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Dissipative state transfer and Maxwell’s demon in single quantum trajectories: Excitation transfer
between two noninteracting qubits via unbalanced dissipation rates
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We introduce a protocol to transfer excitations between two noninteracting qubits via purely dissipative pro-
cesses (i.e., in the Lindblad master equation there is no coherent interaction between the qubits). The fundamental
ingredients are the presence of collective (i.e., nonlocal) dissipation and unbalanced local dissipation rates (the
qubits dissipate at different rates). The resulting quantum trajectories show that the measurement back-action
changes the system wave function and induces a passage of the excitation from one qubit to the other. While
similar phenomena have been witnessed for a non-Markovian environment, here the dissipative quantum state
transfer is induced by an update of the observer knowledge of the wave function in the presence of a Markovian
(memoryless) environment—this is a single quantum trajectory effect. That is, a postselection of a jumpless
trajectory allows a transfer even for a non-Markovian environment where no quantum jumps have taken place.
Beyond single quantum trajectories and postselection, such an effect can be observed by histogramming the ratio
of quantum jumps at different times along several realizations. By investigating the effect of the temperature in
the presence of unbalanced local dissipation, we demonstrate that, if appropriately switched on and off, the
collective dissipator can act as a Maxwell’s demon. These effects are a generalized measure equivalent to the
standard projective measure description of quantum teleportation and Maxwell’s demon. They can be witnessed
in state-of-the-art setups given the extreme experimental control in, e.g., superconducting qubits, Rydberg atoms,
and nitrogen-vacancy (NV) centers.

DOI: 10.1103/PhysRevA.103.052201

I. INTRODUCTION

An open quantum system is characterized by dissipative
processes which, for a weak and Markovian environment,
are captured by a Lindblad master equation (LME) [1,2].
According to measurement theory [3,4], the LME admits a
fascinating interpretation. Indeed, it can be recast as the result
of a series of continuous and unread “generalized measures,”
called positive operator-valued measures (POVMs) [5]. The
action of the environment can be modeled as detectors that
continuously measure the output field of the system, but
whose measurement outcomes are unknown to an observer.
However, when an observer reads such measurement outputs,
the system is characterized by a stochastic evolution, called
quantum trajectory [6–9], rather than being descripted by a
LME.

Experimentally, there exist different ways in which the
output fields can be monitored. This translates into different
evolution functions for quantum trajectories [10,11]: (i) Non-
Hermitian continuous time evolution interrupted by abrupt
changes in the wave function due to quantum jumps. This
is the widely used counting trajectory (since one counts
the number of quantum jumps), also known as the Monte
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Carlo wave function method [8]. (ii) Continuous stochas-
tic infinitesimal changes of the wave function due to a
noise term. This is a quantum state diffusion method, often
called homodyne (heterodyne) trajectories in the photonic
context [12–15]. However, no matter the details at the sin-
gle trajectory level, the average behavior over infinitely
many quantum trajectories always recovers the result of
the LME.

In the following, we will mainly focus on counting trajecto-
ries. For photons escaping an electromagnetic resonator, such
a method describes a set of ideal photodetectors, performing
POVMs for all the output fields of the system, resulting in
a series of annihilation operators which act at random times
[3,4]. Within this description, the continuous monitoring of
the detectors affects the wave function even when no exci-
tation is lost to the environment. Indeed, the very fact of
knowing that no quantum jump took place modifies the wave
function because the observer’s knowledge about the system
has changed, having acquired information due to a negative
measurement (“no click” in the environment) [11].

Usually, dissipation is regarded as a source of classicality
[16]. Indeed, a quantum system in contact with its classical
environment rapidly loses its quantum features, such as entan-
glement. Several works demonstrated that two qubits strongly
interacting with a non-Markovian (possibly colored [17,18])
common bath display revival of entanglement [19,20], which
can be enhanced by the presence of measurement protocols
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(quantum Zeno effect) [21–23] and reveal nontrivial dynamics
[24,25].

In all these cases, the presence of a non-Markovian en-
vironment play a fundamental role: the excitations lost in
the environment can induce effects on the system itself. As
shown in, e.g., Refs. [18,26], quantum coherence can typically
survive longer in a non-Markovian dissipative environment.
In this regard, Markovian dissipation would suppress quan-
tum effects since all information is immediately lost into
the environment. However, through correctly engineering the
environment and by considering quantum trajectories, it is
possible to realize such quantum processes [27]. A pivotal
example is the entanglement of two superconducting qubits,
separated by more than a meter of coaxial cable, by designing
a joint measurement of the two qubits [28].

Although a single trajectory is a Markovian stochastic
process, it can significantly deviate from the LME result,
indicating the importance of the dynamics on its past. Indeed,
the initial condition does not determine the system state at
a certain time, but one needs to keep track of all the jump
events to correctly describe the system. In this regard, the
“observer” of a quantum trajectory plays the role of a classical
memory by keeping track of the jumps. As such, within a
single trajectory the continuous monitoring can hinder the
emergence of classical states [29].

In this work, we consider two undriven and noninteracting
qubits whose quantum trajectories stems from a LME (i.e., for
a bath within a Born and Markov approximation [1,30]) in the
presence of local and collective dissipation. As described in
Ref. [31], dissipation can be (engineered to be) both “local”
and “collective,” meaning that the LME cannot be brought to
a form where all the quantum jump operators involve only
single qubit jumps. For instance, this is the case of the collec-
tive dissipation of the Dicke model, where only the uniform
modes are dissipated and the physics can be reduced to one of
the Dicke ladders [31,32].

By tuning the dissipation rates, we demonstrate that it is
possible not only to generate entanglement in the system, but
also to transfer a quantum excitation between the two non-
interacting qubits via purely dissipative processes. We stress
that the Lindblad master equation describing the two qubits
once the environment has been traced out does not contain any
Hamiltonian interaction between the qubits (contrary to the
effective coupling in, e.g., giant atoms [33,34]), but it is only
the effect of dissipation that introduces such a coupling. This
effect is fairly counterintuitive: by selecting quantum trajecto-
ries where no quantum jump took place (i.e., the environment
is always in the “vacuum” and no excitation flows into it) one
is still able to move an excitation between two noninteracting
qubits. This phenomenon is purely quantum and dissipative in
nature, and cannot be explained by a purely Hamiltonian or
classical theory. However, it has a clear explanation in terms
of a Bayesian update of the wave function: the very fact that a
detector has not clicked updates the knowledge of an observer,
and as such it modifies the state of a quantum system in a
nontrivial way.

In the same way in which a quantum teleportation pro-
tocol relies on the nonlocality of quantum mechanics, here
the key to such a state transfer is the presence of engi-
neered nonlocal dissipative processes in the form of collective

dissipation. While in a teleportation protocol a “standard”
projection-valued measures (PVM) collapses the entangled
wave function instantaneously, here the POVM induces the
transfer of an excitation from one qubit to another. If no
quantum jump happens, the information collected along the
trajectory via the POVM progressively and continuously
projects the wave function (i.e., it is a weak measurement
[35,36]). We call such a process a dissipative quantum state
transfer, since both the dissipative and quantum nature of the
system are necessary ingredients to ensure the transfer.

Such a protocol can also be realized by correctly postse-
lecting those trajectories where no quantum jump happened
[37,38]. Furthermore, the statistics of quantum jumps in the
two qubits (even without continuously monitoring the collec-
tive jumps of the system) bear witness to the quantum state
transfer process.

We show that, surprisingly, this process can also happen
in the presence of thermal fluctuations. By controlling the
collective dissipation it is possible to obtain a flow of energy
from a cold bath to one at a higher temperature. This is a
transfer of “heat” at the expense of information and not of
work. As such, this protocol is that of a Maxwell’s demon
[39,40], where the collective bath plays the role of a door
which can be appropriately opened or closed to ensure the
cooling of the cold bath [41].

The structure of the article is the following. In Sec. II we
introduce the system and the transfer protocol in the zero
temperature case. In particular, in Sec. II A we discuss the
effective Hamiltonian of the system describing a jumpless
evolution upon a counting protocol. In Sec. II B we show that
the quantum state transfer is witnessed also by the statistics of
only the local quantum jumps (i.e., without having to explic-
itly measure the collective emissions). In Sec. II C we prove
that it is possible, for this specific zero-temperature case, to
obtain the results of the quantum trajectory by postselection.
In Sec. III we propose an all-dissipative Maxwell’s demon by
properly switching on the collective dissipation. We draw our
conclusions in Sec. IV.

II. DISSIPATIVE STATE TRANSFER PROTOCOL

We consider two noninteracting dissipative qubits. Their
Hamiltonian reads (h̄ = 1)

Ĥ = ω1

2
σ̂ (1)

z + ω2

2
σ̂ (2)

z . (1)

where σ̂
( j)
z is the Pauli z operator of the jth qubit. We indicate

a state as, e.g., |e, g〉, meaning that qubit 1 is in the excited
state and qubit 2 is in the ground state.

Each qubit interacts with the environment, resulting in a
dissipation of their excitations. For a weak and Markovian
environment, the evolution of the system density matrix ρ̂(t )
is captured by a LME, reading

∂t ρ̂(t ) = −i[Ĥ , ρ̂(t )] +
∑

μ

γμD[Ĵμ]ρ̂(t ), (2)

where the dissipator D[Ĵμ] of the jump operator Ĵμ acts via

D[Ĵμ]ρ̂(t ) = Ĵμρ̂(t )Ĵ†
μ − Ĵ†

μĴμρ̂(t ) + ρ̂(t )Ĵ†
μĴμ

2
, (3)

at a rate γμ.
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In our case, we assume that each qubit dissipates its excita-
tion into the environment both locally and collectively, using
the terminology of Ref. [31]. Thus, the dissipators read

γ1D
[
σ̂

(1)
−

]
, (4a)

γ2D
[
σ̂

(2)
−

]
, (4b)

γcD
[
σ̂

(1)
− + σ̂

(2)
−√

2

]
, (4c)

where σ̂
( j)
± = (σ̂ ( j)

x ± iσ̂ ( j)
y )/2 is the lowering (raising) opera-

tor of the jth qubit. While the first two dissipators characterize
the dynamics of noninteracting qubits, the collective dissi-
pation and its rate γc naturally emerges when the qubits are
sufficiently close to each other with respect to the typical
wavelength of the electromagnetic reservoir (see the discus-
sion in, e.g., [42]). Furthermore, the collective dissipation
can be engineered for noninteracting nonlinear cavities, as
discussed in Ref. [43], such as circuit-QED systems [44]. For
strong (i.e., infinite) photon-photon interaction, the physics of
the nonlinear resonators becomes that of a two-level system
[45–49].

One can assume that all emitted excitations are perfectly
monitored by detectors (or, more generally, measurement in-
struments), one for each jump operator. As such, the state of
the system is perfectly known and one speaks of quantum tra-
jectories [3,6,8,9]. The LME is transformed into a stochastic
Schrödinger equation known as counting quantum trajectory
[3]. The equation of motion becomes

d |ψ (t )〉 =
⎡
⎣∑

μ

dNμ(t )

⎛
⎝ Ĵμ√

〈Ĵ†
μĴμ〉

− 1

⎞
⎠

− i dt Ĥeff

]
|ψ (t )〉 , (5)

where dNμ(t ) is a stochastic variable whose value is either 0
or 1 with probability

p[dNμ(t ) = 1] = γμdt
〈
ψ (t )

∣∣Ĵ†
μĴμ

∣∣ψ (t )
〉
. (6)

Nμ(t ) counts the occurrences of a jump induced by the oper-
ator Ĵμ. Moreover, Ĥeff is the effective Hamiltonian and reads

Ĥeff = Ĥ − i
∑

μ

γμ

(
Ĵ†
μĴμ

2
− 〈Ĵ†

μĴμ〉
2

)
. (7)

Within this description, the LME can be seen as the average
over an infinite number of quantum trajectories.

Although quantum trajectories can be seen as a theoretical
tool (see Refs. [7,8]), early works assigned a clear physical
meaning to single quantum trajectories (e.g., Ref. [6]) and
to quantum jumps. Single quantum jumps have been ob-
served in many experiments, including ionic [50–52], atomic
[53–58], solid state [59–61], and superconducting circuit se-
tups [62–66]. Furthermore, the dynamics of single quantum
trajectories in the absence of quantum jumps have been stud-
ied in, e.g., Ref. [37].

Therefore, each behavior of the LME can be witnessed by
any quantum trajectory approach [3]. However, some of the

behaviors at the single quantum trajectory level are washed
out by the averaging process [67–69]. Indeed, single trajecto-
ries “contain more information” since one eventually knows
when and if each quantum jump happens, and exactly how
excitations are lost to the environment. In this regard, single
quantum trajectories mimic the results of idealized experi-
ments.

A. Evolution without jumps

To obtain the desired effect of state transfer from qubit 1
to qubit 2, having initialized the system in qubit 1 (|ψ (0)〉 =
|e, g〉), we have to ensure the following conditions:

(1) No quantum jump takes place (otherwise, the excita-
tion is lost into the environment).

(2) The collective dissipation is different from zero,
γc �= 0.

(3) We can obtain an excitation swap if the dissipation of
qubit 1 is larger than that of qubit 2, γ1 > γ2.

In the absence of quantum jumps, the evolution of the sys-
tem is dictated solely by the effective Hamiltonian in Eq. (7).
Thus, no quantum jumps (i.e., “no clicks” of the detectors) af-
fect the system wave function via the renormalization induced
by the non-Hermitian terms of Ĥeff in Eq. (7) [8]. Generally
speaking, given a superposition of “bright” and “dark” states
of the dissipation, each time there is no quantum jump the
wave function becomes more populated by the dark state.

In the main text, we will suppose that the two qubits have
the same energy, i.e., ω1 = ω2. The role of the qubit frequen-
cies in the dynamics is discussed in Appendix A.

1. Environment back-action for a single qubit

In the case of a single qubit, the environment back-action
through the continuous measure is clear, as described in
Refs. [8]. The Hamiltonian is

Ĥ = ω

2
σ̂z (8)

and the system is initialized in a superposition state (|e〉 +
|g〉)/

√
2. The system is subject to a dissipation

γD[σ̂−] = γD[ |g〉〈e| ]. (9)

In this case, the state |e〉 is the bright state and |g〉 is the
dark one. Since the effective Hamiltonian now reads Ĥeff =
ω/2σ̂z − iγ /2 σ̂+σ̂−, each time there is no quantum jump
[dN (t ) = 0] the weight of the state |g〉 increases. Equivalently,
the observer gains information on the wave function, and the
fact that there was no jump makes the state |g〉 more probable
[11]. Thus, the non-Hermitian part of Eq. (7) continuously
affects the wave function, which approaches the ground state
as time passes and no detection occurs. This can be seen as a
Bayesian update of the wave function [70].

2. Environment back-action for two qubits with
collective dissipation

Let us now consider two qubits with γ1 = γ2. In this case,
there exist two dark states, according to the number of exci-
tations in the system. Indeed, by introducing the Bell states
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|�±〉 = (|e, g〉 ± |g, e〉)/
√

2, we have

|e, g〉 = (|�+〉 + |�−〉)/
√

2. (10)

Since we always initialize the system in |e, g〉, the collective
dissipator reads

γcD
[
σ̂

(1)
− + σ̂

(2)
−√

2

]
= γcD[|g, g〉 〈�+|]. (11)

Thus, both |g, g〉 and |�−〉 are dark states of the dissipator in
Eq. (11), while |�+〉 is the bright state.

The dynamics of the initial state |e, g〉 is, therefore, charac-
terized by two possible processes. If a quantum jump occurs,
the wave function at time t becomes immediately |g, g〉 and
there is no more dynamics. Instead, when no quantum jump
happens, the state |�−〉 becomes more probable as time
passes. This process is captured by projecting the effective
Hamiltonian in Eq. (7) onto the one-excitation manifold,
which in the presence of only the collective dissipation (up
to a constant) reads

〈�±|Ĥeff |�±〉 = −i
γc

2
|�+〉 〈�+| . (12)

Thus, when no quantum jump happens the coefficient of the
state |�+〉 exponentially decays to zero, and therefore |�(t )〉
approaches |�−〉. We show this effect in Fig. 1(a), where |e, g〉
converges towards |�−〉 before a quantum jump takes place
at γct � 6. The red and blue curves represent the expecta-
tion value of σ̂

(1, 2)
+ σ̂

(1, 2)
− obtained from a quantum trajectory

simulation.
In other words, conditions (i) and (ii) ensure that the system

is capable of producing entanglement along the dissipative
dynamics when no quantum jump happens. Although the
environment is always in the “vacuum” (it has not directly
mediated a transfer of energy because no quantum jump has
occurred), the continuous monitoring entangles the state of the
two qubits.

3. Environment-induced excitation swap between the qubits

Condition (iii) in Sec. II A states that qubit 1 dissipates
faster than qubit 2 (γ1 > γ2). Suppose now that we have no
collective dissipation and we initialize the system in |�±〉. If
no local quantum jump is detected, it becomes more probable
to find an excitation in qubit 2 because it is less dissipative.
Thus, a nonlocalized state collapses towards the state |g, e〉.

If the collective and local dissipations act simultaneously
according to the conditions (i)–(iii) in Sec. II A, there is a
transfer of the excitation |e, g〉 into a state similar to |g, e〉 via
a local and non-local quantum measurement back-action. In a
time step, the absence of signal from the collective dissipation
projects the state towards |�−〉 [i.e., the dark state of Eq. (11)].
Similarly, the absence of signal from any of the individual
dissipation processes gradually makes it more likely that the
excitation is mostly in the the less dissipative qubit (in our
case, qubit 2). When γ1 = γ2, instead, the superposition state
|�−〉 does not change.

We plot this ideal counting trajectory leading to the excita-
tion swap in Fig. 2(a). The red and blue curves represent the
expectation values of σ̂

(1, 2)
+ σ̂

(1, 2)
− obtained from a quantum

trajectory simulation. As we see, there is a transfer of the

excitation from qubit 1 to qubit 2. For this realization, at
time γct � 8, a quantum jump occurs, thus ending the transfer
process.

This is a surprising effect because the transfer takes place
when no excitation is lost in the environment. Indeed, since we
are dealing with a Markovian environment, once an excitation
passes in the environment it cannot come back in the system.
Despite the fact that the environment never contains a system
excitation, still the transfer of excitation is mediated by the
presence of the collective dissipation together with the contin-
uous measure. Every time no excitation is detected, it becomes
more likely that the excitation is in the less dissipative qubit.
The state transfer is induced by the information update due to
a negative measurement [11]

4. Analytical description of the time evolution

The exact diagonalization of the effective Hamiltonian in
Eq. (7) (done in Appendix A) analytically describes both
Figs. 1(a) and 2(a) (the black dashed curves in both figures).
The initial state |e, g〉 will evolve into an unnormalized wave
function

|�(t )〉 =
[
η cosh

(ηt

4

)
− 
γ sinh

(ηt

4

)]
|e, g〉

− γc sinh
(ηt

4

)
|g, e〉 , (13)

where η = √
γ 2

c + 
γ 2 and 
γ = γ1 − γ2 (we recall that we
are considering ω1 = ω2). Furthermore, given a trajectory, the
relevant parameter to determine the probability that an exci-
tation is lost is the effective dissipation rate � = γ1 + γ2 + γc

(see the Appendix A).
From Eq. (13), a complete transfer happens only for γc = 0

and t → ∞. In any other case, the state will be a superposition
of |e, g〉 and |g, e〉. Clearly, one has to play with � to make the
protocol less or more efficient and with the ratios of the pa-
rameters to witness a transfer. For example, for the parameters
considered here, we have a fidelity | 〈g, e|�(t → ∞)〉 |2 �
0.95, but only 1 trajectory out of 1000 will reach a time
γct � 4. The choice γ1 = γc and γ2 = γc/10 will lead to
| 〈g, e|�(t → ∞)〉 |2 � 0.83 (i.e., a lesser fidelity), but 15
trajectories out of 1000 will reach a time γct � 4 (more tra-
jectories can be observed). Such a nearly unit efficiency of
the state transfer is impossible without monitoring quantum
trajectories or by using different protocols. Indeed, as demon-
strated in Appendix B, the use of unravelings different from
single-counting trajectories does not allow the state transfer
at a single trajectory level. Nevertheless, protocols such as
postselection would still allow one to witness the transfer (see
Sec. II C).

We remark that this state transfer is a rare event, but not an
impossible one. The interesting point is not the efficiency of
the process, but rather that this event is exquisitely quantum
and dissipative in nature, and cannot be explained by a purely
Hamiltonian or a classical theory.

Let us briefly comment on the effect of a small qubit-qubit
coupling which may emerge together with the collective dis-
sipation. Although the data shown in this work are for zero
qubit-qubit coupling, for weak couplings (smaller or around
γc/10), there are no appreciable differences in the dynamics
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FIG. 1. (a) As a function of time, σ̂
(1)
+ σ̂

(1)
− (qubit 1, blue curve,

starting from 1) and σ̂
(2)
+ σ̂

(2)
− (qubit 2, red curve, starting from 0) for

an ideal counting quantum trajectory in the presence of collective
dissipation and local dissipation identical for qubits 1 and 2. As
time passes, the wave function tends towards the Bell state |�−〉,
until a quantum jump occurs at time γct � 6. The black dashed
lines represent the analytical results of Eq. (13), while the blue (red)
squares (circles) indicate the results of the postselection in Eq. (16)
for qubit 1 (2). Notably, the creation of the entangled state |�−〉 is
mediated by both the environment and by a continuous update of
an observer’s knowledge (who knows that quantum jumps have not
occurred) due to the continuous measurement. (b) As a function of
time and for a single trajectory, the percentage of local jumps σ̂

(1)
−

happening for qubit 1 (blue bars, starting from 100%) and σ̂
(2)
− for

qubit 2 (red bars, starting from 0%) without keeping track of the
collective quantum jumps due to (σ̂ (1)

− + σ̂
(2)
− )/

√
2. We simulated

106 trajectories. Parameters: ω1 = ω2 = 10γc (the relevant condition
is ω1 = ω2), γ1/γc = 0.2, and γ2/γc = 0.2. The system is always
initialized in the state |e, g〉.

of the two qubits, and the transfer takes place with the same
characteristics (see Appendix C).

B. Histograms of the local jumps

Witnessing the quantum state transfer requires collecting
all the quantum jumps to observe those trajectories where no
quantum jump took place. Although possible, e.g., for super-
conducting circuits [37] and in nitrogen-vacancy (NV) centers
[71], this procedure can be difficult, especially when dealing
with collective jumps. Furthermore, as we just discussed, this
transfer is a rare event.
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FIG. 2. (a) As a function of time, the expectation value of
σ̂

(1)
+ σ̂

(1)
− (qubit 1, blue curve, starting from 1) and σ̂

(2)
+ σ̂

(2)
− (qubit 2,

red curve, starting from 0) for an ideal counting quantum trajectory
in the presence of collective dissipation and unbalanced local dissi-
pation. While collective dissipation would create a Bell state |�−〉,
the unbalance in local dissipation transforms |�−〉 into |g, e〉. These
two processes ensure the excitation swap, until a quantum jump
occurs at γct � 8. The black dashed lines represent the analytical
results of Eq. (13), while the blue (red) squares (circles) indicate the
results of the postselection in Eq. (16) for qubit 1 (2). In this case,
a state is transferred because each time no excitation is emitted, it
becomes more probable that the excitation is in the less dissipative
qubit. Again, this is the effect of the environment combined with the
continuous measurement. (b) As a function of time, the percentage
of local jumps σ̂

(1)
− happening for qubit 1 (blue bars, starting from

100%) and σ̂
(2)
− for qubit 2 (red bars, starting from 0%) without keep-

ing track of the collective quantum jumps due to (σ̂ (1)
− + σ̂

(2)
− )/

√
2.

Despite the remarkable difference in the emission rates, the statistics
of jumps at long times clearly indicates the excitation swap. The last
time intervals are noisy due to the lack of statistics. We simulated
106 trajectories. Parameters: ω1 = ω2 = 10γc (the relevant condition
is ω1 = ω2), γ1/γc = 2.2, and γ2/γc = 0.2. The system is always
initialized in the state |e, g〉.

The proof of a quantum state transfer can be obtained also
by histogramming the distribution of the local quantum jumps
as a function of time. By partitioning the time of observation,
and collecting all the jumps happening in that time frame
either from D[σ̂ (1)

− ] or from D[σ̂ (2)
− ], one can witness the state

transfer. This procedure has the clear experimental advantage
of requiring only detection of the local dissipation processes,
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and the rarity of the event simply requires repeating the exper-
iment more times to obtain a sufficient statistics.

We plot the histograms of the jumps in Fig. 1(b) for the
case γ1 = γ2 (i.e., generation of the Bell state |�−〉) and
in Fig. 2(b) for the case γ1 > γ2 leading to an excitation
swap. While initially all the detected jumps occur via σ̂

(1)
− ,

as the time passes more and more jumps involve qubit 2. In
Fig. 1(b) eventually the number of jumps become identical
(up to numerical precision), signaling that |�(t )〉 � |�−〉. In
contrast, in Fig. 2(b) the number of jumps of qubit 2 over-
comes those of qubit 1. Notice that, for the considered values,
the dissipation in qubit 1 is 11 times higher than that of qubit
2. Consequently, to compare the histogram in Fig. 2(b) with
the curves in Fig. 2(a) one needs to appropriately rescale the
jumps statistics.

Finally, we remark on an important characteristic of this
histogram protocol with respect to finite-efficiency detectors.
Indeed, if the detector for D[σ̂ (1)

− ] has the same efficiency of
that for D[σ̂ (2)

− ], the jump statistics is unaffected, since both
are missing, on average, the same amount of quantum jumps.

C. Postselection of trajectories with no jumps

We observed that the quantum state transfer happens on
those counting trajectories where no quantum jump took place
for a certain amount of time. This is equivalent to postselect-
ing those trajectories where there are no quantum jumps and
discarding all the others. That is, the results of Eq. (13) can
be obtained by postselection. As discussed in Ref. [38], post-
selection transforms the master equation in a non-Lindblad
form described by a hybrid-Liouvillian superoperator which
strongly depends on the form of the jump operators, on their
unraveling, and on the efficiency of the detectors.

Therefore, we can show the presence of a quantum state
transfer also at the LME level. Indeed, we can imagine that we
simultaneously measure via a PVM the number of excitations
in qubit 1 and 2 at a time t , and we consider only those
realizations where an excitation has been found in the system
[28]. In the trajectory description, the number of jumpless
trajectories decreases over time. Similarly, for postselection
as time passes, |g, g〉 becomes more and more probable. In-
deed, the mixed state ρ̂(t ) stemming from the Lindblad master
equation is projected into the pure states |e, g〉, |g, e〉, or |g, g〉
upon measurement.

Within this assumption, the evolution equation of the post-
selected density matrix ρ̂PS(t ) measured at time t becomes

ρ̂PS(t ) = ρ̂(t ) − |g, g〉 〈g, g| 〈g, g|ρ̂(t )|g, g〉
Tr

[(
σ̂

(1)
+ σ̂

(1)
− + σ̂

(2)
+ σ̂

(2)
−

)
ρ̂(t )

] . (14)

The evolution assumes this simple form because there are no
coherences in the density matrix between states with different
number of excitations, i.e., 〈e, g|ρ̂(t )|g, g〉 = 0. Moreover, the
denominator ensures that, at the measurement time tm,

Tr
[(

σ̂
(1)
+ σ̂

(1)
− + σ̂

(2)
+ σ̂

(2)
−

)
ρ̂PS(tm )

] = 1. (15)

Therefore, no excitation has been lost or, equivalently, all
the measurements where the number of excitations is 0 are
rejected. Consequently,〈

σ̂
(1, 2)
+ σ̂

(1, 2)
−

〉
(t ) = Tr

[
σ̂

(1, 2)
+ σ̂

(1, 2)
− ρ̂PS(t )

]
. (16)

We remark that Eqs. (14) and (16) are no more lin-
ear in the density matrix, since ρ̂(t ) appears both in the
numerator and the denominator. Similar results could be ar-
gued using a jump-time unraveling of the Lindblad master
equation [72].

We plot the results of Eq. (16) in Figs. 1(a) and 2(a) as
blue squares for qubit 1 and red circles for qubit 2. Obviously,
Eq. (16) perfectly captures the state transfer, and can be used
as a witness of this phenomenon.

We stress that, although the results of Eq. (16) are
equivalent to those of Eq. (13), handling the non-Hermitian
Schrödinger equation (5) [and its associated effective Hamil-
tonian in Eq. (7)] in the absence of quantum jumps is ana-
lytically easier. Indeed, the equation of motion (5) becomes
∂t |�(t )〉 = −iĤeff |�(t )〉. Furthermore, such a non-Hermitian
Schrödinger equation also provides a simple interpretation of
the phenomenon in terms of the previously described transfer
mechanism.

Furthermore, from an experimental point of view, this pro-
tocol is not equivalent to that in Sec. II B. Indeed, for the
postselection discussed here one has to directly perform a
PVM to measure the system state [36]. As such, the method
in Sec. II B uses detectors to collect the quantum jumps,
while postselection needs a measure of the total number of
excitations in the system.

III. FULLY DISSIPATIVE MAXWELL’S DEMON

So far we have studied the zero temperature case. The state
transfer protocol can be witnessed also in the presence of
thermal processes. In this case, the system is characterized by
six jump operators:

γ1
(
n(1)

th + 1
)
D

[
σ̂

(1)
−

] + γ1n(1)
th D

[
σ̂

(1)
+

]
, (17a)

γ2
(
n(2)

th + 1
)
D

[
σ̂

(2)
−

] + γ2n(2)
th D

[
σ̂

(2)
+

]
, (17b)

γc
(
n(c)

th + 1
)
D

[
σ̂

(1)
− + σ̂

(2)
−√

2

]
+ γcn(c)

th D
[
σ̂

(1)
+ + σ̂

(2)
+√

2

]
,

(17c)

where n( j)
th represents the temperature of the bath associated

with the jth jump operator.
In the one-excitation manifold, the evolution of the system

has exactly the same form of the original problem when intro-
ducing the following effective rates:

γ1 → γ̃1 = γ1
(
1 + 2n(1)

th

)
,

γ2 → γ̃2 = γ2
(
1 + 2n(2)

th

)
,

γc → γ̃c = γc
(
1 + 2n(c)

th

)
, (18)

as can be easily argued from Eq. (7).
For the sake of simplicity, let us now assume that the

collective bath is at zero temperature (n(c)
th = 0). Since the

effective dissipations γ̃i are determined by the combination
of the temperatures (via n(i)

th ) and by the initial dissipation
rates γi, we can have γ̃1 > γ̃2 (the condition for the state
transfer) even if n(2)

th > n(1)
th . Physically speaking, the strongly

dissipative bath of qubit 1 is at a low temperature (from now
on, we will call it the “cold” qubit). Qubit 2 has a bath at a
higher temperature that dissipates at a slower rate (the “hot”
qubit).
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We deduce that it is possible to witness a quantum state
transfer from the cold qubit to the hot one, which then loses
energy to the hot bath. The process is (i) the cold qubit absorbs
one excitation from the cold bath, (ii) the state transfer induces
the hot qubit to become excited as a consequence of jumps not
happening, and (iii) the hot qubit dissipates in the hot bath.
This is clearly a nonthermal process (which can only happen
in an improbable chain of events). Such a set of events can
be witnessed by a counting trajectory protocol if the system is
correctly monitored (see Sec. II A).

On average, according to the second law of thermody-
namics, what will happen is that the hot bath will transfer
excitations to the cold bath and to the zero-temperature col-
lective bath. Clearly, if the collective bath is not connected to
the qubits, no transfer can happen, as discussed in Sec. II A,
and there is no heat flow.

One can now think of connecting the collective bath only
when the cold qubit (i.e., qubit 1) is excited. Within such a
configuration, and for sufficiently low coupling γ2, the prob-
ability that also hot qubit (qubit 2) is excited is remarkably
low. Thus, three main processes characterize the dynamics of
this system: (i) the excitation is reemitted in the cold bath,
(ii) the excitation is emitted in the zero-temperature collective
bath, and (iii) the excitation is emitted in the hot bath. Only
very improbable processes allow an excitation originating in
the hot bath to be emitted in the cold or zero-temperature
collective one.

Given the stochastic nature of the transfer, sometimes the
system behaves like a regular thermal machine, transferring
energy from the cold bath to the zero temperature (collective)
bath. However, at other times, single-shot violations of the
second-law of thermodynamics will take place, with a transfer
of energy from the cold bath to the hot one. Nevertheless, there
is (almost) never a transfer of heat from the hot bath to the
colder baths. As such, this protocol allows two heat fluxes, a
“standard” flux cooling the cold bath by heating the bath that
was initially at zero temperature, and a flux which violates the
second law of thermodynamics by cooling the cold bath and
heating the hot bath.

If repeated enough times, the cold bath becomes colder
while the hot bath is heating. Furthermore, connecting the
qubits to the collective bath at the right time does not require
energy, but only the knowledge that qubit 1 is excited. As
such, one is producing a refrigerator by using information
[41,73–76].

This is the definition of a Maxwell’s demon [39], a
“thought” experiment to demonstrate that the second law is
only a statistical principle valid on average and proving the
equivalence between entropy and information. Notice that one
continuously needs to measure the cold qubit in order to be
assured that the cold qubit is actually excited, and therefore
one is mapping the quantum state of the system into a classical
information problem [39]. Equivalently, a projective measure-
ment on the cold qubit is required, and the collective decay is
turned on only if the measurement outcome is “excited.” As
soon as the cold qubit is excited, the measure is ended and the
system evolves under the action of the effective Hamiltonian
alone.

Thus, such a Maxwell’s demon is purely dissipative in
nature, and it is only the quantum back-action deriving

0 1 2 3
γ1t

0

0.5

1

Maxwell’s
demon
γ1 > γ2

〈σ̂(1)
+ σ̂

(1)
− 〉

〈σ̂(2)
+ σ̂

(2)
− 〉

FIG. 3. As a function of time, the expecation value of σ̂
(1)
+ σ̂

(1)
−

(for qubit 1, blue curve, jumping to 1 at γ1t � 0.1) and σ̂
(2)
+ σ̂

(2)
− (for

qubit 2, red curve, slowly raising from zero for small γ1t) for an
ideal quantum state transfer in the presence of thermal processes,
n(1)

th = 0.05, n(2)
th = 0.1, and n(c)

th = 0. Qubit 1 is at a low-temperature
while qubit 2 has a bath at a higher temperature. The collective dissi-
pation, i.e., the element which allows a state transfer, is only activated
(γc �= 0) once the cold qubit absorbs one excitation, inducing the hot
qubit to become excited as a consequence of the dissipative state
transfer. Parameters: ω1 = ω2 = 4.5γ1, γ2 = γ1/11, and when active
γc = 5γ1/11 (i.e., when γc �= 0, the rates are those in Fig. 2).

from the fact that no quantum jump took place which
transfers the excitation. From an algebraic point of view,
the collective dissipation introduces a term of the form
iγc/2(|e, g〉 〈g, e| + H.c.) in the effective Hamiltonian. This
term has exactly the form of an exchange operator between
the two qubits, i.e., the term that would normally induce
a coupling. However, differently from its unitary version,
this Maxwell’s demon does not exchange the excitation with
certainty.

In the famous description of the demon opening and clos-
ing the door to let slow molecules escape from a hot room
(cooling the colder one), the demon actively opens the door
ensuring the passage of the particle. Here, instead, connecting
the collective dissipation is like creating a door, but the finite
efficiency of the state transfer means that the door is opened
with a finite probability. This is the reflection of the dissipative
and stochastic nature of this Maxwell’s demon. Such an effect
can never happen classically, since the state transfer is a purely
quantum effect due to quantum superposition induced by a
POVM.

Figure 3 shows the time evolution of a system with a
working Maxwell’s demon. Initially, the system evolves under
the action of the hot and cold baths, but not of the collective
dissipation (i.e., γc = 0). The cold qubit (qubit 1) is also
continuously monitored to detect if an excitation is present.
As soon as an excitation in the cold qubit is detected (γ1t �
0.1), one stops monitoring the cold qubit and the collective
dissipation is activated (γc �= 0). The quantum state transfer
happens and the hot qubit (qubit 2) loses the excitation in the
hot bath (γ1t � 2). After that, γc is set again to zero, so that if
the hot qubit gains an excitation, it can never transfer it to the
cold bath. The overall effect is that the hot bath can only gain
energy.
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IV. CONCLUSIONS

In this work we described a protocol to transfer excita-
tions from one qubit to another one via purely dissipative
non-Markovian processes. The two qubits are not interacting,
but it is the presence of (both local and collective) dissipation
and of the measurement back-action along a single quantum
trajectory which allows the transfer to happen. The process
is purely quantum since it relies on an update of the system
wave function upon the continuous measurement performed
by detectors. Furthermore, the transfer does not involve any
coherent process and relies only on the presence of collective
and local dissipations.

We derive analytical results using an effective Hamiltonian
of the system describing a jumpless evolution upon a count-
ing protocol. We discuss the possible ways to witness such
a dissipative quantum state transfer by making a histogram
(considering only local quantum jumps) and via postselec-
tion of the jumpless trajectories. In the presence of thermal
processes, we demonstrate that one can create a fully dissipa-
tive Maxwell’s demon by switching on and off the collective
dissipation.

All the elements presented in this article can be engineered
and realized with state-of-the art quantum optical setups, es-
pecially when considering circuit-QED platforms [77], NV
centers [71], and Rydberg atoms [78]. The demonstration of
the quantum state transfer and of the possibility to realize the
fully dissipative Maxwell’s demon are a POVM equivalent to
the POV standard description of quantum teleportation and
Maxwell’s demon. As such, these are effects at the heart of
quantum mechanics, based solely on the principles of gener-
alized measures.

The analysis of this system demonstrates that certain
behaviours, hidden by the average over many trajectories,
acquire a clear and measurable physical meaning at the single
trajectory level [67–69]. A future perspective is thus to use
single trajectories to unveil hidden behaviours in more exotic
systems, e.g., those characterized by ultrastrong light matter
coupling (USC) regime [79]. Beyond the physical interest
in investigating these systems, it can be difficult to experi-
mentally observe the presence of phenomena triggered by the

high-order light-matter processes typical of USC [80,81]. As
demonstrated in this article, the statistics of quantum jumps
for a properly initialized system can demonstrate the presence
of exotic exchanges.
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APPENDIX A: IDEAL COUNTING TRAJECTORY FOR
TWO QUBITS INTERACTING WITH LOCAL AND

COLLECTIVE ENVIRONMENT

The evolution along a counting trajectory before a quantum
jump takes place is dictated by its effective Hamiltonian in
Eq. (7). For our model [Eqs. (1) and (4)], neglecting the
renormalization terms proportional to the identity, it reads

Ĥeff = ω1 − i(γ1 + γc)/2

2
σ̂ (1)

z + ω2 − i(γ2 + γc)/2

2
σ̂ (2)

z

− i
γc

2

(
σ̂

(1)
+ σ̂

(2)
− + σ̂

(2)
+ σ̂

(1)
−

)
. (A1)

Here, Ĥeff commutes with the operator (σ̂ (1)
z + σ̂ (2)

z ). There-
fore, the dynamics in the space with one qubit excitation can
be decoupled to that of the other excitation manifolds.

Thus, by projecting the time-evolution operator
Û (t ) = exp(−iĤefft ) onto the two-dimensional subspace
{|g, e〉, |e, g〉} we obtain

Û (t ) = exp (−�t/4)

η

{[
η cosh

(ηt

4

)
− (
γ + 2i
ω) sinh

(ηt

4

)]
|e, g〉 〈e, g| − γc sinh

(ηt

4

)
(|g, e〉 〈e, g| + |e, g〉 〈g, e|)

+
[
η cosh

(ηt

4

)
+ (
γ + 2i
ω) sinh

(ηt

4

)]
|g, e〉 〈g, e|

}
, (A2)

where � = γ1 + γ2 + γC , η2 = γ 2
C + (
γ + 2i
ω)2, 
γ =

γ1 − γ2, and 
ω = ω1 − ω2.
By applying the time-evolution operator U (t ) to a system

initialized in the state |ψ (0)〉 = |e, g〉, we have

|ψ (t )〉 = exp (−�t/4)

η

{[
η cosh

(ηt

4

)

− (
γ + 2i
ω) sinh
(ηt

4

)]
|e, g〉

− γc sinh
(ηt

4

)
|g, e〉

}
. (A3)

From Eq. (A3) we can already see that, in order to
have a complete excitation swap at t → ∞, we would need
η = 
γ . This, however, can be achieved only for 
ω =
0 (which can be implemented without any problem) and
γc → 0. The second condition, however, is problematic be-
cause it makes the transfer divergently slow, and sooner
or later a quantum jump will take place. In this regard,
a tradeoff between the fidelity of the transfer with re-
spect to |g, e〉 and the amount of time required to do it is
necessary.
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γct
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γ1 > γ2

〈σ̂(1)
+ σ̂

(1)
− 〉

〈σ̂(2)
+ σ̂

(2)
− 〉

FIG. 4. As a function of time, the expectation value of σ̂
(1)
+ σ̂

(1)
−

(for qubit 1, blue curve, starting from 1) and σ̂
(2)
+ σ̂

(2)
− (for qubit 2,

red curve, starting from 0) for an ideal homodyne trajectory (β →
∞, see Ref. [3]). This time, the results of a single trajectory differ
profoundly from those predicted in Eq. (13) (the black dashed lines).
The system is initialized in the state |e, g〉. Parameters are as in Fig. 2.

The dynamics in the 0- and 2-excitation manifolds is
trivial, since no evolution (except from the renormalization)
occurs according to Ĥeff . Starting from a state |e, e〉, no evo-
lution happens until a quantum jump takes place. Whatever
jump takes place, the state evolves under the time-evolution
operator Û (t ). If the jump is σ̂

(2)
− , the evolution is the one

presented in the main text, since |�(tjump)〉 = |e, g〉.
Finally, we stress the importance that the initial state is

purely |e, g〉 to observe the state transfer (when γ1 > γ2).
Indeed, if the initial wave function is |�(0)〉 = A |e, g〉 +
B |g, g〉, the renormalization effect emerging from Û (t ) will
favor the state |g, g〉. In other words, the state transfer visi-
bility will be attenuated since the ground state becomes more
populated as time progresses.

0 2 4 6 8 10
γct

0

0.5

1

γ1 > γ2

〈σ̂(1)
+ σ̂

(1)
− 〉

〈σ̂(2)
+ σ̂

(2)
− 〉

FIG. 5. As a function of time, the average over 1000 counting
trajectories in Eq. (5) [i.e., approximately the result of the LME in
Eq. (2)] of the expectation value of σ̂

(1)
+ σ̂

(1)
− (qubit 1, blue curve,

starting from 1) and σ̂
(2)
+ σ̂

(2)
− (qubit 2, red curve, starting from 0).

The black dashed lines represent the analytical results of Eq. (13),
which not applicable in this case. Parameters are as in Fig. 2.

APPENDIX B: HOMODYNE TRAJECTORIES AND
AVERAGING OVER MANY TRAJECTORIES

To appreciate the importance of the counting protocol to
reach high visibility for the transfer, let us now consider a
single homodyne trajectory [3]. In this case, a reference laser
field of intensity β is mixed with the output field of each qubit.
Consequently, the jump operators become Ĵμ(β ) = Ĵμ + β,
while the effective Hamiltonian, neglecting again the renor-
malization terms, reads

Ĥeff (β ) = Ĥeff − iβ
∑

μ

γμ(Ĵμ − Ĵ†
μ). (B1)

In the ideal homodyne trajectory limit β → ∞, the detector
continuously reads a signal. The effect of the measurement on
the system, however, is minimal, since each quantum jump is
largely due to the presence of a local oscillator. Therefore, a
state transfer cannot take place, since a measurement always
occurs and the measurement back-action does not destroy
anymore the state |�+〉.

An example of the resulting diffusive trajectory is plotted
in Fig. 4. We clearly see that a high-intensity local oscillator
is sufficient to destroy the wanted transfer. Simulating many
homodyne trajectories yields always a similar result, and no
state transfer can be witnessed in a single trajectory.

Furthermore, we show that the state transfer is a single
trajectory effect, which is destroyed by averaging over several
trajectories. Equivalently, the LME approach (which, by its
own nature, assumes an average over infinitely many quantum
trajectories) does not show the state transfer. This is shown in
Fig. 5.

In other words, if the system evolution is not the one
described by Eq. (5), the state transfer can be seen only via
postselection, as detailed in Sec. II C.

APPENDIX C: WEAK QUBIT-QUBIT COUPLING

The shown effect of state transfer relies on the pres-
ence of a collective dissipation. However, experimental
implementation may have nonzero Hamiltonian coupling
between the two qubits. For weak enough qubit-qubit
coupling (interaction), the state transfer is still fairly visi-
ble and occurs with the same characteristics. To demonstrate
this fact, let us consider a coupling of intensity g, such
that

Ĥ = ω1

2
σ̂ (1)

z + ω2

2
σ̂ (2)

z + g(σ̂ (1)
+ σ̂

(2)
− + σ̂

(2)
+ σ̂

(1)
− ). (C1)

In Fig. 6 we show the results for increasing g. For very small
g [Fig. 6(a)] there is almost no difference with respect to the
uncoupled dynamics (black dashed curves). Interestingly, for
sizable values of g, shown in Fig. 6(b), the process is still
very similar to the one in the main text. Finally, in Fig. 6(c)
we show g = γc/2, i.e., coupling comparable to the collective
dissipation. In this case, we can clearly see a difference with
respect to the original plot. Nevertheless, the transfer is still
taking place, although with a diminished probability and with
a small initial oscillation.
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FIG. 6. As a function of time, the expectation value of σ̂
(1)
+ σ̂

(1)
− (qubit 1, blue curve, starting from 1) and σ̂

(2)
+ σ̂

(2)
− (qubit 2, red curve, starting

from 0) for an ideal counting quantum trajectory in the presence of collective dissipation and unbalanced local dissipation for the Hamiltonian in
Eq. (C1) for coupling: (a) g = 0.01γc, (b) g = 0.1γc, and (c) g = 0.5γc. This picture corresponds to Fig. 2(a), but in the presence of qubit-qubit
interactions. The black dashed lines represent the analytical results of Eq. (13) of the main text, and allows one to gauge the difference in the
presence of nonzero g. Parameters: ω1 = ω2 = 10γc, γ1/γc = 2.2, and γ2/γc = 0.2. The system is always initialized in the state |e, g〉.
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