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Fundamental limits for reciprocal and nonreciprocal non-Hermitian quantum sensing
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Non-Hermitian dynamics has been widely studied to enhance the precision of quantum sensing; and non-
reciprocity can be a powerful resource for non-Hermitian quantum sensing, as nonreciprocity allows to arbitrarily
exceed the fundamental bound on the measurement rate of any reciprocal sensors. Here we establish fundamental
limits on signal-to-noise ratio for reciprocal and nonreciprocal non-Hermitian quantum sensing. In particular,
for two-mode linear systems with two coherent drives, an approximately attainable uniform bound on the best
possible measurement rate per photon is derived for both reciprocal and nonreciprocal sensors. This bound is only
related to the coupling coefficients and, in principle, can be made arbitrarily large. Our results thus demonstrate
that a conventional reciprocal sensor with two drives can simulate any nonreciprocal sensor. This work also
demonstrates a clear signature on how the excitation signals affect the signal-to-noise ratio in non-Hermitian
quantum sensing.
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I. INTRODUCTION

An important task in quantum science and technology is to
investigate the precision limit of quantum sensing and devise
protocols to attain it. Non-Hermitian dynamics [1–24] has
attracted much interest in recent years for their possibility in
enhancing quantum sensing. Most of the key results refer to
the intriguing non-Hermitian degeneracy property known as
the exceptional point (EP), at which not only the eigenenergies
but also the eigenstates coalesce [25–42]. Near the EP, the
eigenenergies have a diverging susceptibility on small param-
eter changes, which is leveraged for sensing weak signals.
When utilizing EP sensors, fine tunings of the system parame-
ters are needed. Moreover, the real effect of EP sensors should
be assessed by taking full account of noise effects and/or
realistic measurements owing to the fact that the coalescence
of eigenstates may suppress the diverging susceptibility of
eigenenergies [8–10].

Recently there have been several theoretical results calcu-
lating the signal-to-noise ratio (SNR) and the quantum Fisher
information of EP sensors [7–10]. It has been demonstrated in
Ref. [8] that amplification or gain is a necessary ingredient for
enhancing signal powers but there is no fundamental utility
using an EP sensor. Furthermore, nonreciprocity [8,43–48],
where the magnitude of the coupling between two modes has
directionality, was demonstrated to be a powerful resource
for quantum sensing. This was concluded by first deriving
fundamental bounds on the measurement rate that constrains
any reciprocal two-mode systems including reciprocal EP sen-
sors, and then demonstrating that breaking reciprocity allows
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to arbitrarily exceed the bounds restricting reciprocal sensors
[8]. It is worth stressing that nonreciprocity has nothing to do
with EP.

Inspired by Ref. [8], we derive fundamental bounds on
the SNR for linear coupled-mode non-Hermitian systems with
two coherent drives, instead of the one drive used in previous
works. Focusing on two-mode systems, we show that with
two coherent drives, a uniform bound on the best possible
measurement rate per photon, which determines the best pos-
sible rate of SNR growing in time per photon, can be derived
for both reciprocal and nonreciprocal sensors. This bound
is approximately attainable and only related to the coupling
coefficients and can, in principle, be made arbitrarily large.
Our results show that conventional reciprocal sensors with
two coherent drives, which can be relatively easy to imple-
ment with current technology, can simulate any nonreciprocal
sensor. Moreover, the introduction of two drives provides a
clear signature on understanding how the SNR relates to the
excitation signals.

The paper is organized as follows. In Sec. II, we describe
the generic non-Hermitian setup in terms of the Heisenberg-
Langevin equations and depict the SNR and the measurement
rate per photon to be used explicitly. A general bound on
non-Hermitian sensing is derived in Sec. III, and then we
apply the result to two-mode systems in Sec. IV. We then
investigate how the drive frequencies affect the measurement
rate per photon in Sec. V. Section VI concludes the paper.

II. NON-HERMITIAN SENSING

A. A generic non-Hermitian setup

A generic linear non-Hermitian sensing setup is shown
in Fig. 1. This is a generalized version of non-Hermitian
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FIG. 1. A generic non-Hermitian linear mode setup. The circles
denote resonant linear modes that interact according to the effective
non-Hermitian Hamiltonian H̃ [ε], where the parameter ε is an in-
finitesimal disturbance to be measured. The linear modes are coupled
to dissipative baths via gain (red) and loss (blue) processes. Two
coherent drives are injected into mode 1 (â1) and mode 2 (â2) through
two waveguides, respectively. The reflected field from mode 1 is
measured by a homodyne detection.

sensing systems in previous works [1,2,8,35,40,41], which
takes into account the noise effects associated with the dis-
sipative dynamics and a realistic measurement process. We
sketch the main dynamics as follows, and details can be found
in Appendix A.

Let â′
i denote the canonical bosonic annihilation operator

of the ith mode, i = 1, 2, . . . , N . The N × N matrix H̃ [ε]
denotes the effective non-Hermitian Hamiltonian of N reso-
nant modes, where the parameter ε describes an infinitesimal
change in the effective Hamiltonian H̃ [ε]. The aim of em-
ploying non-Hermitian dynamics is to sense this infinitesimal
change ε.

Without loss of generality, we couple the modes i (i =
1, 2) to a transmission line or a waveguide, respectively,
through which a coherent drive with amplitude βi and fre-
quency wdr,i is injected. The coupling coefficient between
mode i and the corresponding waveguide is ki, for i = 1, 2.
We now assume that wdr,1 = wdr,2. First, work in a rotat-
ing frame at the drive frequency wdr,1, and let âi = â′

ie
iwdr,1t .

Then choose a frequency reference such that the real part
of H̃11[0] = 0. The full dynamics can be described by the
Heisenberg-Langevin equations [8,49]:

˙̂ai = i�âi − i
∑

j

(
H̃i j[ε] − i

k1

2
δi1δ j1 − i

k2

2
δi2δ j2

)
â j

− iδi1

√
k1β1 − iδi2

√
k2β2

− iδi1

√
k1B̂in

1 − iδi2

√
k2B̂in

2

− i
√

2

(
NY∑
j=1

Yi jĈ
in†
j +

NZ∑
j=1

Zi jD̂
in
j

)
. (1)

Here, βi can be taken real and positive without loss of general-
ity, and � depicts the detuning of the drive frequency from the
mode 1 resonance frequency wm. The terms on the third line
and fourth line in Eq. (1) describe the noise effects. The noises
B̂in

j ( j = 1, 2) denote the accompanied quantum noises of the
coherent drives coming from the input-output wave guides,
whereas Ĉ in

j (D̂in
j ) are quantum noises arising from dissipative

baths depicting the gain (loss) processes with specific mode-
bath coupling coefficients described by the matrix Y (Z).

To ensure linearity and the Markovian nature of the full dy-
namics, B̂in

j , Ĉ in
j and D̂in

j are assumed to be quantum Gaussian
white noises [49]. We thus have

〈Q(t )Q†(t ′)〉 = (
n̄th

Q + 1
)
δ(t − t ′),

〈Q†(t )Q(t ′)〉 = n̄th
Q δ(t − t ′),

and

〈Q(t )Q(t ′)〉 = 0,

where Q ∈ {B̂in
j , Ĉ in

j , D̂in
j }, and there are no correlations be-

tween different noise operators. The average 〈·〉 represents
the mean over the state of the bath degrees of freedom, and
n̄th

Q represents the average thermal occupancy of bath Q. In
the following, we focus on the vacuum noise, i.e., n̄th

Q = 0,
while the formalism can be generalized to classical cases with
n̄th

Q � 1.

B. SNR AND MEASUREMENT RATE

As in Ref. [8], we take the standard figure of merit SNR
or the equivalent measurement rate per photon, which deter-
mines the rate of SNR growing in time per photon to evaluate
the sensitivity of measuring ε. We start with specifying the ho-
modyne measurement [20,50] which has been demonstrated
being an optimal strategy if the driving field is sufficiently
large [8].

The reflected field in the waveguide coupling to mode 1 is
described by B̂out, and from the standard input-output theory
[49] it obeys

B̂out(t ) = β1 + B̂in
1 (t ) − i

√
k1â1(t ),

where B̂out(t ) is related to â1(t ) with a dissipative rate k1.
Since we have assumed that the parameter change ε is small,
the dependence of the mean value of the output field B̂out(t )
on ε is linear. Here, we focus on the steady state values of
the averages, by assuming that the measurement duration is
sufficiently long such that any transient effects can be ignored
or averaged out. We thus have

〈B̂out〉ε � 〈B̂out〉0 + λε, (2)

where λ is to be determined and possibly complex, and 〈·〉ε
denotes the average calculated using Eq. (1), and 〈·〉0 denotes
the average calculated using Eq. (1) with ε = 0.

The homodyne detection is employed to extract the in-
formation of ε from the output field B̂out(t ). The homodyne
current operator is

Î (t ) �
√

k1

2
(eiφB̂out(t ) + e−iφB̂out†(t )). (3)
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We choose the phase φ as φ = − arg λ, following Ref. [8].
This smart choice makes all the information of ε be contained
in the real part of eiφB̂out, and thus intuitively it is the best to
measure the corresponding quadrature described by Eq. (3).
In practice, we prefer to integrate the homodyne current Î (t )
to average away the effects of noise, denoting this as

m̂(τ ) �
∫ τ

0
dt Î (t ).

For the steady-state averages in the long-τ limit, from
Eqs. (2) and (3), the signal power of the small parameter
change ε is

S = [〈m̂(τ )〉ε − 〈m̂(τ )〉0]2 = 2k1ε
2|λ|2τ 2. (4)

Since we are interested in an infinitesimal parameter
change, as long as the non-Hermitian parameter change van-
ishes in the limit of ε → 0, the noise power of the integrated
homodyne current in the long-time τ limit can be defined as

N � 〈δm̂(τ )δm̂(τ )〉0,

where

δm̂ = m̂ − 〈m̂〉0.

Note that what we are really interested in is the SNR, given
a fixed number of photons used in the measurement. We thus
define the measurement rate per photon 	̄meas, which quanti-
fies the resolving power of weak continuous measurement in
terms of the SNR per photon as

S
N · 1

n̄tot
� ε2

k2
1

τ
	meas

n̄tot
� ε2

k2
1

τ 	̄meas, (5)

where n̄tot �
∑

i〈â†
i 〉〈âi〉 denotes the total average photon

number in all modes. Note that we have neglected the incoher-
ent photons injected by the bath. This is reasonable because,
on the one hand, the injected incoherent photons are indepen-
dent of the coherent drives; on the other hand, if the coherent
drives are sufficiently large, then the coherent drive-induced
photons dominate the total photon number. The appearance
of the factor k−2

1 in Eq. (5) is mainly for the the convenience
of comparison with results in Ref. [8] [see Eq. (16) therein].
From Eq. (5), it can be seen that in the long-time limit, the
SNR per photon grows linearly with time τ in terms of the
measurement rate per photon 	̄meas.

III. GENERAL BOUND OF NON-HERMITIAN SENSING

For stable non-Hermitian dynamics, we can derive a
general limit on the measurement rate per photon or the cor-
responding SNR per photon whose details can be found in
Appendix B.

Without loss of generality, we assume that the parameter-
ized non-Hermitian Hamiltonian has the form

H̃ [ε] = H̃ [0] + εV, (6)

where V is an N × N matrix which describes the coupling of
the parameter ε to the unperturbed non-Hermitian Hamilto-
nian H̃[0].

If the dynamics is stable, then it is convenient to solve
Eq. (1) in the frequency domain in terms of the zero-frequency

transfer matrix

χ̃�(ε) � ik1

(
�I − H̃ [ε] + i

K1

2
+ i

K2

2

)−1

,

where

K1i j = k1δi1δ j1 and K2i j = k2δi2δ j2.

Define the unperturbed transfer matrix

χ� � χ̃�(0).

As demonstrated in Refs. [8,10], to obtain a full analysis of the
sensitivity, not only the divergent eigenenergy susceptibility
of H̃ [ε] on ε should be considered, but also the left and
right eigenvectors of H̃ [ε] have to be taken into account, as
the coalescence of the different eigenvectors may suppress or
even cancel out the singular behavior of the divergence of the
eigenenergy susceptibility.

From Eqs. (1) and (2), the linear response coefficient λ can
be derived as

λ = i
β1

k1
(χ�V χ�)11 + i

√
k2

k1

β2

k1
(χ�V χ�)12. (7)

Combining Eqs. (4) and (7), the signal power becomes

S = 2k1ε
2τ 2

∣∣∣∣∣β1

k1
(χ�V χ�)11 +

√
k2

k1

β2

k1
(χ�V χ�)12

∣∣∣∣∣
2

. (8)

The noise power can be calculated from the quantum Gaus-
sian white noise properties as

N =k1τ

2

(
1 + 4

k1
(χ�YY †χ�†)11

)
. (9)

The first term here is the unavoidable shot noise, while the
second term depends on how the gain processes are realized
with coupling to dissipative baths.

We can optimize the mode-bath coupling matrices to min-
imize the noise power. The minimized noise power can be
found as

Nmin = k1τ

2
(1 + 2��(�)), (10)

where

�(�) � −(
χ�

11 + χ�∗
11

) + ∣∣χ�
11

∣∣2 + k2

k1

∣∣χ�
12

∣∣2
,

and �(·) is the Heaviside step function. Note that our aim is to
investigate the best possible measurement rate per photon in
non-Hermitian sensing. In Ref. [8], it has been proved that for
any fixed H̃ [0], one can always construct mode-bath couplings
(Y and Z) to attain the minimum noise power. A possible
realization was also proposed, e.g., a two-mode nonreciprocal
sensor can be implemented by coupling to an effective chiral
waveguide which can be realized by using dynamic modula-
tion and engineered dissipation [47,48,51–53].
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From Eq. (1), the total average photon number in all modes
induced by the coherent drives is

n̄tot = 1

k1
β2

1 (χ�†χ�)11 + k2

k2
1

β2
2 (χ�†χ�)22

+
√

k1k2

k2
1

β1β2((χ�†χ�)12 + (χ�†χ�)21). (11)

By combining Eq. (5) with Eqs. (8)–(11), we obtain a general
bound for the measurement rate per photon:

	̄meas � 	̄opt = k2
1

ε2

S
Nmin

1

τ

1

n̄tot
. (12)

With this fundamental bound 	̄opt one can compare the best
possible performance of sensors with different non-Hermitian
Hamiltonians.

IV. TWO-MODE NON-HERMITIAN SENSORS

Now we apply the general bound Eq. (12) on several typ-
ical kinds of two-mode systems which have been extensively
studied in the context of EP sensors [40–42]. However, we
stress that our results have nothing to do with EP.

Suppose that the coupling matrix in Eq. (6) is V = 1
2σx,

with σx being the usual Pauli matrix (0 1
1 0). The best possible

measurement rate per photon of two-mode sensors 	̄2-opt can
be straightforwardly calculated from Eqs. (8)–(12) as

∣∣χ�
11

∣∣2∣∣χ�
12 + χ�

21

∣∣2 + 2
√

ηpRe
{
χ�

11

(
χ�

12 + χ�
21

)(
χ�∗2

12 + χ�∗
11 χ�∗

22

)} + ηp2
∣∣χ�2

12 + χ�
11χ

�
22

∣∣2∣∣χ�
11

∣∣2 + ∣∣χ�
21

∣∣2 + 2
√

ηpRe
{
χ�

12χ
�∗
11 + χ�∗

21 χ�
22

} + ηp2
(∣∣χ�

12

∣∣2 + ∣∣χ�
22

∣∣2) k1

1 + 2��(�)
, (13)

where p = β2

β1 is the ratio of the amplitudes of the coherent

drives, and η = k2
k1

.
If there is only one drive involved as the case in Ref. [8],

then p = 0 and η = 0. From Eq. (13) we can obtain the main
result in Ref. [8] [see Eq. (27) therein]. However, if there are
two coherent drives, then the amplitude ratio p can be made
arbitrarily large and is independent of χ�

i j . Thus, from Eq. (13)
we have

	̄2-opt →
∣∣χ�2

12 + χ�
11χ

�
22

∣∣2∣∣χ�
12

∣∣2 + ∣∣χ�
22

∣∣2

k1

1 + 2��(�)
, as p → ∞.

(14)
Note that if the non-Hermitian sensor is reciprocal, then the

magnitudes of the coupling between the two modes are the
same, i.e., |H̃12| = |H̃21|, and this implies that |χ�

12| = |χ�
21|.

For nonreciprocal sensors, |H̃12| �= |H̃21| and |χ�
12| �= |χ�

21|,
accordingly. From Eq. (14), it can be seen that there is no
term χ�

21 involved. Thus, as long as the amplitude ratio p is
sufficiently large, a unified form of the bound on the best pos-
sible measurement rate per photon can be derived no matter
whether the non-Hermitian sensor is reciprocal or nonrecipro-
cal.

The bound in Eq. (14) can be further simplified under the
condition |χ�

12| � max{|χ�
11|, |χ�

22|, 1}. This can be seen as

∣∣χ�2
12 + χ�

11χ
�
22

∣∣2∣∣χ�
12

∣∣2 + ∣∣χ�
22

∣∣2

k1

1 + 2��(�)

=
∣∣χ�2

12 + χ�
11χ

�
22

∣∣2∣∣χ�
12

∣∣2+∣∣χ�
22

∣∣2

k1

1 + 2
( − 2Re

{
χ�

11

}+∣∣χ�
11

∣∣2+η
∣∣χ�

12

∣∣2)
→ 1

2

1

η
k1, as

∣∣χ�
12

∣∣ → ∞.

In practice, to approximately attain the uniform bound

	̄2-opt = 1

2

k1

k2
k1 (15)

for non-Hermitian sensing, one can first choose physical pa-
rameters such that

∣∣χ�
12

∣∣ � max
{∣∣χ�

11

∣∣, ∣∣χ�
22

∣∣, 1
}

(16)

holds. Then choose p such that

p � ∣∣χ�
12

∣∣3(∣∣χ�
12

∣∣ + ∣∣χ�
21

∣∣) (17)

to ensure the limit p → ∞ in Eq. (14) being valid.
It can be seen that 	̄2-opt in Eq. (15) depending on the ratio

of the coupling coefficients k1 and k2, can, in principle, be
made arbitrarily large. This is quite different from the results
in Ref. [8], where the measurement rate of reciprocal systems
with only one coherent drive is fundamentally bounded. In
this sense, we demonstrate that nonreciprocal sensors, which
are viewed as powerful resources for quantum sensing, can
be simulated by conventional reciprocal sensors with two
coherent drives. In practice, reciprocal sensors may be much
easier to implement than nonreciprocal sensors.

Now let us first account for the condition Eq. (17). Note
that the optimal measurement rate in Ref. [8] is given under
the situation where the measurement noise is at the shot noise
level. However, it can be calculated that in attaining 	̄2-opt,
the measurement noise is no longer shot noise, but contains
noise emanating from the coupling between the coherent drive
and mode 2. Thus, to ensure that 	̄2-opt exceeds the optimal
bound in Ref. [8], on the one hand, the ratio k1/k2 should be
large. On the other hand, the coupling coefficient k2 should
be small while p = β2

β1
sufficiently large, so that little noise

is introduced through mode 2, while the excitation signals
through mode 2 dominate in the total signal power.

To see how the condition Eq. (16) relates to physical pa-
rameters, such as the detuning, dissipative rates and coupling
coefficients explicitly, we consider typical non-Hermitian
mode systems which have been studied extensively in the
literature.
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FIG. 2. The measurement rate per photon 	̄2-opt/k1 versus the
detuning �/k1. Blue dashed: one-drive reciprocal system with
gain, described by Eq. (18) with k2 = 0, γ1 = −0.99k1, γ2 =
−0.011k1, and J = 0.16k1. Red solid: two-drive reciprocal system
with gain, described by Eq. (18) with k2 = 0.01k1, γ1 = −0.99k1,
γ2 = −0.011k1, J = 0.16k1, and β2/β1 = 30.

A. Reciprocal case

First, we consider a reciprocal system in the form

H̃recip[0] =
(−i γ1

2 J
J −i γ2

2

)
, (18)

where J is the Hermitian coupling between the modes, while
γi (i = 1, 2) describe the possible gain/loss processes (de-
pending on the sign) acting locally on each mode. It can be
verified that if

� ≈ 0, ki + γi ≈ 0, (19)

and

k1 � |J| � max{|�|, |ki + γi|} (for i = 1, 2), (20)

the condition Eq. (16) holds. Details can be found in
Appendix C. This corresponds to a setup where the coher-
ent drives are resonant with the linear modes, the Hermitian
coupling J between the modes is relatively weak, and the two
modes are locally subject to gain, where γi < 0 and γi ≈ −ki.

A concrete example is illustrated in Fig. 2 for 	̄2-opt/k1,
which, around the resonant frequency, exceeds the fundamen-
tal limit for reciprocal systems with only a single drive in
Ref. [8]. However, for a fixed non-Hermitian system with
γ1 = 0, γ2 = 0.2k1, and J = 0.2k1, no matter how k2 and
β2/β1 are adjusted, the performance of the measurement rate
with only one drive cannot be improved by two excitation
drives. The main reason is that amplification or gain from a
local bath is a necessary ingredient for amplifying the signal
power in the reciprocal case [8]. If there is no gain, only with
additional coherent drives, no enhancement can be achieved.
The details can be found in Appendix C.

FIG. 3. The measurement rate per photon 	̄2-opt/k1. Blue dashed:
one-drive nonreciprocal system described by Eq. (21) with k2 = 0,
γ1 = k1, γ2 = 0.5k1, ν2 = 0, and J = 1.5k1. Red solid: two-drive
nonreciprocal system described by Eq. (21) with k2 = 0.001k1, γ1 =
k1, γ2 = 0.5k1, ν2 = 0, J = 1.5k1, and β2/β1 = 5.

B. Fully nonreciprocal case

Now consider a fully nonreciprocal Hamiltonian

H̃non-reci[0] =
(−i γ1

2 J
0 ν2 − i γ2

2

)
, (21)

where ν2 is the frequency detuning of the two modes, and
J quantifies the nonreciprocal mode-mode coupling. It can
be verified that, as long as the nonreciprocal coupling |J| is
sufficiently large, then condition Eq. (16) holds. Thus, the
amplification or gain from the local bath is not a necessary
ingredient for nonreciprocal sensors.

As an illustration, we specialize the system with param-
eters γ1 = k1, γ2 = 0.5k1, ν2 = 0, and J = 1.5k1. Note that
there is no coupling to gain baths. Let k2/k1 = 0.001 and
β2/β1 = 5. The measurement rates per photon are shown in
Fig. 3. It can be seen that in contrast to the reciprocal case,
with two coherent drives the performance of the measurement
rate per photon can be greatly improved for the nonreciprocal
sensor even though there is no amplification or gain from the
bath. The improvement is due to the fact that signals from the
mode 2 dominate in the total signal power.

Combined with the reciprocal case, it is worth pointing out
that although the best possible measurement rate per photon
is limited by the same bound as in Eq. (15), the parameters
(e.g., J) attaining this bound are quite different in reciprocal
and nonreciprocal sensors. In the reciprocal case, the physical
parameters should satisfy conditions (19) and (20), while in
the nonreciprocal case one just ensures |J| to be sufficiently
large, which allows more degrees of freedom for other param-
eters. Moreover, from Figs. 2 and 3, one can see that 	̄2-opt/k1

decreases more quickly as the detuning � deviates from 0 in
the reciprocal case than that in the nonreciprocal case. Thus,
we claim that nonreciprocity provides advantages for quantum
sensing.

There have been several ways of realizing nonrecipro-
cal interactions, ranging from photonic setups [54–56] and
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optomechanical systems [45,46] to classical microwave
[57,58] and superconducting circuits [59,60]. Although these
experiments were designed to build circulators and isolators,
such systems could be exploited for enhanced sensing [8].

V. MEASUREMENT RATE WITH DIFFERENT
DRIVE FREQUENCIES

In the above analysis, we have assumed that the frequencies
of the two coherent drives satisfy wdr,1 = wdr,2. Now we
consider how the coherent drive frequencies affect the best
possible performance of the measurement rate per photon. To
be specific, we focus on the following two typical cases where

|wdr,1 − wdr,2| � |�i|

for i = 1 and 2, respectively. Here, �i = wdr,i − wm repre-
sents the detuning of the drive frequency wdr,i from the mode
1 resonance frequency wm.

First, suppose that |wdr,1 − wdr,2| � |�1|. In this case, it
is convenient to first work in a rotating frame at the drive
frequency wdr,1, and then choose a frequency reference such
that the real part of H̃11[0] = 0. The Heisenberg-Langevin
equations become

˙̂ai = i�1âi−i
∑

j

(
H̃i j[ε]−i

k1

2
δi1δ j1−i

k2

2
δi2δ j2

)
â j

− iδi1

√
k1β1 − iδi2

√
k2β2ei(wdr,1−wdr,2 )t

− iδi1

√
k1B̂in

1 − iδi2

√
k2B̂in

2

− i
√

2

(
NY∑
j=1

Yi jĈ
in†
j +

NZ∑
j=1

Zi jD̂
in
j

)
. (22)

It can be seen that under the following condition:

|wdr,1 − wdr,2| � max{|�1|, ‖H̃‖, ki,
√

kiβi} (for i = 1, 2),

the rapid oscillation signal β2 exp{i(wdr,1 − wdr,2)t} from
drive 2 can be averaged out in the long-time average limit due
to the rotating-wave approximation (RWA). This leads to (see
Appendix D)

	̄meas � 4|(χ�1V χ�1 )11|2
(χ�1†χ�1 )11

k1,

which does not exceed (and in general is smaller than) the
fundamental bound in Ref. [8]. This is because in this situation
(although the rapid oscillation signal from drive 2 has been
averaged out owing to the RWA) the injected photons through
mode 2 still contribute to the total number of photons, and the
unavoidable accompanied quantum noise remains in the noise
power.

Let us turn to the second case where |wdr,1 − wdr,2| �
|�2|. Now it is convenient to work in a rotating frame at
the drive frequency wdr,2, and choose a frequency reference
such that the real part of H̃11[0] = 0, then the corresponding

Heisenberg-Langevin equations become

˙̂ai = i�2âi−i
∑

j

(
H̃i j[ε]−i

k1

2
δi1δ j1−i

k2

2
δi2δ j2

)
â j

− iδi1

√
k1β1ei(wdr,2−wdr,1 )t − iδi2

√
k2β2

− iδi1

√
k1B̂in

1 − iδi2

√
k2B̂in

2

− i
√

2

(
NY∑
j=1

Yi jĈ
in†
j +

NZ∑
j=1

Zi jD̂
in
j

)
. (23)

Similarly, under the RWA condition

|wdr,1 − wdr,2| � max{|�2|, ‖H̃‖, ki,
√

kiβi} (for i = 1, 2),

the rapid oscillation excitation β1 exp{i(wdr,2 − wdr,1)t} from
drive 1 can be averaged out. However, it can be found in
Appendix D that if the conditions Eqs. (16) and (17) hold with
� being replaced by �2, the same bound as Eq. (15) can be
established for two-mode non-Hermitian systems as

	̄2-opt = 1

2

k1

k2
k1.

This is the situation where the excitation from mode 2 domi-
nates in the total signal power. More importantly, the resulting
signal power gain prevails in the competition with the noise
power enhancement induced by the unavoidable associated
noise. To sum up, when utilizing two coherent drives whose
frequencies are quite different, it is better to adjust the fre-
quency of drive 2 to be near the resonance frequency of
mode 1.

VI. CONCLUSION AND DISCUSSION

We have established a uniform bound for the best possible
SNR or measurement rate per photon for reciprocal and non-
reciprocal non-Hermitian quantum sensing with two coherent
drives. The bound is only related to the coupling coefficients
between the modes and coherent drives, and it constrains
sensors no matter whether they are at EP or not. The bound
can be made arbitrarily large in principle and is approximately
attainable. Our results highlight how the coherent excitation
drives affect the SNR and show that with two drives conven-
tional reciprocal sensors, which are easy to implement with
current technology, can simulate nonreciprocal sensors and
enhance the performance of sensing.
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APPENDICES

In the Appendices we demonstrate the detailed description
of the non-Hermitian setup and derivations of the bound on the
best possible measurement rate per photon. The Appendices
are organized as follows. In Appendix A we describe in detail
the terms in the Heisenberg-Langevin equations which depict
the dynamics of the full non-Hermitian setup. In Appendix B
we present the derivations of the signal power, noise power
and the measurement rate per photon. We then consider the
two-mode non-Hermitian systems in Appendix C. In Ap-
pendix D we consider the case where the frequencies of the
two coherent drives are different and discuss how to obtain a
better SNR by working in an appropriate rotating frame.

APPENDIX A: GENERAL NON-HERMITIAN SETUP

To make the paper self-contained, we describe the details
of the non-Hermitian linear coupled modes in this section.

In many works, the dynamics of N resonant modes is de-
scribed by the linear equations:

˙̃αi(t ) = −iωmα̃i(t ) − i
∑

j

H̃i j[ε]α̃ j (t ),

where α̃ j (t ) is the amplitude of mode j, ωm is the mode 1 reso-
nance frequency, and the N × N matrix H̃ denotes an effective
non-Hermitian Hamiltonian depicting both coherent and dis-
sipative dynamics. The parameter ε in the non-Hermitian
Hamiltonian describes an infinitesimal perturbation, and our
aim is to sense this infinitesimal change.

To measure the perturbation, a general idea is to couple one
of the modes, say mode 1, to an input-output waveguide. On
the one hand, we can use this port to excite the system with
a coherent drive. On the other hand, the reflected signal can
be measured to estimate ε. Unlike previous studies with one
drive, we also couple mode 2 to another waveguide through
which only the excitation signal is injected but without mea-
surement. Coupling to the waveguide results in extra damping,
and accordingly

H̃i j → H̃i j − i(k1/2)δi1δ j1 − i(k2/2)δi2δ j2,

where ki (i = 1, 2) is the coupling rate between mode i and
the corresponding waveguide. Now the system with coherent
drives is described by the coupling-mode equations

˙̃αi(t ) = − iωmα̃i(t )

− i
∑

j

(
H̃i j[ε]−i

k1

2
δi1δ j1−i

k2

2
δi2δ j2

)
α̃ j (t )

− iδi1

√
k1β1e−iωdr,1t −iδi2

√
k2β2e−iωdr,2t , (A1)

where βi (ωdr,i) is the amplitude (frequency) of the ith coher-
ent drive for i = 1, 2.

Since the dissipative dynamics is encoded in the anti-
Hermitian part of H̃ which can be described as

1

2i
(H̃ − H̃†) ≡ YY † − ZZ†,

where the matrix YY † describes gain processes and ZZ† repre-
sents loss processes. Let Y be an N × NY matrix, and Z be an
N × NZ matrix, i.e., the non-Hermitian dynamics is generated
by coupling to NY + NZ distinct baths with the corresponding
coupling constants described by Y and Z .

Equation (A1) can be viewed as a noise-averaged dy-
namics. Now we describe the whole dynamics including the
consistent noise processes as the Heisenberg-Langevin equa-
tions:

˙̂a′
i = −iωmâ′

i − i
∑

j

(
H̃i j[ε] − i

k1

2
δi1δ j1 − i

k2

2
δi2δ j2

)
â′

j

− iδi1

√
k1β1e−iωdr,1t − iδi2

√
k2β2e−iωdr,2t

− iδi1

√
k1B̂in

1 − iδi2

√
k2B̂in

2

− i
√

2

(
NY∑
j=1

Yi jĈ
in†
j +

NZ∑
j=1

Zi jD̂
in
j

)
. (A2)

Here â′
i denotes the canonical bosonic annihilation operator

of the ith mode, i = 1, 2, . . . , N . Note that the terms in the
first two lines are in the same form as those in Eq. (A1),
while the terms in the last two lines describe zero-mean noise
effects. The quantum noises B̂in

j ( j = 1, 2) come from the
input-output waveguide, whereas Ĉ in

j (D̂in
j ) are quantum noises

arising from dissipative baths used to realize the gain (loss)
parts of the dynamics with specific mode-bath coupling co-
efficients described by the matrix Y (Z). The quantum noises
B̂in

j , Ĉ in
j and D̂in

j are assumed to be quantum Gaussian white
noises, which satisfy

〈Q(t )Q†(t ′)〉 = (
n̄th

Q + 1
)
δ(t − t ′),

〈Q†(t )Q(t ′)〉 = n̄th
Q δ(t − t ′),

and

〈Q(t )Q(t ′)〉 = 0,

where Q ∈ {B̂in
j , Ĉ in

j , D̂in
j }, and the correlations between dif-

ferent noise operators vanish.
Assume wdr,1=wdr,2. First, work in a rotating frame at the

drive frequency wdr,1, and let âi = â′
ie

iwdr,1t . Then choose a
frequency reference such that the real part of H̃11[0] = 0. The
Heisenberg-Langevin Eqs. (A2) become

˙̂ai = i�âi−i
∑

j

(
H̃i j[ε]−i

k1

2
δi1δ j1−i

k2

2
δi2δ j2

)
â j

− iδi1

√
k1β1 − iδi2

√
k2β2

− iδi1

√
k1B̂in

1 − iδi2

√
k2B̂in

2

− i
√

2

(
NY∑
j=1

Yi jĈ
in†
j +

NZ∑
j=1

Zi jD̂
in
j

)
, (A3)
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where � represents the detuning of the drive frequency from the mode 1 resonance frequency. Here we still adopt the same
symbols for the annihilation operators and noises.

APPENDIX B: DERIVATIONS OF THE SNR AND MEASUREMENT RATE

In this section, we present the detailed calculation in deriving the SNR and measurement rate per photon.
Without loss of generality we assume that the parameterized non-Hermitian Hamiltonian is in the form

H̃ [ε] = H̃ [0] + εV,

where V is an N × N matrix which describes the coupling of the parameter ε to the unperturbed non-Hermitian Hamiltonian
H̃ [0]. If the non-Hermitian dynamics Eq. (A3) is stable, then it is convenient to transfer into the frequency domain to solve
Eq. (A3) in terms of the zero-frequency transfer matrix

χ̃�(ε) � ik1

(
�I − H̃ [ε] + i

K1

2
+ i

K2

2

)−1

, (B1)

where

K1i j = k1δi1δ j1 and K2i j = k2δi2δ j2.

Moreover, define the unperturbed transfer matrix as

χ� � χ̃�(0).

To be specific, from Eq. (1) or Eq. (A3), if the time t is sufficiently large, then the annihilation operator of the mode l can be
described as

âl =
√

k1

ik1
β1χ̃

�
l1 +

√
k2

ik1
β2χ̃

�
l2 +

√
k1

ik1
B̂in

1 χ̃�
l1 +

√
k2

ik1
B̂in

2 χ̃�
l2 +

√
2

ik1

(
NY∑
j=1

(χ̃�Y )l jC
in†
j +

NZ∑
j=1

(χ̃�Z )l jD
in
j

)
.

Thus, the reflected field

B̂out = β1 + B̂in
1 (t ) − i

√
k1â1(t )

= (
1 − χ̃�

11

)
β1 −

√
k2

k1
χ̃�

12β2 + (
1 − χ̃�

11

)
B̂in

1 −
√

k2

k1
χ̃�

12B̂in
2 −

√
2

k1

(
NY∑
j=1

(χ̃�Y )1 jC
in†
j +

NZ∑
j=1

(χ̃�Z )1 jD
in
j

)
.

Since we are considering an infinitesimal perturbation ε, the change of the mean of the reflected field can be represented as

〈B̂out〉ε − 〈B̂out〉0 = −1√
k1

[
χ̃�

11(ε) − χ̃�
11(0)

]√
k1β1 + −1√

k1

[
χ̃�

12(ε) − χ̃�
12(0)

]√
k2β2 = λε,

where

λ = −β1
d

dε
χ̃�

11(ε)

∣∣∣∣
ε=0

−
√

k2

k1
β2

d

dε
χ̃�

12(ε)

∣∣∣∣
ε=0

= i
β1

k1
(χ�V χ�)11 + i

√
k2

k1

β2

k1
(χ�V χ�)12.

According to the definition of the signal power in Eq. (4),

S=2k1ε
2τ 2

∣∣∣∣∣β1

k1
(χ�V χ�)11+

√
k2

k1

β2

k1
(χ�V χ�)12

∣∣∣∣∣
2

. (B2)

The total photon number in all modes is described by

n̄tot =
∑

i

〈â†
i 〉〈âi〉 = 1

k1
β2

1 (χ�†χ�)11 + k2

k2
1

β2
2 (χ�†χ�)22 +

√
k1k2

k2
1

β1β2[(χ�†χ�)12 + (χ�†χ�)21]. (B3)

The noise power N is defined as

N � 〈δm̂(τ )δm̂(τ )〉0,

where

δm̂(τ ) � m̂(τ ) − 〈m̂(τ )〉0,

and

m̂(τ ) �
∫ τ

0
dt Î (t ).
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Combining Eqs. (1)–(3), we have

δm̂ =
√

k1

2

∫ τ

0
dt

{(
1 − χ�

11

)
B̂in + (

1 − χ�∗
11

)
B̂in†

1 −
√

k2

k1
χ�

12B̂in
2 −

√
k2

k1
χ�∗

12 B̂in†
2 −

√
2

k1

NY∑
j=1

[
(χ�Y )1 jC

in†
j + (χ�Y )∗1 jC

in
j

]

−
√

2

k1

NZ∑
j=1

[
(χ�Z )1 jD

in
j + (χ�Z )∗1 jD

in†
j

]}
,

where the phase φ in Eq. (3) has been included in the noise operators. Employing the properties of quantum Gaussian white
noise, the noise power is

N =k1τ

2

{∣∣1 − χ�
11

∣∣2 + k2

k1

∣∣χ�
12

∣∣2 + 2

k1
[(χ�YY †χ�†)11 + (χ�ZZ†χ�†)11]

}
. (B4)

From Eq. (B1), we have

χ�−1 + (χ�†)−1 = − 2

k1

(
YY † − ZZ† − 1

2
K1 − 1

2
K2

)
.

Thus,

χ�
11+χ�∗

11 =− 2

k1

[
(χ�YY †χ�†)11−(χ�ZZ†χ�†)11 − 1

2
k1

∣∣χ�
11

∣∣2 − 1

2
k2

∣∣χ�
12

∣∣2
]
. (B5)

This is combined with Eq. (B4), and we have the noise power as

N =k1τ

2

[
1 + 4

k1
(χ�YY †χ�†)11

]
. (B6)

From Eqs. (B5) and (B6) and the fact that ZZ† is positive semidefinite, the minimized noise power can be found as

Nmin = k1τ

2
[1 + 2� · �(�)], (B7)

where

�(�) � −(
χ�

11 + χ�∗
11

) + |χ�
11

∣∣2 + k2

k1

∣∣χ�
12

∣∣2
,

and �() is the Heaviside step function. It is worth stressing that for any fixed H̃ [0], one can always construct mode-bath couplings
(Y and Z) to attain the minimum possible noise power.

Now it is straightforward to combine Eqs. (5), (B2), (B3), (B6), and (B7) to derive a general bound for the measurement rate
per photon as

	̄meas =
k1 · 4

∣∣β1(χ�V χ�)11 +
√

k2
k1

β2(χ�V χ�)12

∣∣2

{
β2

1 (χ�†χ�)11 + k2
k1

β2
2 (χ�†χ�)22 + 2

√
k2
k1

β1β2Re[(χ�†χ�)12]
}[

1 + 4
k1

(χ�YY †χ�†)11
]

�
k1 · 4

∣∣β1(χ�V χ�)11 +
√

k2
k1

β2(χ�V χ�)12

∣∣2

{
β2

1 (χ�†χ�)11 + k2
k1

β2
2 (χ�†χ�)22 + 2

√
k2
k1

β1β2Re[(χ�†χ�)12]
}
[1 + 2� · �(�)]

� 	̄opt, (B8)

where Re{·} denotes the real part of the variable. With this fundamental bound we can compare the best possible performance of
senors with different non-Hermitian Hamiltonians.

APPENDIX C: TWO-MODE NON-HERMITIAN SENSORS

1. Physical parameter conditions

Now consider the physical parameter conditions satisfying Eq. (16) for two-mode reciprocal and nonreciprocal sensors,
respectively.

First, consider a reciprocal system in the form of

H̃recip[0] =
(−i γ1

2 J
J −i γ2

2

)
,
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where J is the Hermitian coupling between the modes, while γi (i = 1, 2) describe the possible gain/loss processes (depending
on the sign) acting locally on each mode. The corresponding matrix χ�

recip is

ik1

G

(
� + i

2 (k2 + γ2) J
J � + i

2 (k1 + γ1)

)
,

where

G = −J2 +
[
� + i

2
(k1 + γ1)

][
� + i

2
(k2 + γ2)

]
.

It can be verified that if

� ≈ 0, ki + γi ≈ 0,

and

k1 � |J| � max{|�|, |ki + γi|} (for i = 1, 2),

the condition Eq. (16) holds.
Similarly, consider a fully nonreciprocal system in the form

H̃recip[0] =
(−i γ1

2 J
0 −i γ2

2

)
.

The corresponding matrix χ�
non-recip is

ik1

( 1
�+ i

2 (k1+γ1 )
J

[�+ i
2 (k1+γ1 )][�+ i

2 (k2+γ2 )]

0 1
�+ i

2 (k2+γ2 )

)
.

It can be seen that the condition Eq. (16) can be ensured as long as |J| is sufficiently large.

2. Case with no gain in reciprocal sensors

In the paper, we have accounted for the uniform bound Eq. (15) and the two conditions explicitly. Here we consider the case
where there is no gain in the reciprocal process. Consider a reciprocal system in the form

H̃recip[0] =
(−i γ1

2 J
J −i γ2

2

)
.

If one γi satisfies γi < 0, then there is a local gain from the bath.
Suppose that the reciprocal system has parameters γ1 = 0, γ2 = 0.2k1, and J = 0.2k1. It can be verified that with only a single

drive, the measurement rate per photon 	̄opt,single/k1 is approximately equal to 5.67003. We wonder that with an additional drive
whether the performance of the measurement rate per photon can be improved. Since the measurement rate per photon 	̄opt/k1

in this case is a function of η = k2/k1, p = β2/β1 and the detuning �, the question can be converted into whether the solution
set of the following inequalities is empty:

	̄opt (�, η, p)

k1
� μ,

p � 0,

η � 0,

where μ is set to be 5.67003. It can be verified that no matter how η, p and � are adjusted, one cannot improve the performance
of the measurement rate corresponding to the case where there is only a single drive on mode 1. The main reason is that for
reciprocal systems, amplification or gain from local bath is a necessary ingredient for amplifying the signal power. If there is no
gain, only with additional coherent drives, no enhancement can be achieved.

APPENDIX D: DIFFERENT DRIVE FREQUENCIES

First, consider the case where |wdr,1 − wdr,2| � |�1|. It is convenient to work in a rotating frame at the drive frequency wdr,1.
From Eq. (22), if we consider the long-time average, under the following RWA condition

|wdr,1 − wdr,2| � max{|�1|, ‖H̃‖, ki,
√

kiβi} (for i = 1, 2),
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the excitation containing the rapid oscillation
√

k2β2 exp{i(ωdr,1 − ωdr,2)t} can be averaged out. Thus, for sufficiently large t , the
annihilation operator of the mode l is described as

âl (t ) =
√

k1

ik1
β1χ̃

�1
l1 +

√
k1

ik1
B̂in

1 χ̃
�1
l1 +

√
k2

ik1
B̂in

2 χ̃
�1
l2 +

√
2

ik1

(
NY∑
j=1

(χ̃�1Y )l jC
in†
j +

NZ∑
j=1

(χ̃�1 Z )l jD
in
j

)
,

where the transfer matrix χ̃� is defined in Eq. (B1).
Based on this and following a similar analysis to that in Appendix B, the parameter λ is described as

λ = i
β1

k1
(χ�1V χ�1 )11.

Thus, the signal power is

S = 2ε2τ 2 β2
1

k1
|(χ�1V χ�1 )11|2. (D1)

It only contains the signals from mode 1, as the signals from mode 2 have been averaged out in the long-time limit.
The total number of photons is

n̄tot = β2
1

k1
(χ�1†χ�1 )11 + k2β

2
2

k2
1

(χ�′
1†χ�′

1 )22, (D2)

where �′
1 = �1 − ωdr,1 + ωdr,2.

In contrast to the signal power, the photons injected through mode 2 still contribute to the total number of photons. Thus, the
signal power per photon is reduced compared to the case where there is only one drive coupling with mode 1.

Moreover, we have the noise power as

N =k1τ

2

[
1 + 4

k1
(χ�1YY †χ�1†)11

]
. (D3)

From Eqs. (D1), (D2), and (D3), the measurement rate per photon is described as

	̄meas = k1
4|(χ�1V χ�1 )11|2(

(χ�1†χ�1 )11 + k2
k1

β2
2

β2
1
(χ�′

1†χ�′
1 )22

)(
1 + 4

k1
(χ�1YY †χ�1†)11

) � k1
4|(χ�1V χ�1 )11|2

(χ�1†χ�1 )11
.

In general, in this situation the measurement rate per photon is not greater than the bound where there is only one drive coupling
with mode 1.

Second, consider the case where |wdr,1 − wdr,2| � |�2|. Similarly, under the RWA condition

|wdr,1 − wdr,2| � max{|�2|, ‖H̃‖, ki,
√

kiβi} (for i = 1, 2),

the signals containing the rapid oscillation
√

k1β1 exp{i(ωdr,2 − ωdr,1)t} from mode 1 can be averaged out in the long-time limit.
From Eq. (23), if t is sufficiently large, then the annihilation operator of the mode l is described as

âl (t ) =
√

k2

ik1
β2χ̃

�2
l2 +

√
k1

ik1
B̂in

1 χ̃
�2
l1 +

√
k2

ik1
B̂in

2 χ̃
�2
l2 +

√
2

ik1

[
NY∑
j=1

(χ̃�2Y )l jC
in†
j +

NZ∑
j=1

(χ̃�2 Z )l jD
in
j

]
.

Following a similar analysis to that in Appendix B, we have

S = 2ε2τ 2 k2

k2
1

β2
2 |(χ�2V χ�2 )12|2, (D4)

which only contains the signals from mode 2.
The total number of photons is

n̄tot = β2
1

k1
(χ�′

2†χ�′
2 )11 + k2β

2
2

k2
1

(χ�2†χ�2 )22, (D5)

where �′
2 = �2 − ωdr,2 + ωdr,1. It contains the photons injected through mode 1 and mode 2.

Moreover, the noise power is described as

N =k1τ

2

[
1 + 4

k1
(χ�2YY †χ�2†)11

]
. (D6)
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From Eqs. (D4)–(D6), the measurement rate per photon is described as

	̄meas = k1

4 k2
k1

∣∣ β2

β1

∣∣2|(χ�2V χ�2 )11|2[
(χ�′

2†χ�′
2 )11 + k2

k1

∣∣ β2

β1

∣∣2
(χ�2†χ�2 )22

][
1 + 4

k1
(χ�2YY †χ�2†)11

]

� k1

4 k2
k1

∣∣ β2

β1

∣∣2|(χ�2V χ�2 )11|2[
(χ�′

2†χ�′
2 )11 + k2

k1

∣∣ β2

β1

∣∣2
(χ�2†χ�2 )22

]
[1 + 2�(�) · �]

, (D7)

where �(�2) = −(χ�2
11 + χ

�2∗
11 ) + |χ�2

11 |2 + k2
k1

|χ�2
12 |2.

For two-mode sensors, if the coupling matrix is V = 1
2σx as in Sec. IV, from Eq. (D7) we have the best possible measurement

rate per photon as

	̄2-opt = k1

k2
k1

∣∣ β2

β1

∣∣2∣∣χ�2
12

2 + χ
�2
11 χ

�2
22

∣∣2

[∣∣χ�′
2

11

∣∣2 + ∣∣χ�′
2

21

∣∣2 + k2
k1

∣∣ β2

β1

∣∣2(∣∣χ�2
12

∣∣2 + ∣∣χ�2
22

∣∣2)]
[1 + 2�(�) · �]

.

Since we have assumed that

|wdr,1 − wdr,2| � 1,

when |χ�2
12 | becomes large, the elements of the transfer matrix χ�′

2 keep small. Thus, it can be verified that if conditions Eqs. (16)
and (17) hold with � being replaced by �2, then

	̄2-opt = 1

2

k1

k2
k1.

This means that the excitation from mode 2 dominates in the total signal power and the signal power gain from mode 2 prevails
in the competition with the noise enhancement induced by the unavoidable associated noise.
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rings of exceptional points out of Dirac cones, Nature 525, 354
(2015).

[37] H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Topological
energy transfer in an optomechanical system with exceptional
points, Nature 537, 80 (2016).
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