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Gauge principle and gauge invariance in two-level systems
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The quantum Rabi model is a widespread description of the coupling between a two-level system and a
quantized single mode of an electromagnetic resonator. Issues about this model’s gauge invariance have been
raised. These issues become evident when the light-matter interaction reaches the so-called ultrastrong coupling
regime. Recently, a modified quantum Rabi model able to provide gauge-invariant physical results (e.g., energy
levels, expectation values of observables, quantum probabilities) in any interaction regime was introduced [O.
Di Stefano, A. Settineri, V. Macri, L. Garziano, R. Stassi, S. Savasta, and F. Nori, Nat. Phys. 15, 803 (2019)].
Here we provide an alternative derivation of this result, based on the implementation in two-state systems of the
gauge principle, which is the principle from which all the fundamental interactions in quantum field theory are
derived. The adopted procedure can be regarded as the two-site version of the general method used to implement
the gauge principle in lattice gauge theories. Applying this method, we also obtain the gauge-invariant quantum
Rabi model for asymmetric two-state systems, and the multimode gauge-invariant quantum Rabi model beyond

the dipole approximation.
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I. INTRODUCTION

Recently, it was argued that truncations of the atomic
Hilbert space, to obtain a two-level description of the matter
system, violate the gauge principle [1-3]. Such violations be-
come particularly relevant in the ultrastrong and deep-strong
coupling (USC and DSC) regimes. These extreme regimes
have been realized between individual or collections of effec-
tive two-level systems (TLSs) and the electromagnetic field
in a variety of settings [4,5]. In the USC (DSC) regime of
quantum light-matter interaction the coupling strength be-
comes comparable (larger) than the transition frequencies of
the system.

The authors of Ref. [1] demonstrated that, in the electric
dipole gauge, the two-level approximation can be performed
as long as the Rabi frequency remains much smaller than
the energies of all higher-lying levels. However, the two-level
approximation can drastically fail in the Coulomb gauge, even
for systems with an extremely anharmonic spectrum.

The impact of the truncation of the Hilbert space of the
matter system to only two states was also studied in Ref. [2],
by introducing a one-parameter («) set of gauge transforma-
tions. The authors found that each value of the parameter
produces a distinct quantum Rabi model (QRM), thus provid-
ing distinct physical predictions. Investigating a matter system
with a lower anharmonicity (with respect to that considered in
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Ref. [1]), they used the gauge parameter « as a fit parameter
to determine the optimal QRM for a specific set of system
parameters, by comparing the obtained «-dependent lowest-
energy states and levels with the corresponding predictions of
the nontruncated gauge-invariant model. The surprising result
[2] is that, according to this procedure, in several circum-
stances the optimal gauge is the so-called Jaynes-Cummings
(JC) gauge, a gauge where the counterrotating terms are auto-
matically absent.

Recently, the source of gauge violation was identified
[6] and a general method for the derivation of light-matter
Hamiltonians in truncated Hilbert spaces able to produce
gauge-invariant physical results was developed [6] (see also
related work in Refs. [7-9]). This gauge invariance was
achieved by compensating the nonlocalities introduced in the
construction of the effective Hamiltonians. Consequently, the
resulting quantum Rabi Hamiltonian in the Coulomb gauge
differs significantly from the standard one, but provides ex-
actly the same energy levels obtained by using the dipole
gauge, as it should, because physical observable quantities
must be gauge invariant. A recent overview of these gauge
issues in TLSs can be found in Ref. [10].

Very recently, the validity of the gauge-invariant QRM
developed in Ref. [6] has been put into question [3]. Specif-
ically, it was claimed that the truncation of the Hilbert space
necessarily ruined gauge-invariance.

In this paper, however, we confirm that the gauge
principle applies also to TLSs, as required by any consis-
tent description of light-matter interactions. Specifically, we
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formulate, in a fully consistent and physically meaningful
way, the fundamental gauge principle in two-state systems.
The derivation described here can also be regarded as the
two-site version of the general method for lattice gauge theo-
ries [11], which represent the most advanced and commonly
used tool for describing gauge theories in the presence of a
truncated infinite-dimensional Hilbert space. When a gauge
theory is regularized on the lattice, it is essential to maintain
its invariance under gauge transformations [11]. An analogous
approachwas developed as early as 1933 [12] for the descrip-
tion of tightly bound electrons in a crystal in the presence
of a slowly varying magnetic vector potential (see, e.g., also
Refs. [13—15]). Moreover, applying this method further, we
also obtain the multimode gauge-invariant QRM beyond the
dipole approximation.

II. GAUGE PRINCIPLE

In this section, we recall some fundamental concepts,
which we will apply in the next sections.

In quantum field theory, the coupling of particles with
fields is constructed in such a way that the theory is invariant
under a gauge transformation [16]. Here, we limit the theoret-
ical model to consider U(1) invariance. For symmetry groups
that are noncommutative, this approach can be generalized to
nonabelian gauge theories [11,16].

Let us consider the transformation of the particle field
Y — exp(igf)y. This transformation represents a symmetry
of the free action of the particle (e.g., the Dirac action) if 6
is a constant, but we want to consider a generic function 6 (x)
(local phase transformation). However, the free Dirac action
is not invariant under local phase transformations because the
factor exp[igf(x)] does not commute with 9,,. At the same
time, it is known that the action of the free electromagnetic
field is invariant under the following gauge transformation:

Ay — A, —09,0. 1

It is then possible to replace, in the action, the derivative 9,
with a covariant derivative of i as

Dy = (0, +igA )Y, 2
so that
D,y — €D,y , (3)

even when 6 depends on x. It is now easy to construct a
Lagrangian with a local U(1) invariance. It suffices to replace
all derivatives d,, with covariant derivatives D,,.

The same procedure, leading to the well-known minimal
coupling replacement, can be applied to describe the inter-
action of a nonrelativistic particle with the electromagnetic
field. Considering a particle of mass m with a geometrical
coordinate x and a potential V (x), the Hamiltonian of such
a particle interacting with the electromagnetic field can be
written as

o |
A = —[p—qA@ + V), “)
2m
where p = —id/dx is the momentum of the particle (here

h = 1). It turns out that the expectation values (wlﬁ(‘)giW) are
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FIG. 1. A double-well system in the two-state limit. The symbols
E, and E, are the two lowest-energy levels, well separated in energy
by the next higher energy level E,. Panel (a) also shows the square
modulus of the two wave functions localized in the well, obtained
as linear combinations of the two lowest-energy wave functions
displayed in panel (b).

invariant under local phase transformations,

Yx) = DY), )

thanks to the presence of the gauge field A(x).

Note that the function of a continuous degree of free-
dom ¥ (x), lives in the infinite-dimensional space of all
square-integrable functions, and the local phase transforma-
tion transforms a state vector in this space into a different
vector in the same space. Finally, we observe that the total
Hamiltonian, in addition to I-?Ogl , includes the free Hamiltonian
for the gauge field.

III. DOUBLE-WELL SYSTEMS IN THE TWO-STATE LIMIT

The problem of a quantum-mechanical system whose state
is effectively restricted to a two-dimensional Hilbert space
is ubiquitous in physics and chemistry [17]. In the simplest
examples, the system simply possesses a degree of freedom
that can take only two values. For example, the spin projection
in the case of a spin-1/2 particle or the polarization in the case
of a photon. In addition to these intrinsic two-state systems, a
more common situation is that the system has a continuous
degree of freedom x, for example, a geometrical coordinate,
and a potential energy function V (x) depending on it, with
two separate minima [17] (see Fig. 1). Let us assume that the
barrier height V is large enough that the system dynamics can
be adequately described by a two-dimensional Hilbert space
spanned by the two ground states in the two wells |L) and |R).
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FIG. 2. A symmetric double-well system in the two-state limit.
The symbols E, and E; are the two lowest-energy levels, well sep-
arated in energy by the next higher-energy level E,. Panel (a) also
shows the square modulus of the two wave functions localized in the
well, obtained as symmetric and antisimmetric combinations of the
two lowest-energy wave functions displayed in panel (b).

The motion in the two-dimensional Hilbert space can be
adequately described by the simple Hamiltonian

Tlo= Y Ejlj)(jl — t(R}{L| + H.c.), (6)

j=L.R

where the tunneling coefficient is given by r = (L|Ay|R), and

. P
Hy=—+V(x) @)
2m

is the usual system Hamiltonian.

If the potential is an even function of the geometrical co-
ordinate, namely V (x) = V(—x) (see Fig. 2), then E; = Ep,
and we can fix E;, = Ex = 0. Introducing the Pauli operator
Ox = |L)(R| + H.c., we obtain

7:[0 = —10x, (8)

whose eigenstates, delocalized in the two wells, are the
well-known symmetric and antisymmetric combinations [see
Fig. 2(b),

1
S=_R La
|S) ﬁ(|>+|>)
1
A) = —(|R) — |L)), 9
|A) ﬁ(|) IL)) ®)

with eigenvalues E4 g = =+t, so that A = E4 — Eg = 2¢, and
we assume ¢ > 0. The Hamiltonian in Eq. (6) can be written
in diagonal form as

Ho = (A/2)6,, (10)

where 6, = —p, = |A)(A] — |S)(S]. Note, to distinguish be-
tween the different basis states for the operator representa-
tions, we use &; for the |A)—|S) basis, and p; for the |L)—|R)
basis. Thus, for example, the diagonal &, operator becomes
nondiagonal in the |L)—|R) basis.

It is worth noting that this elementary analysis is not re-
stricted to the case of a double-well potential. Analogous
considerations can be carried out for systems with different
potential shapes, displaying two (e.g., lowest energy) levels
well separated in energy from the next higher level. The wave
functions vz (x) = (x|L) and ¥g(x) = (x|L) can be obtained
from the symmetric and antisymmetric combinations of ¥g(x)
and ¥4 (x) (see Fig. 1), which can be obtained exactly as the
two lowest-energy eigenfunctions of the Schrodinger problem
described by the Hamiltonian in Eq. (7). The gap A =2t
is obtained from the difference between the corresponding
eigenvalues. This two-state tunneling model is a well-known
formalism to describe many realistic systems, including the
ammonia molecule, coupled quantum dots, and superconduct-
ing flux-qubits.

The case of a potential of the effective particle which does
not display inversion symmetry can also be easily addressed.
For example, consider an asymmetric double well potential,
as shown in Fig. 1. In this case, Eq. (6) can be expressed as

N €, A

Ho = Epz_ pr- (11)
The quantity € is the detuning parameter, that is, the difference
in the ground-state energies of the states localized in the two
wells in the absence of tunneling. The Hamiltonian in Eq. (11)
can be trivially diagonalized with eigenvalues +w, /2, where

wg = VA + €2

IV. GAUGE PRINCIPLE IN TWO-LEVEL SYSTEMS

The question arises if it is possible to save the gauge
principle when, under the conditions described above, such
a particle is adequately described by states confined in a
two-dimensional complex space. If we apply an arbitrary lo-
cal phase transformation to, e.g., the wave function ¥4 (x) =
(x]A): Yalx) > Yi(x) = €™y, (x), it happens that, in
general, ¥ (x) # cs¥s(x) + ca¥a(x), where ¢4 and cg are
complex coefficients. Thus the general local phase trans-
formation does not guarantee that the system can still be
described as a two-state system. According to this analysis,
those works claiming gauge noninvariance due to material
truncation in ultrastrong-coupling QED [18] (we would say at
any coupling strength, except negligible), at first sight, might
appear to be correct. The direct consequence of this conclu-
sion would be that two-level models, widespread in physics
and chemistry, are too simple to implement their interaction
with a gauge field, according to the general principle from
which the fundamental interactions in physics are obtained.
Since adding to the particle system description a few addi-
tional levels does not change this point, the conclusion would
be even more dramatic. Moreover, according to the authors
of Refs. [2,3], this leads to several nonequivalent models of
light-matter interactions providing different physical results.
One might then claim the “death of the gauge principle” and
of gauge invariance in truncated Hilbert spaces, namely in
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almost all cases where theoreticians try to provide quantitative
predictions to be compared with actual experiments.

Our view is drastically different: We find that the break-
down of gauge invariance is the direct consequence of an
inconsistent approach of reducing the information (Hilbert
space truncation) on the effective particle, without accord-
ingly reducing the information, by the same amount, on the
phase 6(x) determining the transformation in Eq. (5). In
physics, the approximations must be done with care, and they
must be consistent.

We start by observing that the two-state system defined
in Eq. (6) still has a geometric coordinate, which, however,
can assume only two values: x; (with j = L, R), that we can
approximately identify with the position of the two minima of
the double-well potential. More precisely, and more generally,
they are

xg = (RIx|R), x. = (L|x|L). (12)
Here, parity symmetry implies x; = —xg. In the following we
will use the shorthand (R|x|R) = a/2. Hence, the operator
describing the geometric coordinate can be written as [17]
X = (a/2)p., where p; = |R)(R| — |L)(L|.

We observe that the terms proportional to ¢ in the Hamilto-
nian in Eq. (6) or Eq. (8), implies that these can be regarded
as nonlocal Hamiltonians, i.e., with an effective potential de-
pending on two distinct coordinates. Nonlocality here comes
from the hopping term ¢ = (R|Hy|L), which is determined by
the interplay of the kinetic energy term and of the potential
energy in Hy.

It is clear that the consistent and meaningful local gauge
transformation corresponds to the following transformation:

V) = cLIL) + crIR) — |¥') = €T er|L) + "™ cg|R)
(13)
where |{) is a generic state in the two-dimensional Hilbert
space, and 6; are arbitrary real-valued parameters.

It is easy to show that the expectation values of # are
not invariant under the local transformation in Eq. (13). They
are only invariant under a uniform phase change: |¢) —
exp(iqf)|v). However, one can introduce in the Hamiltonian
field-dependent factors, that compensate the difference in the
phase transformation from one point to the other. Specifi-
cally, following the general procedure of lattice gauge theory,
we can consider the parallel transporter (a unitary finite-
dimensional matrix), introduced by Wilson [11,19,20]

Xr+a
UxH—a,xk = eXp |:lq/ dXA()C):| ’ (14)
Xk

where A(x) is the gauge field. After the gauge transformation
of the field,

A'(x) = A(x) +dO/dx, (15)
the transporter then transforms as
U)ék +ax edot +a)ka +a.%; e 110, (16)

which is now discrete. This property can also be used to
implement gauge invariant Hamiltonians in two-state systems.

A. Symmetric two-state systems

Properly introducing the parallel transporter in Eq. (14)
into Eq. (8), we obtain a gauge-invariant two-level model

HE = —1 |R)(L| U,

R XL

+H.c. (17)

Gauge invariance can be directly verified:

(WI(IRNLIU, ,, +H.c.)lg)
= (YI(R)(L| Uxy x, +H.C.)l9),

where |) and |¢) are two generic states in the vector space
spanned by |L) and |R). By neglecting the spatial variations of
the field potential A(x) on the distance

a = Xp — XL,

(dipole approximation). The Hamiltonian in Eq. (17) can be
written as

HE = —1 |R)(L| " + H.c. (18)

Using Eq. (9) and the Euler formula, the Hamiltor}ian in
Eq. (18) can be expressed using the diagonal basis of Hy, as

N o A
Hy = 3[@ cos (qaA) + 6, sin (qaA)], (19)

where 6, = —i(|A) (S| — |S){A]). Using Egs. (9) and (12), then
qa/2 = q(Alx|S) . (20)

This coincides precisely with the transition matrix element of
the dipole moment as in Ref. [6].

Considering a quantized field A, the total light-matter
Hamiltonian also contains the free-field contribution, th, SO
that

N A A ~ A
H = 3[6Z cos (gaA) + 6y sin (qaA)] + Hyy, . 21

For the simplest case of a single-mode electromagnetic res-
onator, the potential can be expanded in terms of the mode
photon destruction and creation operators. Around x = 0,
A = Ag(a+a"), where Ay (assumed real) is the zero-point-
fluctuation amplitude of the field in the spatial region spanned
by the effective particle. We also have ﬁph = wpha"'&, where
wph is the resonance frequency of the cavity mode. It can be
useful to define the normalized coupling strength parameter

(6]
n=q(a/2)A, (22)
so that Eq. (21) can be written as

N A . S .
H = {62 cos[2n(a+a")] + 6y sin [2n(a + aN}+opma‘a.
(23)

Using the relations p, = |R)(R| — |L){L| = |A){S| +
|S)(A| = 6, the Hamiltonian in Eq. (17) can also be expressed
as

H=Uurut, (24)
where

U = exp (iqalé,/)2). (25)
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Equations (24) and (25) coincide with Egs. (8) and (9) of
Ref. [6], which represents one of our main results.

It is also interesting to rewrite the coordinate-dependent
phase transformation in Eq. (13) as the application of a unitary
operator on the system states. Defining ¢ = (6g + 6.)/2 and
0 = (6gr — 61)/2, Eq. (13) can be written as

[¥) — [y') = 1P |y . (26)

This shows that the coordinate-dependent phase change of a
generic state of a TLS is equivalent to a global phase change,
which produces no effect, plus a rotation in the Bloch sphere,
which can be compensated for by introducing a gauge field
as in Eq. (24). Notice also that Eq. (26) coincides with the
result presented in the first section of the Supplementary In-
formation of Ref. [6], obtained with a different, but equivalent
approach.

In summary, the method presented here can be regarded
as the two-site version (with the additional dipole approxima-
tion) of the general method for lattice gauge theories [11],
which represents the most advanced and sophisticated tool
for describing gauge theories in the presence of truncation
of infinite-dimensional Hilbert spaces. These results eliminate
any concern about the validity of the results presented in
Ref. [6], raised by Ref. [3].

We conclude this subsection by noting that Eq. (17) can be
also used, without applying the dipole approximation, to ob-
tain the (multimode) gauge-invariant QRM beyond the dipole
approximation. Specifically, without applying the dipole ap-
proximation to Eq. (17), after the same steps to obtain
Eq. (23), we obtain

N A w®
H = 3[61 cos(q/ dxA(x))

XR
+ &y sin(q / dxA(x))} + Hy, . (27)
XL

One interesting consequence of this result is that it introduces
a natural cutoff for the interaction of high-energy modes of
the electromagnetic field with a TLS. In particular, owing to
cancellation effects in the integrals in Eq. (27), the result-
ing coupling strength between the TLS and the mode goes
rapidly to zero when the mode wavelength becomes shorter
than a/2 = (A|x|S). This finding can stimulate further inves-
tigations beyond the dipole approximation, without having to
introduce a cutoff frequency by hand.

It is worth noticing that this derivation of the gauge-
invariant QRM does not require the introduction of an
externally controlled two-site lattice spacing, in contrast to
general lattice gauge theories. In the present case, the effective
spacing a between the two sites is only determined by the tran-
sition matrix element of the position operator between the two
lowest-energy states of the effective particle a = 2(A|x|S),
which in turn determines the dipole moment of the transition

qa/2.

B. Asymmetric two-state systems

The results in this section can be directly generalized to
also address the case of a potential of the effective particle
which does not display inversion symmetry. It was shown that

the interaction (in the USC and DSC limit) of these TLSs
(without inversion symmetry), with photons in resonators, can
lead to a number of interesting phenomena [21-27]. In this
case, Eq. (11) provides the bare TLS Hamiltonian. Note that
the first term in Eq. (11) is not affected by the two-state local
phase transformation in Eq. (13), hence the gauge-invariant
version of Eq. (11) can be written as

e = %i)z — §(|R)<L| Uy,n, +Hec), (28)
which, in the dipole approximation, reads
7 = %ﬁz - % (IR)(L| € + H.c.). (29)
This can be expressed as
A = Sp.— Slpecos (qad) — pysin (qaA)], (30)
which can also be written in the more compact form
HE = AU, 31)
where
U = exp ligaAp;/2] . (32)

Equations (31) and (32) represent the minimal coupling
replacement for TLSs, derived directly from the fundamental
gauge principle.

We observe that the operator X = ap,/2 represents the
geometrical-coordinate operator for the two-state system, with
eigenvalues +a/2. The Hamiltonian in Eq. (30) can be di-
rectly generalized beyond the dipole approximation with the
following replacement:

al2
dxA(x). (33)
—a/2

aA —

Considering a single-mode electromagnetic resonator, the
total Hamiltonian becomes

N aia | €4 A A At
H =wma'a+ 3P = E{px cos[2n(a+a')]
—pysin[2n(a+ahl}. (34)

Since the operator X is the position operator in the two-
state space, the unitary operator Ut =T also corresponds to
the operator which implements the PZW unitary transforma-
tion [28], leading to the dipole-gauge representation

. AN € A
Ha = UHU = wopa’a + 3P S
— inwpm(a —a")p, +n’L, (35)

where we used ,?)ZZ = 7, with Z the identity operator for the

two-state system. Note that 7, coincides with the Hamilto-
nian describing a flux qubit interacting with an LC oscillator
[25].

Since the Hamiltonians in Eqs. (34) and (35) are related by
a gauge (unitary) transformation, their eigenvalues E; coin-
cide. Figure 3 displays their energy spectra, defined as (E; —
Eo)/wpn as a function of the normalized coupling strength,
where Ej is the ground-state energy. The spectra were ob-
tained at zero detuning: w,; = wpn. In particular, Fig. 3(a)
displays the energy spectrum in the absence of symmetry
breaking (¢ = 0), namely that of the standard QRM [6].
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FIG. 3. Normalized energy spectra of the QRMs for the (a) sym-
metric and (b) asymmetric TLS. Energy differences (E; — Ey)/wpn
(E; are energy eigenvalues) as a function of the normalized coupling
strength 7, calculated at zero detuning: w, = wypy,. Panel (a) displays
the spectrum for the standard QRM (symmetric TLS), while the
spectrum for the QRM for the asymmetric TLS is shown in (b).

Figure 3(b) is obtained using € = 0.2wp,. Such a symme-
try breaking gives rise to a number of interesting features.
In particular, we observe that the level crossings present in
Fig. 3(a) convert into avoided-level crossings. The appearance
of these splittings is a signature of the hybridization between
states with different parity. Note that, in the Jaynes Cummings
model (the QRM after the rotating wave approximation) the
number of excitations is conserved. In the QRM, owing to the
counterrotating terms, such a number is no longer conserved.
However, its parity remains a good quantum number [4]. For
€ # 0, also this symmetry is removed. A peculiar feature of
the QRM consists of energy levels E; — Eq which tend to be-
come flat and “two-fold degenerate” in the extreme coupling
limit. Figure 3(b) shows that this degeneracy is removed and
in the limit n — oo, it is converted into a gap exactly equal
to €.

V. DISCUSSION AND CONCLUSIONS

This work discussed the connection between the QRM, an
essential and widespread model in quantum optics, and lattice
gauge theory, and shows that the results in Ref. [6], obtained
with a completely different approach, fit well in the great
tradition of lattice gauge theories opened by Wilson [11].

Lattice-gauge theories constitute a powerful reference ex-
ample, where it is possible and also vital to maintain the gauge
invariance of a theory after reducing the infinite amount of
information associated to a continuous coordinate [11]. The

gauge principle is based on the concept of local phase change
of the system wave function. The approach in Ref. [6], using
the energy eigenstates as a basis, does not provide, in a direct
way, such a locality concept. However, this work shows how
the results in Ref. [6] can be derived using the key concept of
local phase change of the system wave function.

Of course, measurements (as, e.g., experimental clicks or
transmission amplitudes) yield data that do not care about
gauge representations. Therefore, if approximations are ap-
plied consistently, as theorists, we should provide numbers
which are not affected by gauge transformations. Theorists
can use different representations, but all of them must be
consistent. This paper, as well as Ref. [6], shows that this is
the case even under extreme conditions, e.g., in the USC and
DSC regimes of light-matter interaction.

To demonstrate the versatility of the prescription used here,
we also presented the gauge-invariant formulation in the case
of asymmetric two-state systems interacting with the electro-
magnetic field, extending the results in Ref. [6] to the case
of asymmetric two-state systems interacting with the elec-
tromagnetic field. The corresponding energy spectrum, for a
single-mode field, as a function of the normalized coupling
strength, shows the impact of breaking parity symmetry in the
USC regime. In addition, the method used here allowed us to
obtain the gauge-invariant QRM beyond the dipole approxi-
mation.

We highlight that the double-well potential, considered in
this work, is not essential for the derivation of the QRMs
derived here. This potential has been used just as an example,
for two main reasons: (i) it allows us to visualize in a clear
way the concept of a two-valued geometric coordinate and the
relationship of the present approach with lattice gauge theory;
(i1) because the double-well potential can display very high
anharmonicity, which is essential to keep valid the two-level
approximation in the presence of deep ultrastrong coupling.
The general approach for potentials different from the double-
well consists of (i) writing the position operator in the two
energy eigenstates basis and diagonalazing it; (ii) writing the
bare atomic Hamiltonian in the basis of the eigenstates of
the position operator, so that Eq. (11) is obtained; and (iii)
applying the parallel transporter in Eq. (14) to the nondiagonal
elements of the Hamiltonian in Eq. (11).

The QRMs developed here and in Ref. [6] are gauge-
invariant and satisfy the gauge principle for truncated models.
Naturally, they are able to reproduce the energy levels of
the full (nottruncated) model [6] only when the two-level
approximation is a valid option. In quantum optics, it is known
that the two-level approximation can be applied only when
the higher energy levels of the system provides a negligi-
ble contribution to the resonant dynamics of the light-matter
system [29]. As discussed in Ref. [6], it is useful to de-
fine an anharmoncity coefficient of the matter system: pu =
(w2,1 — w1,0)/w1,0, Where w; ; = w; — wj, and w; indicates the
eigenfrequency of the ith energy level of the matter system.
The two-level approximation works fine if the normalized
coupling n is significantly smaller than u. In other words,
additional transitions beyond w; o in the system can be ne-
glected only if |w; j — wc| > 1gi ;| ~ nlw; |, where g; ; is the
coupling rate of the transition at w; ; with cavity photons. Of
course, using the QRM for systems when n ~ w can provide
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wrong or unphysical results [2]. In this case we may expect
that, taking into account a few additional levels and applying
the gauge-invariant framework [6], can restore the agreement
with the full model, at least for the lowest-energy levels of the
system.

Our results on the connection between the QRM and
lattice-gauge theory can hopefully stimulate the development
of lattice gauge models for the study of USC cavity QED in
one- and two-dimensional systems, as well as of interacting
electron systems [30-33]. It would also be interesting to ap-
ply lattice-gauge theory to investigate cavity QED systems
beyond the dipole approximation [34].

ACKNOWLEDGMENTS

EN. is supported in part by: Nippon Telegraph and
Telephone Corporation (NTT) Research, the Japan Sci-

ence and Technology Agency (JST) [via the Quantum
Leap Flagship Program (Q-LEAP) program, the Moonshot
R&D Grant No. JPMIMS2061, and the Centers of Re-
search Excellence in Science and Technology (CREST)
Grant No. JPMJCR1676], the Japan Society for the Promo-
tion of Science (JSPS) [via the Grants-in-Aid for Scientific
Research (KAKENHI) Grant No. JP20H00134 and the
JSPS — RFBR Grant No. JPJSBP120194828], the Army
Research Office (ARO) (Grant No. W911NF-18-1-0358),
the Asian Office of Aerospace Research and Develop-
ment (AOARD) (via Grant No. FA2386-20-1-4069), and
the Foundational Questions Institute Fund (FQXi) via Grant
No. FQXi-IAF19-06. S.H. acknowledges funding from the
Canadian Foundation for Innovation and the Natural Sci-
ences and Engineering Research Council of Canada. S.S.
acknowledges the Army Research Office (ARO) (Grant
No. W911NF1910065).

[1] D. De Bernardis, P. Pilar, T. Jaako, S. De Liberato, and P. Rabl,
Breakdown of gauge invariance in ultrastrong-coupling cavity
QED, Phys. Rev. A 98, 053819 (2018).

[2] A. Stokes and A. Nazir, Gauge ambiguities imply Jaynes-
Cummings physics remains valid in ultrastrong coupling QED,
Nat. Commun. 10, 499 (2019).

[3] A. Stokes and A. Nazir, Gauge non-invariance due to material
truncation in ultrastrong-coupling QED, arXiv:2005.06499v1.

[4] A.F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F.
Nori, Ultrastrong coupling between light and matter, Nat. Rev.
Phys. 1, 19 (2019).

[5] P. Forn-Diaz, L. Lamata, E. Rico, J. Kono, and E. Solano,
Ultrastrong coupling regimes of light-matter interaction, Rev.
Mod. Phys. 91, 025005 (2019).

[6] O. Di Stefano, A. Settineri, V. Macri, L. Garziano, R. Stassi,
S. Savasta, and F. Nori, Resolution of gauge ambiguities in
ultrastrong-coupling cavity QED, Nat. Phys. 15, 803 (2019).

[7]1 A. Settineri, O. Di Stefano, D. Zueco, S. Hughes, S.
Savasta, and F. Nori, Gauge freedom, quantum measurements,
and time-dependent interactions in cavity and circuit QED,
arXiv:1912.08548 [Phys. Rev. Research (to be published)].

[8] L. Garziano, A. Settineri, O. Di Stefano, S. Savasta, and F. Nori,
Gauge invariance of the dicke and hopfield models, Phys. Rev.
A 102, 023718 (2020).

[9] S. Savasta, O. D. Stefano, and F. Nori, TRK sum rule for
interacting photons, Nanophotonics 10, 465 (2021).

[10] A. Le Boité, Theoretical methods for ultrastrong light-matter
interactions, Adv. Quantum Technol. 3, 1900140 (2020).

[11] U.-J. Wiese, Ultracold quantum gases and lattice systems:
Quantum simulation of lattice gauge theories, Ann. Phys.
(Leipzig) 525, 777 (2013).

[12] R. Peierls, On the theory of diamagnetism of conduction elec-
trons, Z. Phys. 80, 763 (1933).

[13] J. M. Luttinger, The effect of a magnetic field on
electrons in a periodic potential, Phys. Rev. 84, 814
(1951).

[14] D. R. Hofstadter, Energy levels and wave functions of Bloch
electrons in rational and irrational magnetic fields, Phys. Rev. B
14, 2239 (1976).

[15] M. Graf and P. Vogl, Electromagnetic fields and dielectric re-
sponse in empirical tight-binding theory, Phys. Rev. B 51, 4940
(1995).

[16] M. Maggiore, A Modern Introduction to Quantum Field Theory,
Oxford Series in Physics, No. 12 (Oxford University Press, New
York, 2005).

[17] A.J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A.
Garg, and W. Zwerger, Dynamics of the dissipative two-state
system, Rev. Mod. Phys. 59, 1 (1987).

[18] A. Stokes and A. Nazir, Ultrastrong time-dependent light-
matter interactions are gauge-relative, Phys. Rev. Research 3,
013116 (2021).

[19] K. G. Wilson, Confinement of quarks, Phys. Rev. D 10, 2445
(1974).

[20] C. B. Lang, Quantum Chromodynamics on the Lattice: An
Introductory Presentation (Springer, New York, 2010).

[21] T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Himmer, E. Solano,
A. Marx, and R. Gross, Circuit quantum electrodynamics in the
ultrastrong-coupling regime, Nat. Phys. 6, 772 (2010).

[22] A. Ridolfo, M. Leib, S. Savasta, and M. J. Hartmann, Photon
Blockade in the Ultrastrong Coupling Regime, Phys. Rev. Lett.
109, 193602 (2012).

[23] L. Garziano, R. Stassi, V. Macri, A. F. Kockum, S. Savasta, and
F. Nori, Multiphoton quantum Rabi oscillations in ultrastrong
cavity QED, Phys. Rev. A 92, 063830 (2015).

[24] L. Garziano, V. Macri, R. Stassi, O. Di Stefano, F. Nori, and S.
Savasta, One Photon Can Simultaneously Excite Two or More
Atoms, Phys. Rev. Lett. 117, 043601 (2016).

[25] F. Yoshihara, T. Fuse, S. Ashhab, K. Kakuyanagi, S. Saito,
and K. Semba, Superconducting qubit-oscillator circuit be-
yond the ultrastrong-coupling regime, Nat. Phys. 13, 44
(2017).

[26] A.F. Kockum, A. Miranowicz, V. Macri, S. Savasta, and F. Nori,
Deterministic quantum nonlinear optics with single atoms and
virtual photons, Phys. Rev. A 95, 063849 (2017).

[27] R. Stassi, V. Macri, A. F. Kockum, O. Di Stefano, A.
Miranowicz, S. Savasta, and F. Nori, Quantum nonlinear optics
without photons, Phys. Rev. A 96, 023818 (2017).

053703-7


https://doi.org/10.1103/PhysRevA.98.053819
https://doi.org/10.1038/s41467-018-08101-0
http://arxiv.org/abs/arXiv:2005.06499v1
https://doi.org/10.1038/s42254-018-0006-2
https://doi.org/10.1103/RevModPhys.91.025005
https://doi.org/10.1038/s41567-019-0534-4
http://arxiv.org/abs/arXiv:1912.08548
https://doi.org/10.1103/PhysRevA.102.023718
https://doi.org/10.1515/nanoph-2020-0433
https://doi.org/10.1002/qute.201900140
https://doi.org/10.1002/andp.201300104
https://doi.org/10.1007/BF01342591
https://doi.org/10.1103/PhysRev.84.814
https://doi.org/10.1103/PhysRevB.14.2239
https://doi.org/10.1103/PhysRevB.51.4940
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevResearch.3.013116
https://doi.org/10.1103/PhysRevD.10.2445
https://doi.org/10.1038/nphys1730
https://doi.org/10.1103/PhysRevLett.109.193602
https://doi.org/10.1103/PhysRevA.92.063830
https://doi.org/10.1103/PhysRevLett.117.043601
https://doi.org/10.1038/nphys3906
https://doi.org/10.1103/PhysRevA.95.063849
https://doi.org/10.1103/PhysRevA.96.023818

SALVATORE SAVASTA et al.

PHYSICAL REVIEW A 103, 053703 (2021)

[28] M. Babiker and R. Loudon, Derivation of the Power-
Zienau-Woolley Hamiltonian in quantum electrodynamics by
gauge transformation, Proc. R. Soc. London A 385, 439
(1983).

[29] L. Allen and J. H. Eberly, Optical Resonance and Two-Level
Atoms, Vol. 28 (Courier Corporation, 1987).

[30] S. Savasta and R. Girlanda, The particle-photon interaction in
systems descrided by model Hamiltonians in second quantiza-
tion, Solid State Commun. 96, 517 (1995).

[31] G. M. Andolina, F. M. D. Pellegrino, V. Giovannetti, A. H.
MacDonald, and M. Polini, Cavity quantum electrodynam-
ics of strongly correlated electron systems: A no-go theorem

for photon condensation, Phys. Rev. B 100, 121109(R)
(2019).

[32] U. Mordovina, C. Bungey, H. Appel, P. J. Knowles, A. Rubio,
and F. R. Manby, Polaritonic coupled-cluster theory, Phys. Rev.
Research 2, 023262 (2020).

[33] O. Dmytruk and M. Schiré, Gauge fixing for strongly correlated
electrons coupled to quantum light, Phys. Rev. B 103, 075131
(2021).

[34] G. M. Andolina, F. M. D. Pellegrino, V. Giovannetti, A. H.
MacDonald, and M. Polini, Theory of photon condensation in
a spatially varying electromagnetic field, Phys. Rev. B 102,
125137 (2020).

053703-8


https://doi.org/10.1098/rspa.1983.0022
https://doi.org/10.1016/0038-1098(95)00242-1
https://doi.org/10.1103/PhysRevB.100.121109
https://doi.org/10.1103/PhysRevResearch.2.023262
https://doi.org/10.1103/PhysRevB.103.075131
https://doi.org/10.1103/PhysRevB.102.125137

