cooling of
two and N coupled mechanical resonators, respectively. Fi-
nally, we provide a brief conclusion in Sec. VI. An Appendix
is presented to display the detailed calculation of the final
mean phonon numbers in the two-mechanical-resonator case.

II. MODEL AND HAMILTONIAN

We consider a multimode optomechanical system in which
a single-mode cavity field couples to an array of N mechanical
resonators coupled in series, as illustrated in Fig. 1(a). The
first mechanical resonator is coupled to the cavity field via
the radiation-pressure coupling, and these nearest neighbor-
ing mechanical resonators are coupled to each other through
position-position couplings (forming a cascade configura-
tion). A strong driving field (the driving amplitude � is much
larger than the cavity-field decay rate κ) is applied to the
optical cavity for manipulating the optical and mechanical
degrees of freedom. The Hamiltonian of the system reads
(h̄ = 1) [74]

H = ωca†a +
N∑

j=1

(
p2

x, j

2mj
+ mjω̃

2
j x

2
j

2

)
− λa†ax1

+
N−1∑
j=1

η j (x j − x j+1)2 + �(a†e−iωLt + aeiωLt ), (1)

where a (a†) is the annihilation (creation) operator of the
cavity-field mode with the resonance frequency ωc. The mo-
mentum and position operators px, j and x j describe the jth
mechanical resonator with resonance frequency ω̃ j and mass
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mj . The λ term in Eq. (1) denotes the optomechanical in-
teraction between the cavity field and the first mechanical
resonator, where λ = ωc/L is the radiation-pressure force of
a single photon, with L being the rest length of the opti-
cal cavity. The nearest neighbor interactions between these
neighboring mechanical resonators are depicted by these η j

terms. The last term in Eq. (1) describes the input laser driving
with the driving frequency ωL and amplitude � = √

2PLκ/ωL,
where PL and κ are, respectively, the driving power and cavity-
field decay rate.

For convenience, we introduce the dimensionless coor-
dinator and momentum operators qj = √

mjω jx j and p j =√
1/(mjω j )px, j ([q j, p j] = i) for j ∈ [1, N], and the normal-

ized resonance frequencies ω1(N ) =
√

ω̃2
1(N ) + 2η1(N−1)/m1(N )

and ω j∈[2,N−1] =
√

ω̃2
j + 2(η j−1 + η j )/mj for these res-

onators. In a rotating frame defined by the unitary transfor-
mation operator exp(−iωLta†a), Hamiltonian (1) becomes

HI = �ca†a +
N∑

j=1

ω j

2

(
p2

j + q2
j

) − λ̃a†aq1

−
N−1∑
j=1

2η̃ jq jq j+1 + �(a† + a), (2)

where �c = ωc − ωL is the driving detuning of
the cavity field, λ̃ = λ

√
1/(m1ω1) and η̃ j∈[1,N−1] =

η j
√

1/(mjmj+1ω jω j+1) are, respectively, the strength of
the optomechanical coupling and the mechanical interaction
expressed with dimensionless coordinator and momentum
operators.

III. LANGEVIN EQUATIONS AND FINAL MEAN
PHONON NUMBERS

In this section, we derive the quantum Langevin equa-
tions of the system, analyze the cold-damping feedback
scheme, and obtain the final mean phonon numbers of the
N-mechanical-resonator chain.

A. Langevin equations

To include the damping and noise effects in this system,
we consider the case where the optical mode is coupled to
a vacuum bath and N mechanical modes are subjected to
quantum Brownian forces. In this case, the evolution of the
system can be described by the quantum Langevin equations

ȧ = −[κ + i(�c − λ̃q1)]a − i� +
√

2κain, (3a)

q̇ j∈[1,N] = ω j p j, (3b)

ṗ1 = −ω1q1 + λ0a†a + 2η̃1q2 − γ1 p1 + ξ1, (3c)

ṗ j∈[2,N−1] = −ω jq j + 2η̃ j−1q j−1 + 2η̃ jq j+1 − γ j p j + ξ j,

(3d)

ṗN = −ωN qN + 2η̃N−1qN−1 − γN pN + ξN , (3e)

where κ and γ j∈[1,N] are, respectively, the decay rates of the
cavity mode and the jth mechanical resonator. The operators
ain (a†

in) and ξ j∈[1,N] denote the noise operators of the cavity

field and the Brownian force acting on the jth mechanical
resonator, respectively. These noise operators have zero mean
values and the following correlation functions,

〈ain(t )a†
in(t ′)〉 = δ(t − t ′), 〈a†

in(t )ain(t ′)〉 = 0, (4a)

〈ξ j (t )ξ j (t
′)〉 = γ j

ω j

∫
dω

2π
e−iω(t−t ′ )ω

[
coth

(
ω

2kBTj

)
+ 1

]
,

(4b)

where kB is the Boltzmann constant, and Tj∈[1,N] is the tem-
perature of the thermal reservoir associated with the jth
mechanical resonator.

For cooling these mechanical resonators, the strong-
driving regime of the cavity is considered, so that the average
photon number in the cavity is sufficiently large and then we
can simplify this physical model by a linearization procedure.
To this end, we write the operators in Eq. (3) as sums of
averages plus fluctuations: o = 〈o〉ss + δo for operators a, a†,
q j∈[1,N], and p j∈[1,N]. By separating the classical motion and
quantum fluctuations, the linearized quantum Langevin equa-
tions become

δẊ = −κδX + �δY +
√

2κXin, (5a)

δẎ = −κδY − �δX + Gδq1 +
√

2κYin, (5b)

δq̇ j∈[1,N] = ω jδp j, (5c)

δ ṗ1 = −ω1δq1 + GδX + 2η̃1δq2 − γ1δp1 + ξ1,

(5d)

δ ṗ j∈[2,N−1] = −ω jδq j + 2η̃ j−1δq j−1 + 2η̃ jδq j+1

− γ jδp j + ξ j, (5e)

δ ṗN = −ωNδqN + 2η̃N−1δqN−1 − γNδpN + ξN , (5f)

where X = (δa† + δa)/
√

2 and Y = i(δa† − δa)/
√

2 are the
quadratures of the cavity field, and Xin and Yin denote the cor-
responding Hermitian input noise quadratures. Note that we
have chosen the phase reference of the cavity field such that
〈a〉ss is real and positive. We have also defined the normalized
driving detuning � = �c − λ̃〈q1〉ss and the effective optome-
chanical coupling G = √

2λ̃〈a〉ss with 〈a〉ss = −i�/(κ + i�).

B. Cold-damping feedback

To realize the cold-damping feedback, we consider the case
of � = 0, which indicates the highest sensitivity for position
measurements of the mechanical resonator [30,38]. Owing to
the application of a negative derivative feedback, this cold-
damping feedback technique can significantly increase the
effective decay rate of the mechanical resonator without in-
creasing the thermal noise [76,77].

The position of the first mechanical resonator is measured
through a phase-sensitive detection of the cavity output field,
and then the readout of the cavity output field is fed back onto
the first mechanical resonator by applying a feedback force.
The intensity of the feedback force is proportional to the time
derivative of the output signal, and therefore to the velocity
of the first mechanical resonator [30,38,40,76,77]. Then, the
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linearized quantum Langevin equations become

δẊ = −κδX +
√

2κXin, (6a)

δẎ = −κδY + Gδq1 +
√

2κYin, (6b)

δq̇ j∈[1,N] = ω jδp j, (6c)

δ ṗ1 = −ω1δq1 + GδX + 2η̃1δq2 − γ1δp1 + ξ1

−
∫ t

−∞
g(t − s)δY est(s)ds, (6d)

δ ṗ j∈[2,N−1] = −ω jδq j + 2η̃ j−1δq j−1 + 2η̃ jδq j+1

− γ jδp j + ξ j, (6e)

δ ṗN = −ωNδqN + 2η̃N−1δqN−1 − γNδpN + ξN .

(6f)

In Eq. (6d), the convolution term
∫ t
−∞ g(t − s)δY est(s)ds

denotes the feedback force acting on the first mechanical
resonator. This force depends on the past dynamics of the
detected quadrature δY , which is driven by the weighted sum
of the fluctuations of the first mechanical resonator. The causal
kernel is defined by [30,38,40]

g(t ) = gcd
d

dt
[θ (t )ωfbe−ωfbt ], (7)

where gcd and ωfb are the dimensionless feedback gain and
the feedback bandwidth, respectively. The estimated intracav-
ity phase quadrature δY est results from the measurement of
the output quadrature Y out(t ), which satisfies the usual input-
output relation δY out(t ) = √

2κδY (t ) − Yin(t ). This relation is
generalized to the case of a nonunit detection efficiency by
modeling a detector with quantum efficiency ζ with an ideal
detector preceded by a beam splitter (with transmissivity

√
ζ ),

which mixes the incident field with an uncorrelated vacuum
field Y υ (t ). Then, the estimated phase quadrature δY est(t ) is
obtained as [30,38,40]

δY est(t ) = δY (t ) − Yin(t ) +
√

ζ−1 − 1Y υ (t )√
2κ

. (8)

Below, we seek for the steady-state solution of Eq. (6)
by solving the variables in the frequency domain with the
Fourier transformation. We define the Fourier transform for
an operator r(t ) = (1/2π )1/2

∫ ∞
−∞ e−iωt r̃(ω)dω (r = δX , δY ,

δqj , δp j , ξ j , Xin, Yin), and the quantum Langevin equations
(6) with the cold-damping feedback can be solved in the
frequency domain. Based on the steady-state solution, we can
calculate the spectra of the position and momentum operators
for N mechanical resonators, and then the final mean phonon
numbers in these resonators can be obtained by integrating the
corresponding fluctuation spectra.

C. Final mean phonon numbers

Mathematically, the final mean phonon numbers in N me-
chanical resonators can be obtained by the relation [30,74]

n f
j∈[1,N] = 1

2

[〈
δq2

j

〉 + 〈
δp2

j

〉 − 1
]
, (9)

where 〈δq2
j 〉 and 〈δp2

j〉 are, respectively, the variances of the
position and momentum operators. These variances can be

obtained by solving Eq. (6) in the frequency domain, and
integrating the corresponding fluctuation spectra,

〈
δq2

j∈[1,N]

〉 = 1

2π

∫ ∞

−∞
Sqj (ω)dω, (10a)

〈
δp2

j∈[1,N]

〉 = 1

2πω2
j

∫ ∞

−∞
ω2Sqj (ω)dω. (10b)

Here, the fluctuation spectra of the position and momentum
operators for the corresponding resonators are defined by

So(ω) =
∫ ∞

−∞
e−iωτ 〈δo(t + τ )δo(t )〉ssdτ, (o = q j, p j ),

(11)

where 〈·〉ss denotes the steady-state average of the system. The
fluctuation spectrum can also be expressed in the frequency
domain as

〈δõ(ω)δõ(ω′)〉ss = So(ω)δ(ω + ω′), (o = q j, p j ). (12)

Below, we will solve this system in the frequency domain.

IV. COOLING OF A TWO-MECHANICAL-RESONATOR
CHAIN

In this section, we study the cooling of a two-mechanical-
resonator chain by analyzing the effective susceptibilities and
noise spectra. We also find the laser-cooling rates of the two
mechanical resonators.

A. Analytical results of the effective susceptibilities, cooling
rates, and noise spectra

In the two-mechanical-resonator case, the position fluctua-
tion spectra of the two mechanical resonators can be obtained
as

Sq1 (ω) = |χ1,eff(ω)|2[Sfb,1(ω) + Srp,1(ω)

+ Sth,1(ω) + Sme,1(ω)], (13a)

Sq2 (ω) = |χ2,eff(ω)|2[Sth,2(ω) + Sme,2(ω)]. (13b)

Here we introduce the effective susceptibility of the jth ( j =
1, 2) mechanical resonator as

χ j,eff(ω) = ω j
[
�2

j,eff(ω) − ω2 − iω� j,eff(ω)
]−1

, (14)

where � j,eff(ω) and � j,eff(ω) are, respectively, the effective
damping rate and resonance frequency of the jth mechanical
resonator, defined as

�1,eff(ω) =
[
ω2

1 + Ggcdω
2ωfbω1(κ + ωfb)

(κ2 + ω2)
(
ω2 + ω2

fb

)

+ 4η̃2
1ω1ω2

(
ω2 − ω2

2

)
γ 2

2 ω2 + (
ω2 − ω2

2

)2

]1/2

, (15a)

�2,eff(ω) =
[
ω2

2 + 4η̃2
1A(ω)

C(ω)

]1/2

, (15b)

� j,eff(ω) = γ j + γ j,C(ω). (15c)

063509-4



DOMINO COOLING OF A COUPLED … PHYSICAL REVIEW A 103, 063509 (2021)

(b) (d)

3

0.8

1

1.2

j
-2 0

4

0.8

1

1.2

0 0.25

jG

1

2

4

0 52.5
cdg

0

1

1

2

4

0 0.50.25

j

(f)

(c) (e) (g)

j,effΩ

j,effГ

1,effΩ

2,effΩ

1,eff

2,eff

Г

Г

j

jγ

1

2

1
γ

2
γ

(a)

2,C1,C

Rate Rate

1

~

(i)

(h)

2

2

-1 1

cdg =4

cdg =0

mG =0.3

mG =0

Cooling Cooling

FIG. 2. (a) Cooling mechanism of a two-mechanical-resonator chain. Here γ1,C and γ2,C denote the cooling rates of the first and second
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G/ωm = 0.3, and gcd = 4. The parameters used are given by ω j=1,2 = ωm = 2π × 10 MHz, γ j=1,2/ωm = 10−5, ωfb/ωm = 3, and κ/ωm = 3.5.

In Eq. (15c), the cooling rates of the first and second mechan-
ical resonators are defined as

γ1,C(ω) = Ggcdωfbω1(κωfb − ω2)

(κ2 + ω2)
(
ω2 + ω2

fb

)
+ 4η̃2

1ω1ω2γ2

γ 2
2 ω2 + (

ω2 − ω2
2

)2 , (16a)

γ2,C(ω) = 4η̃2
1B(ω)

C(ω)
, (16b)

with

A(ω) = ω1ω2
[
ω6 − Ggcdκω2ω1ωfb − ω2ω1(Ggcd + ω1)ω2

fb

+ κ2
(
ω2 − ω2

1

)(
ω2 + ω2

fb

) + ω4
(
ω2

fb − ω2
1

)]
, (17a)

B(ω) = ω1ω2
{
Ggcdκω1ω

2
fb + κ2γ1

(
ω2 + ω2

fb

)
+ω2[ − Ggcdω1ωfb + γ1

(
ω2 + ω2

fb

)]}
, (17b)

C(ω) = {
ω2

( − κγ1 + ω2 − ω2
1

) − [
(κ + γ1)ω2 − κω2

1

]
ωfb

}2

+ {
ω

[
γ1ω

2 + (ω2 − ω1(Ggcd + ω1))ωfb

+ κ
(
ω2 − ω2

1 − γ1ωfb
)]}2

. (17c)

In Eq. (13), we introduce the feedback-induced noise
spectrum Sfb,1(ω) and the radiation-pressure noise spec-
trum Srp,1(ω) for the first mechanical resonator, and the
mechanical-coupling-induced noise spectrum Sme, j (ω) and
the thermal noise spectrum Sth, j (ω) for the jth ( j = 1, 2)
mechanical resonator,

Sfb,1(ω) = g2
cdω

2
fbω

2

4κζ
(
ω2 + ω2

fb

) , (18)

Srp,1(ω) = G2κ

κ2 + ω2
, (19)

Sth, j (ω) = γ jω

ω j
coth

(
h̄ω

2κBTj

)
, (20)

Sme,1(ω) = 4η̃2
1ω

2
2

γ 2
2 ω2 + (

ω2 − ω2
2

)2

γ2ω

ω2
coth

(
h̄ω

2κBT2

)
, (21)

Sme,2(ω) = η̃2
1E (ω)

|D(ω)|2 , (22)

where we introduce

D(ω) = (κ − iω)
( − iγ1ω − ω2 + ω2

1

)
ω

+ [
(κ − iω)(γ1 − iω)ω

+ Ggcdωω1 + (iκ + ω)ω2
1

]
ωfb, (23a)

E (ω) = 4
(
ω2 + ω2

fb

)[
G2κ + γ1ω

ω1
coth

(
h̄ω

2κBT1

)

× (κ2 + ω2)

]
ω2

1 + g2
cdω

2ω2
1ω

2
fb

κζ
(κ2 + ω2). (23b)

We note that the exact analytical results of the final mean
phonon numbers are obtained based on Eqs. (9), (10), and
(13), and these results are presented in the Appendix.

B. Analyses of the effective susceptibilities, laser-cooling rates,
and noise spectra

In the above subsection, we have derived the effective
mechanical resonance frequency � j,eff and damping rate � j,eff

of the jth mechanical resonator [see Eq. (15)]. We have also
found the analytical expressions of the final thermal excita-
tions in these mechanical resonators [see Eq. (A1)]. Now, we
study how the feedback loop affects the cooling performance
by analyzing the dependence of the mechanical resonance
frequency � j,eff and decay rate � j,eff on the loop coupling
parameters.

Concretely, Fig. 2 plots the effective mechanical resonance
frequencies � j,eff and decay rates � j,eff as functions of the fre-
quency ω, optomechanical coupling G, feedback gain gcd, and
nearest neighbor interaction η̃1. We can see from Figs. 2(b)

063509-5



LAI, HUANG, HOU, NORI, AND LIAO PHYSICAL REVIEW A 103, 063509 (2021)

and 2(c) that at resonance ω = 0, the mechanical frequen-
cies change slightly [� j,eff(0) ≈ 0.98ωm], while the effective
mechanical dampings are significantly increased [�1,eff(0) ≈
3.5 × 104γm, �2,eff(0) ≈ 1.5 × 103γm]. This giant enhance-
ment of the mechanical damping plays an important role in
the cooling process for the two mechanical resonators.

We see from Figs. 2(e) and 2(g) and Eqs. (15) and (16)
that, when we turn off the optomechanical coupling (G = 0)
or the feedback (gcd = 0), these mechanical resonators are
uncooled (� j,eff/γ j ≈ 1, i.e., γ j,C 	 γ j), i.e., the breaking
of the feedback loop (G = 0 or gcd = 0) leads to no actual
cooling for the mechanical-resonator chain. This is because
the feedback loop applied on the first mechanical resonator
acts as a cooling impetus of this mechanical-resonator chain.
Moreover, by increasing the optomechanical coupling G or the
feedback gain gcd, the effective mechanical decay rates � j,eff

are exponentially increased [see Figs. 2(e) and 2(g)] while the
effective mechanical frequencies � j,eff are nearly unchanged
[see Figs. 2(d) and 2(f)]. For example, the effective mechan-
ical damping of the first mechanical resonator is increased
from �1,eff/γ1 = 1 to values larger than 104 and that of the
second one is increased from �2,eff/γ2 = 1 to values larger
than 103. Physically, increasing the optomechanical coupling
G or the feedback gain gcd enhances the feedback loop and
then substantially enhances the cooling efficiencies of these
mechanical resonators.

In the absence of the nearest-neighbor coupling (η̃1 = 0)
between the two mechanical resonators, the first mechanical
resonator is substantially modulated (�1,eff ≈ 3.5 × 104γ1) by
the feedback loop, while the second one becomes a dissipative
harmonic resonator (�2,eff = ω2, �2,eff = γ2), as shown in
Figs. 2(h) and 2(i). This means that the cooling is feasible
for the first mechanical resonator but not for the second one
due to a zero-value cooling rate, i.e., γ2,C = 0 [see Eq. (16b)].
When we increase the nearest neighbor coupling η̃1, the
effective mechanical frequency � j,eff decreases, and the effec-
tive mechanical damping of the second mechanical resonator
significantly increases from �2,eff/γ2 = 1 to 3.5 × 104 [see
Figs. 2(h) and 2(i)].

To analyze the cooling rates of the two mechanical res-
onators, we consider the case ω = 0 and re-express Eq. (15)
as

�1,eff =
√

ω2
1 − 4η̃2

1ω1

ω2
, (24a)

�2,eff =
√

ω2
2 − 4η̃2

1ω2

ω1
, (24b)

� j,eff = γ j + γ j,C, (24c)

where γ j,C denotes the cooling rate of the jth mechanical
resonator, defined as

γ1,C = Ggcdω1

κ
+ 4η̃2

1ω1γ2

ω3
2

, (25a)

γ2,C = 4η̃2
1ω2(Ggcdω1 + κγ1)

ω3
1κ

. (25b)

We can see from Eqs. (24a) and (24b) that the effective
mechanical frequencies �1,eff and �2,eff are modulated only

(a) (b)9
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Sme,2

-1 1

8

m m
-2 20-1 1

FIG. 3. The noise spectra of (a) the first and (b) second mechan-
ical resonators are plotted as functions of the frequency ω. Other
parameters are the same as those used in Fig. 2.

by the nearest neighbor coupling η̃1 between the adjacent
resonators. This feature can well explain the phenomenon that
the effective mechanical frequencies � j,eff are independent of
the feedback loop (G and gcd) but are sensitive to the nearest
neighbor coupling η̃1 [see Figs. 2(d), 2(f), and 2(h)].

The parameters γ1,C and γ2,C defined in Eqs. (25a) and
(25b) are, respectively, the feedback-loop and mechanical
cooling rates. Here, the feedback-loop cooling rate γ1,C is
mainly governed by the radiation pressure G and feedback
gcd, while the mechanical cooling rate γ2,C is decided by
the mechanical coupling η̃1. When we turn off the feedback
loop (i.e., G = 0 or gcd = 0), the cooling rates of the two
mechanical resonators shown in Eq. (25) become

γ1,C = 4η̃2
1ω1γ2

ω3
2

, (26a)

γ2,C = 4η̃2
1ω2γ1

ω3
1

. (26b)

We can see from Eqs. (26a) and (26b) that, when the feedback
loop is broken (G = 0 or gcd = 0), the cooling rates of the two
mechanical resonators are largely suppressed due to γ j,C 	
γ j , as shown in Figs. 2(e) and 2(g). Physically, to realize the
ground-state cooling of this mechanical-resonator chain, the
cooling rate γ j,C should be larger than the thermal-reservoir
coupling rate γ j (i.e., γ j,C 
 γ j), and the cooling rate of the
first resonator should be much larger than that of the second
one (γ1,C 
 γ2,C). These results coincide with those shown in
Figs. 2(c), 2(e), 2(g), and 2(i). Thus, the thermal excitations
stored in the second mechanical resonator can be extracted
into the first one by the cascade cooling channel γ2,C.

In fact, the cooling of the two mechanical resonators can
be explained based on the noise spectra [see Eqs. (18)–(22)]
of the resonators. In Fig. 3, we plot the noise spectra of the
two mechanical resonators as functions of the frequency ω.
For the first mechanical resonator, we find that at ω = 0, the
contribution from the feedback noise Sfb,1(ω) is much smaller
than those from the thermal noise Sth,1(ω), the radiation-
pressure noise Srp(ω), and the mechanical-coupling noise
Sme,1(ω), as shown in Fig. 3(a). For the second mechani-
cal resonator, the mechanical-coupling noise contribution is
much less than that of the thermal noise when ω = 0, i.e.,
Sme,2(0) 	 Sth,2(0) [see Fig. 3(b)]. Therefore, the efficient
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FIG. 4. The final average phonon numbers (a) n f
1 and (b) n f

2 in the
two mechanical resonators vs the laser power P and the cavity-field
decay rate κ for standard feedback. (c) n f

1 (blue solid curves) and
n f

2 (red dashed curves) as functions of the laser power P when
κ/ω1 = 3.5. (d) n f

1 (blue solid curves) and n f
2 (red dashed curves)

as functions of κ when P = 100 mW. The parameters used are
given by ω1/2π = ω2/2π = 10 MHz, ωfb/ω1 = 3, gcd = 0.9, ζ =
0.8, γ1/ω1 = γ2/ω1 = 10−5, ωc/ω1 = 2.817 × 107, η̃1/ω1 = 0.05,
m1 = m2 = 250 ng, n̄1 = n̄2 = 103, L = 0.5 mm, and λ = 1064 nm.

cooling of the two-mechanical-resonator chain can be
achieved because the thermal noise stored in these resonators
is significantly suppressed by the cold-damping feedback.

C. Ground-state cooling

To investigate the cooling rule of this cascade op-
tomechanical system, we first consider the cooling of a
two-mechanical-resonator system. Physically, the first me-
chanical resonator undergoing cold damping can be directly
cooled to its quantum ground state by the feedback-loop
cooling channel (γ1,C), and the second one can also experi-
ence a cooling process via the cascade-cooling channel (γ2,C)
between the adjacent mechanical resonators [see Fig. 2(a)].
Below, we show in detail the dependence of the cooling
performance of the two mechanical resonators on the system
parameters.

In Fig. 4, we plot the final mean phonon numbers n f
1

and n f
2 as functions of the laser power P and the cavity-

field decay rate κ . It is shown that the two mechanical
resonators can be cooled efficiently (n f

1 , n f
2 < 1) in the

unresolved-sideband regime κ/ωm > 1. This indicates that
the simultaneous ground-state cooling of the two mechanical
resonators is achievable via the cold-damping feedback. In
addition, the optimal cooling performances of the two me-
chanical resonators are n f

1 ≈ 0.5 and n f
2 ≈ 0.55 when P =

100 mW and κ/ω1 = 3.5. To further elucidate this aspect,
in Fig. 4(c) we show the dependence of the cooling efficien-
cies of the two mechanical resonators on the laser power P.
We find that when P < 100 mW, the cooling becomes less

(d)
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g
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0
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FIG. 5. The final average phonon numbers (a) n f
1 and (b) n f

2

vs the feedback gain gcd and the feedback bandwidth ωfb. (c) n f
1

(blue solid curves) and n f
2 (red dashed curves) as functions of the

feedback gain gcd when ωfb/ω1 = 3. (d) n f
1 (blue solid curves) and

n f
2 (red dashed curves) as functions of the feedback bandwidth ωfb

when gcd = 0.9. Here we consider these parameters P = 100 mW
and κ/ω1 = 3.5. Other parameters used are the same as those used
in Fig. 4.

efficient when decreasing the laser power P. These results
indicate that the feedback loop plays the role of a cool-
ing impetus and that these mechanical resonators cannot be
cooled because the feedback loop is broken when P → 0 [see
Fig. 1(b)]. Particularly, it shows one switch point (SP) (i.e.,
the symmetric cooling point n f

1 = n f
2 ) in Fig. 4(c). This means

that a flexible asymmetric-to-symmetric or inverse cooling
switch can be achieved by appropriately engineering the laser
power P. Furthermore, we can see from Fig. 4(d) that the
optimal cooling of the two resonators is achieved around
κ/ω1 = 3. This point is different from that in the sideband
cooling method, in which the optimal cooling is reached in
the resolved-sideband regime [20,21,26].

In Fig. 5, we investigate the dependence of the cooling
efficiencies of the two mechanical resonators on the feed-
back gain gcd and the feedback bandwidth ω f b. We find
that the optimal cooling can be achieved for the parameters
gcd > 0.5 and ω f b/ωm > 2. However, when gcd → 0, the two
mechanical resonators are uncooled due to the breaking of
the feedback loop, as shown in Fig. 5(c). In the absence of
the feedback loop (i.e., G = 0 or gcd = 0), we can see from
Eqs. (25a) and (25b) that the cooling rates of these resonators
are largely suppressed owing to γ j,C 	 γ j .

When the feedback bandwidth ω f b → 0, the two mechani-
cal resonators cannot be cooled, as shown in Fig. 5(d). This
is because a lower feedback bandwidth indicates a longer
time delay of the feedback loop, and this leads to a lower
cooling efficiency in this system. In addition, there is one SP
in Figs. 5(c) and 5(d), respectively. These results indicate that
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FIG. 6. The final average phonon numbers (a) n f
1 and (b) n f

2 vs
the mechanical coupling η̃1 and the frequency ratio ω2/ω1. [(c), (d)]
n f

1 (blue) and n f
2 (red) as functions of η̃1/ω1 when ω1 = ω2. (e) n f

1

(blue) and n f
2 (red) vs the ratio ω2/ω1 when η̃1/ω1 = 0.05. Here we

choose P = 100 mW and κ/ω1 = 3.5. Other parameters are the same
as those given in Fig. 4.

by appropriately engineering the laser power PL or the feed-
back ωfb (gcd), a flexible cooling switch between symmetrical
and asymmetrical ground-state cooling of these mechanical
resonators can be realized.

The feedback loop provides a direct cooling channel (γ1,C)
to extract the thermal excitations in the first mechanical res-
onator, and then the second resonator can be cooled by the
mechanical cooling channel (γ2,C) between the two mechan-
ical resonators [see Fig. 2(a)]. Consequently, the optimal
cooling of the first mechanical resonator plays a key role on
that of the second one. This is because the cooling efficiency
of the second mechanical resonator depends on the rotating-
wave coupling between the two mechanical resonators. This
coupling is determined by both the resonance frequencies
of the two mechanical resonators and the coupling strength
between them.

To further elucidate this effect, the final mean phonon
numbers n f

1 and n f
2 are plotted as functions of the mechan-

ical coupling strength η̃1 and the frequency ratio ω2/ω1, as
shown in Figs. 6(a) and 6(b). We find that the two mechanical
resonators can be simultaneously cooled to their quantum
ground states within a large mechanical frequency bandwidth
and that the optimal cooling is located at ω2/ω1 ≈ 1. The
mechanical coupling between the two resonators provides a
mechanical cooling channel (γ2,C) for the second resonator.
This point can be confirmed based on no actual cooling for
the second mechanical resonator when η̃1 = 0 [see Fig. 6(c)].
In the weak-coupling region η̃1/ωm < 0.06, the cooling per-
formance of the first mechanical resonator becomes worse
while that of the second one becomes better with increasing
η̃1, i.e., n f

1 < n f
2 . The reason for this phenomenon is that the

cooling channel of the second resonator is directly provided
by the first resonator which is cooled by the feedback loop,

while the second resonator will encumber the cooling effi-
ciency of the first resonator. In the region 0.06 < η̃1/ωm <

0.45, the cooling performance of the two resonators shows
an opposite result (i.e., n f

1 > n f
2 ) in comparison with that in

the region η̃1/ωm < 0.06. Physically, with the increase of the
mechanical coupling strength, the CRW interaction terms,
which simultaneously create phonon excitations in the two
resonators, will become more important, and then the cooling
of the first resonator will be suppressed largely. Moreover,
the symmetrical cooling (n f

1 = n f
2 ) of the two mechanical

resonators can be achieved when the mechanical coupling
strength takes η̃1/ωm = 0.06. These results mean that when
the nearest neighbor coupling strength η̃1 takes a proper value
(η̃1/ωm < 0.06), the cooling efficiency is higher for the me-
chanical oscillator which is closer to the cavity.

Additionally, we can see from Fig. 6(d) that the optimal
cooling efficiency of the two mechanical resonators emerges
when the two resonators are resonant and near resonant (ω2

around ω1). Physically, the efficiency of energy extraction
from the second resonator decreases with increasing this de-
tuning, and the counter rotating-wave interaction becomes
important when this detuning becomes comparable to the
mechanical frequencies. When ω2/ω1 > 2, the cooling chan-
nel of the second resonator is almost turned off (i.e., γ2,C ≈
0), owing to the approximately negligible mechanical inter-
action under the condition η̃1/|ω1 − ω2| 	 1. In this case,
the second mechanical resonator will be thermalized by its
thermal bath, and then the system becomes a typical op-
tomechanical system consisting of an optical cavity and a
mechanical resonator. These results provide the possibility to
reach simultaneous ground-state cooling of both degenerate
and nondegenerate mechanical resonators in the unresolved-
sideband regime.

V. COOLING OF A COUPLED N-RESONATOR CHAIN

We now extend our cold-damping-feedback cooling
scheme to the case of an N-mechanical-resonator chain. We
consider an optical cavity coupled to an array of N mechanical
resonators coupled in series, as shown in Figs. 1(a) and 1(b).
The feedback loop is applied on the first mechanical res-
onator and other nearest neighboring mechanical resonators
are coupled to each other through the mechanical interactions.
The first mechanical resonator can be cooled by the feedback
loop, and then the thermal excitations in the later mechanical
resonator will be extracted by the former via the mechanical
cooling channel. As a result, the physical mechanism behind
this cooling scheme could be understood as a cascade-cooling
process akin to a domino effect or chain reaction.

Without loss of generality, we consider the identical-
resonator case where all the mechanical resonators have the
same resonant frequencies ω j = ωm, decay rates γ j = γm,
thermal phonon numbers n̄ j = n̄, and mechanical coupling
strengths η̃ j = η̃. Here, we consider the cases of three and
four mechanical resonators (i.e., N = 3, 4) in our simulations.
In Fig. 7, we plot the final mean phonon numbers in these
mechanical resonators as a function of the mechanical cou-
pling η̃ for the cases of (a) N = 3 and (b) N = 4. We can
see that the final mean phonon numbers in these mechanical
resonators can be effectively decreased from 103 to below 1.
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FIG. 7. The final average phonon numbers n f
j in these mechan-

ical resonators are plotted as a function of the mechanical coupling
η̃ for the cases of (a) N = 3 and (b) N = 4. We assume that all the
mechanical resonators have the same resonant frequencies ω j = ωm,
decay rates γ j = γm, thermal phonon numbers n̄ j = n̄ = 103, and
mechanical coupling strengths η̃ j = η̃. Other parameters used are the
same as those given in Fig. 4.

This indicates that the simultaneous cooling of these mechan-
ical resonators can be achieved by using the cold-damping
feedback scheme.

Figure 7 shows that, when η̃ 	 ωm, the final average
phonon numbers successively increase from n f

1 to n f
N (see the

shadow areas); i.e., the closer to the optomechanical cavity the
resonator is, the smaller the final average phonon number in
this resonator is. Physically, the thermal excitations in the first
resonator is extracted via the feedback cooling channel, and
successively, the thermal phonons stored in the next resonator
is extracted by the former via the mechanical cooling channel.
In this case, the feedback cooling rate should be much larger
than the mechanical cooling rates, and thus the cooling effi-
ciency is higher for the mechanical oscillator which is closer
to the cavity. In addition, with the increase of η̃, we find an
anomalous cooling (i.e., the feedback-cooled resonator is not
the coldest) (see the blank areas). This phenomenon can also
be explained based on the excitations increase caused by the
CRW terms.

VI. DISCUSSION AND CONCLUSION

Finally, we present some discussions on the understanding
of the cooling problems of our system in the mechanical
normal-mode representation. In a two-resonator optomechan-
ical system, a cavity-field mode couples to the first mechanical
resonator via the radiation-pressure coupling, and the two
mechanical resonators are coupled to each other through
the mechanical interaction. After diagonalizing the coupled
mechanical resonators, the model can be described by a mul-
timode system where the cavity-field mode couples to two
mechanical normal modes. However, we should point out
that the frequency difference between the two normal modes
depends on the coupling strength between the two resonators.
Depending on the relation between the frequency difference
and the width of the cooling window, there are two different
cases [38,75]. (i) When the frequency difference between the
two mechanical normal modes is larger than the effective
mechanical linewidth, the simultaneous cooling of these me-
chanical normal modes is accessible because there is no dark

mode in this system [38,75]. (ii) When the frequency differ-
ence is smaller than the effective mechanical linewidth, the
cooling of the two mechanical normal modes is suppressed,
because the dark-mode effect works in the near-degenerate-
resonator case. The cooling of these normal modes is less
efficient and depends on the number of normal modes. In this
case, the final average phonon numbers in these mechanical
normal modes are n̄(N − 1)/N with n̄ j = n̄ [38,75].

In conclusion, we have studied how to realize the si-
multaneous ground-state cooling of a mechanical-resonator
chain coupled to an optomechanical cavity via a standard
cold-damping feedback technique. We have found that the
entire chain is cooled via a domino effect or chain reaction
through the system. We have obtained analytical results for
the effective susceptibilities, noise spectra, final mean phonon
numbers, and cooling rates of these mechanical resonators.
We have also found the optimal-cooling condition for these
resonators. In addition, we have found that by appropriately
engineering the laser power or the feedback applied on the first
mechanical resonator, a flexible switch between symmetric
and asymmetric ground-state cooling can be achieved. This
could potentially be used to prepare symmetric quantum states
in coupled mechanical systems. Our cascade-cooling proposal
works for both degenerate and nondegenerate mechanical res-
onators in the unresolved-sideband regime. This work will
pave the way for studying and observing quantum coherence
effects involving multiple mechanical modes.
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APPENDIX: CALCULATION OF THE FINAL MEAN
PHONON NUMBERS

In this Appendix, we present the exact analytical results
of the final mean phonon numbers in the two-mechanical-
resonator case. As shown in Sec. III C, by calculating the
integral in Eq. (10) for the position and momentum fluctuation
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spectra, the exact final phonon numbers in the two mechanical resonators can be obtained as [30,38]

n f
l=1,2 = 1

2

(
iD(l )

6

2�6
+ iM (l )

6

2�6
− 1

)
. (A1)

Here, we introduce the variables
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{
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where the coefficients in the two-mechanical-resonator case are defined by

a0 = i,

a1 = κ + γ1 + γ2 + ωfb,

a2 = −i
[
ω2

1 + ω2
2 + γ2ωfb + γ1(γ2 + ωfb) + κ (γ1 + γ2 + ωfb)

]
,

a3 = −ω1ωfb(Ggcd + ω1) − ω2
2(γ1 + ωfb) − γ2

(
ω2

1 + γ1ωfb
) − κ

[
ω2
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, (A5)
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and
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