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Liouvillian exceptional points of any order in dissipative linear bosonic systems:
Coherence functions and switching between PT and anti-PT symmetries
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Usually, when investigating exceptional points (EPs) of an open Markovian bosonic system, one deals with
spectral degeneracies of a non-Hermitian Hamiltonian (NHH), which can correctly describe the system dynamics
only in the semiclassical regime. A recently proposed quantum Liouvillian framework [Minganti et al., Phys.
Rev. A 100, 062131 (2019)] enables the complete determination of the dynamical properties of such systems
and their EPs (referred to as Liouvillian EPs, or LEPs) in the quantum regime by taking into account the effects
of quantum jumps, which are ignored in the NHH formalism. Moreover, the symmetry and eigenfrequency
spectrum of the NHH become a part of much larger Liouvillian eigenspace. As such, the EPs of an NHH form
a subspace of the LEPs. Here we show that once an NHH of a dissipative linear bosonic system exhibits an
EP of a certain finite order n, it immediately implies that the corresponding LEP can become of any higher
order m � n defined in the infinite Hilbert space. These higher-order LEPs can be identified by the coherence
and spectral functions at the steady state. The coherence functions can offer a convenient tool to probe extreme
system sensitivity to external perturbations in the vicinity of higher-order LEPs. As an example, we study a linear
bosonic system of a bimodal cavity with incoherent mode coupling to reveal its higher-order LEPs; particularly,
of second and third order via first- and second-order coherence functions, respectively. Accordingly, these LEPs
can be additionally revealed by squared and cubic Lorentzian spectral lineshapes in the power and intensity-
fluctuation spectra. Moreover, we demonstrate that these EPs can also be associated with spontaneous parity-time
(PT ) and anti-PT -symmetry breaking in the system studied. These symmetries can be switched in the output
fields (the so-called supermodes) of an additional linear coupler with a properly chosen coupling strength. Thus,
we show that the initial loss-loss dynamics for the supermodes can be equivalent to the balanced gain-loss
evolution.
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I. INTRODUCTION

A. Exceptional points

Exceptional points (EPs), which are exotic spectral degen-
eracies of non-Hermitian open systems, have attracted much
interest in the last decades [1–3]. EPs arise when both eigen-
values and eigenfunctions of a non-Hermitian Hamiltonian
(NHH) coalesce. Equivalently, an NHH, at its EPs, attains a
Jordan form, i.e., it fails to be diagonalized. The advantages
of EPs for applications remain a very active topic of research
[4–18], in particular concerning the metrological advantages
of EP sensitivity to external perturbations [1].

The concept of EPs was first introduced in connection with
the perturbation theory of linear operators [19]. In physics,
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the notion of the EPs was further explored in connection
with parity-time-symmetric (PT -symmetric) quantum me-
chanics [20]. More recently, the concept of EPs has been
investigated for general open quantum systems, where the in-
terplay of incoherent drives and losses with coherent coupling
can lead to the observation of an NHH spectral degeneracy
[1,2,21,22].

The presence of EPs in a system can produce a plethora
of nontrivial phenomena. To name a few: unidirectional
invisibility [23,24], lasers with enhanced-mode selectivity
[25,26], low-power nonreciprocal light transmission [27–29],
new types of thresholdless phonon lasers [30,31], enhanced
light-matter interactions [8,9,11], loss-induced lasing [32,33],
and even exceptional photon blockade [34]. These exotic
phenomena have been observed in different experimental plat-
forms, based on electronics [35], optomechanics [30,36–38],
acoustics [39,40], plasmonics [41], and metamaterials [42].
Moreover, the concept of EPs has been successfully exploited
in describing dynamical quantum phase transitions and topo-
logical phases of condensed matter in open quantum systems
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[43–51], and its relation to nonclassicality in photonic systems
[52,53].

B. Liouvillian exceptional points

Recently, an extension of the concept of EPs from an NHH
formalism to that based on the quantum Liouvillian has been
proposed [54]. Indeed, the inclusion of quantum jumps can
have a profound effect on the system dynamics and its spectra
[54–59]. Moreover, the eigenspectrum of an NHH becomes
a part of much larger eigenspace of a Liouvillian, meaning
that EPs of an NHH, which from hereon we denote as HEPs,
become a part of Liouvillian EPs which are usually denoted as
LEPs. As such, the quantum Liouvillian formalism appears to
be a natural choice to study EPs of an open quantum system.
Nonetheless, in some systems, e.g., in a double-quantum-
dot circuit QED setup [60], the NHH can capture nontrivial
system dynamics, which is “invisible” when using the corre-
sponding Liouvillian.

At the same time, very recent works have already shown
that switching to the Liouvillian framework allows us to reveal
nontrivial phenomena, which cannot be observed within the
NHH formalism. These include the existence of higher-order
LEPs compared with lower-order HEPs [56,61], or the pos-
sibility to detect nontrivial EPs by using a hybrid Liouvillian
formalism [57]. Moreover, PT symmetry has been reformu-
lated within a Liouvillian framework [55,59,62].

C. Results

In this work, we demonstrate that, for a dissipative lin-
ear bosonic system whose effective NHH exhibits a HEP of
any finite order n determined by first-order field moments,
the corresponding LEPs can become at least of order m �
2k(n − 1) + 1, for k = 1

2 , 1, 2, 3, . . . , determined by higher-
order field moments, accordingly. These mth-order LEPs can
be identified by the (m − 1)st-order coherence and spectral
response functions in the steady state of the system. Because
the steady state of such systems is a thermal state, by ex-
ploiting the well-known moments theorem [63], the coherence
functions of arbitrary order can be completely determined by
the first-order coherence function, i.e., by its products. As
such, by identifying a HEP with the first-order coherence
function [56], one then can identify higher-order LEPs by
means of the corresponding higher-order coherence functions.
Importantly, the coherence functions can only be determined
by the Liouvillian eigenspace.

We stress that when considering an NHH in an infinite-
dimensional system, one can also determine infinitely-high-
order HEPs related to high-order moments of the fields
[64,65]. Nevertheless, NHHs fail to include quantum jumps
and thermal noise. A striking example of this fact comes
from an effective Hamiltonian which commutes with the to-
tal photon number operator. While at the NHH level this
implies that manifolds with different numbers of excitations
cannot interact, the quantum jumps of the Liouvillian can
still mix states with different photon numbers. These differ-
ent properties of the NHH and the corresponding Liouvillian
imply that also their eigenstates are different [54,56]. As a
result, the equations of motion for second- or higher-order

quantum field moments differ for the Liouvillian and NHH
formalisms, indicating their distinguishable spectral proper-
ties. Hence, the analyses of higher-order HEPs resulting from
higher-order moments are predictive only in the semiclassical
regime, when the operators can be treated as c numbers. In
other words, a correct description of spectral properties of a
quantum system via its higher-order field moments needs to
rely exclusively on the Liouvillian eigenspectrum.

D. Higher-order Liouvillian exceptional points in a bimodal
cavity with incoherent mode coupling

As an example of the above general result, we study a
bosonic system of a bimodal cavity with incoherent mode
coupling to reveal its higher-order Liouvillian EPs. The in-
coherent mode interaction can be encoded by the off-diagonal
elements of the damping matrix in the quantum Liouvillian
[66,67]. These off-diagonal damping coefficients naturally ap-
pear in the microscopic theory of overlapping modes in open
resonators [66] and chaotic two-mode lasers [68], where a
strong interaction with the surrounding environment can in-
duce a mode overlapping in the multimode cavities. Moreover,
these theories have proved useful in explaining the Petermann
excess noise factor in random lasers [68,69] and describing
intensity-fluctuation spectra in bimodal cavities coupled to
quantum emitters [70,71]. Interestingly, one of the first exper-
imental observations of the intermode coupling in a bimodal
cavity due to the interaction with surrounding screening fields,
induced by a conducting sample located near the cavity,
was already reported a few decades ago in Ref. [72], where
microwave Hall measurements were performed. Incoherent
mode coupling can be produced in various ways. These have
been already realized, e.g., in anti-PT -symmetrical classical
systems, which include: nonlinear Brillouin scattering in a
single microcavity [73], two passive waveguides, separated by
a metallic film [74], countermoving media with heat exchange
[75] or resistively coupled electric resonators [76], and, in
quantum systems, through a coherent transport of flying atoms
[77]. Nevertheless, in all these works, when studying EPs,
a phenomenological approach has been utilized based ex-
clusively on effective NHHs, thus ignoring quantum-jump
effects.

In particular, we analyze second- and third-order LEPs
of such systems arising from a HEP of second order by
calculating the first- and second-order coherence functions,
respectively. Also, we calculate the corresponding power and
intensity-fluctuation spectra to reveal their squared and cu-
bic Lorentzian expressions, accordingly. We also reveal the
anti-PT and PT symmetries of the NHH, which connect the
presence of LEPs with spontaneous breaking of such sym-
metries in a bimodal cavity with incoherent mode coupling.
We show the possibility of switching between the PT and
anti-PT symmetries of bosonic linear systems, like linearly
coupled harmonic cavities. This switching can simply be real-
ized by applying a tunable linear coupler (e.g., a tunable beam
splitter in optical implementations) to a two-mode output
field of the system. Moreover, our analysis of such two-mode
systems reveals that, for a LEP of odd order (2k + 1), the
system-enhanced sensitivity to external perturbations ε scales
at most as ε

1
2k .
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We stress that the discussed PT and anti-PT symmetries
in our study are exclusively related to the symmetries of the
NHH, which plays a central role in our work. However, we
note that the recent studies in Refs. [55,59,62] have already
addressed the properties of PT symmetry of the whole Liou-
villian. Since we focus here on dissipative systems, the whole
Liouvillian does not possess the PT symmetry in the sense
of, e.g., Ref. [20]. Nonetheless, the studied Liouvillian, for a
two-site system, is passively PT symmetric. In other words,
it acquires the PT symmetry in a reference frame with global
decay [55,59]; that is, after applying an appropriate gauge
transformation.

Let us recall now the meaning of the PT and anti-PT
symmetries of the NHH. In general, a system described by
a Hamiltonian Ĥ exhibits PT (anti-PT ) symmetry if Ĥ
commutes (anticommutes) with the PT operator. Here the
parity operator P transforms a position operator x̂ to −x̂ and a
momentum operator p̂ to −p̂, while the time reversal operator
T transforms x̂ → x̂ and p̂ → −p̂, and performs complex
conjugation i → −i.

This paper is organized as follows: In Sec. II, we briefly
introduce a general Liouvillian for a dissipative multimode
bosonic system. In Sec. III, we present our main result;
namely, that any HEP of a finite order implies the infinite
order of the corresponding LEP. As an example, we study
higher-order LEPs in a bimodal cavity with incoherent mode
coupling in Sec. IV. In particular, we analyze second- and
third-order LEPs by means of the first- and second-order
coherence functions, respectively, along with the power- and
intensity-fluctuation spectra to reveal their squared and cubic
Lorentzian lineshapes at the corresponding LEPs. We also
demonstrate that EPs in such systems can be directly associ-
ated with PT - and anti-PT -symmetry breaking. Conclusions
are drawn in Sec. V.

II. LIOUVILLIAN OF A GENERAL DISSIPATIVE
LINEAR BOSONIC SYSTEM

The dynamics of a density matrix ρ̂ describing a quantum
system interacting with its environment is governed by a com-
pletely positive trace-preserving (CPTP) map. In the limit of
weak Markovian time-independent interactions, such a CPTP
map is known as the Liouvillian superoperator L whose action
is described by the master equation:

d

dt
ρ̂(t ) = Lρ̂(t ). (1)

For an N-mode open linear coupled bosonic system inter-
acting with thermal environment, the Liouvillian has the
following general Gorini-Kossakowski-Sudarshan-Lindblad
form (h̄ = 1) [66,67]:

Lρ̂ = −i[Ĥ, ρ̂] + nth + 1

2

N∑
j,k

γ jkD[â j, â†
k]ρ̂

+ nth

2

N∑
j,k

γ jkD[â†
j , âk]ρ̂, (2)

where Ĥ is a Hermitian Hamiltonian, and the general Lind-
blad dissipators are

D[�̂ j, �̂
†
k ] ρ̂ = 2�̂ j ρ̂�̂

†
k − �̂

†
k �̂ j ρ̂ − ρ̂�

†
k �̂ j . (3)

In Eq. (2), â j (â†
j ) is the annihilation (creation) operator of

mode j; the diagonal damping coefficients γkk denote the
inner kth mode decay rate, while the off-diagonal coefficients
γ jk denote the incoherent coupling between modes j and k,
due to the interaction of both modes with the environment
[66]. Without loss of generality, we assume that the thermal
photon number nth is constant throughout the spectral range of
a system. The Liouvillian L can also be recast in the following
form:

Lρ̂ = −i(Ĥeff ρ̂ − ρ̂Ĥ†
eff ) + nth + 1

2

∑
j,k

â j ρ̂â†
k+

nth

2

∑
j,k

â†
j ρ̂âk,

(4)

where Ĥeff is an effective NHH given by

Ĥeff = Ĥ − i

2

∑
j,k

γ jk â†
j âk . (5)

Note that the term (Ĥeff ρ̂ − ρ̂Ĥ†
eff ) in Eq. (4) can be inter-

preted as a generalized commutator. Moreover, this NHH is
not Hermitian, i.e., Ĥeff �= Ĥ†

eff . Additionally, the Hermitian
Hamiltonian in Eq. (5) for a linear coupled system can be
written in a general form

Ĥ =
∑

k

ωkâ†
k âk +

∑
j<k

(χ jk â†
j âk + H.c.), (6)

where ωk is a bare frequency of the mode k, and χ jk is the
coherent coupling coefficient between modes j and k.

III. LIOUVILLIAN EXCEPTIONAL POINTS OF ANY
ORDER IN DISSIPATIVE LINEAR BOSONIC SYSTEMS

In a recent work [61], it has been shown that, if an NHH has
an EP of nth order, then it implies that a LEP is at least of order
(2n − 1). Below, we demonstrate in a simple manner that if an
NHH of a linear bosonic system has an EP of any order n � 2,
determined by the first-order field moments, then this EP actu-
ally implies an infinite order for the LEP, which, accordingly,
is determined by higher-order field moments, and, thus, can
be identified by higher-order coherence functions.

To show this general result, let us first start describing the
time dynamics of the system field averages 〈â j (t )〉. Note that
we are working exclusively in the Schrödinger picture; thus,
for simplicity, we put the time parameter t inside triangular
brackets. After applying the formula for the time derivative of
the field averages

d

dt
〈â j (t )〉 = Tr

[
â j

d

dt
ρ̂(t )

]
, (7)

and using Eqs. (1), (2), and (7), one obtains a linear system

v(t ) = exp(−iĤefft )v(0), (8)

where v(t ) = [〈â1(t )〉, 〈â2(t )〉, . . . , 〈âN (t )〉]T is a vector of the
operator averages, and Ĥeff is a matrix form of the effective
NHH in Eq. (5).
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Hence, the dynamics of the annihilation operators imposed
by the Liouvillian L can be fully determined by the eigenspec-
trum of the effective NHH Ĥeff . As a result, the appearance
of an EP in the NHH spectrum immediately implies the
emergence of the same EP in the Liouvillian spectrum [56].
Namely, the relationship between the eigenfrequencies (eigen-
values) ν ≡ νNHH of the NHH and λ ≡ λL of the Liouvillian,
which define the time dynamics of the fields in Eq. (8), bear a
simple form [56]:

λL = −iνNHH. (9)

Therefore, the coalescence of the eigenvalues νNHH of the
NHH, along with its eigenstates, indicates the coalescence
of the eigenvalues λL and the corresponding eigenstates of
the Liouvillian. These eigenvalues merging cause the NHH
to acquire a nondiagonal Jordan form, which is then reflected
in the nonexponential character of the time evolution of the
cavity fields according to Eq. (8). Moreover, the symmetry
shared by the NHH becomes, in general, a local symmetry
of the Liouvillian. The latter stems from the fact that the
Liouvillian does not necessarily have the global symmetries
of the NHH. We stress that the above conclusion of the coin-
cidence of EPs of the NHH and Liouvillian is valid for any
linear quadratic NHH in Eq. (5), with its coherent part given
in Eq. (6). Moreover, the damping coefficients in the Lindblad
dissipators in Eq. (3) may attain any form, e.g., similar to that
of the Scully Lamb laser model [56], as long as the system
remains linear, i.e., dissipative.

Higher-order correlation functions

The exact equivalence between the effective Hamiltonian
and Liouvillian predictions of the spectral properties of the
system holds true only for the dynamics of the annihilation op-
erators. For example, higher-power field averages 〈â†m

j ân
j (t )〉

would be affected by the presence of quantum jumps in a
nontrivial way. Nevertheless, from the presence of a first-order
HEP one we can deduce the properties of higher-order corre-
lation functions, which, for linear systems, are determined by
the higher-order field moments. Indeed, this function, at the
steady state, can be calculated according to the formula

g(1)
j,ss(τ ) = 〈â†

j (0)â j (τ )〉ss

〈â†
j (0)â j (0)〉ss

, j = 1, . . . , N, (10)

where 〈â†
j (0)â j (τ )〉ss is a two-time correlation function

(TTCF) for the mode j at the steady state. The TTCF, in turn,
can be easily computed by exploiting the quantum regression
theorem [63,78]. Namely, by solving the equations of motion
for the field averages 〈â(τ )〉 in Eq. (8), one can immediately
obtain 〈â†(0)â(τ )〉. The TTCF for, e.g., the field â1 reads [56]

f j (τ ) = exp(−iĤeffτ ) f j (0), (11)

where f (τ ) = [〈â†
j (0)â1(τ )〉ss, . . . , 〈â†

j (0)âN (τ )〉ss]T is a vec-
tor of TTCFs for the mode j.

In other words, the dynamics and symmetry of the
equations of motion for the coherence function g(1)(τ ) is
determined by the same effective NHH. Again, at the HEP
of nth order, the NHH obtains a Jordan form. As a result,
and according to Eq. (11), the coherence function g(1)(τ ),

regardless of the mode j, attains a nonexponential form, with
the highest power degree in τ , as follows:

g(1)
ss (τ ) ∼ τ n−1 exp(−iνHEPτ ), (12)

where νHEP, with imaginary part Im(νHEP) < 0, is a complex
eigenvalue of the NHH at a HEP of nth order.

The steady state of the considered linear systems with the
Liouvillian L, given in Eq. (2), along with the Hamiltonian
in Eq. (6), is a thermal state. As a result, the higher-order
coherence functions g(k)

ss (τ ), k ∈ N, at the steady state, are
completely determined by the first-order coherence function
g(1)

ss (τ ), according to the moments theorem [63].
The higher-order coherence functions g(2k)

j,ss (τ ), based on
the TTCFs, are found as

g(2k)
j,ss (τ ) =

〈
â†k

j (0)â†k
j (τ )âk

j (τ )âk
j (0)

〉
ss

〈â†
j (0)â j (0)〉2k

ss

. (13)

The form of the coherence function g(2k)
j,ss (τ ) in Eq. (13) en-

sures that at the nth-order HEP, the (2k)th-order coherence
function at the steady state contains the following term with
the highest power degree in τ :

g(2k)
ss (τ ) ∼ τ 2k(n−1) exp[2kIm(νHEP)τ ]. (14)

For instance, the second-order coherence function g(2)
ss (τ ) for

the thermal light takes a simple form

g(2)
ss (τ ) = 1 + |g(1)

ss (τ )|2 ∼ τ 2n−2 exp[2Im(νHEP)τ ]. (15)

The coherence function g(2k)
ss (τ ) is solely defined by the

Liouvillian eigenspectrum; thus, at the HEP of the nth or-
der, this function implies the coalescence of [2k(n − 1) + 1]
Liouvillian eigenvectors. This means that the LEP becomes
at least of the order [2k(n − 1) + 1]. Moreover, because of
the infinite-dimensional Hilbert space of a general bosonic
system, the coherence function can be, thus, of infinite order.
Thus, a HEP would simply imply the existence of the LEP of
infinite order. In other words, the order of a LEP is only lim-
ited by the maximal possible number of photons in a system,
i.e., the maximal size of its Hilbert space.

To shed more light on this direct connection between the
higher-order LEPs and higher-order coherence functions, let
us recall the general formula for the TTCFs for the steady
state, which is used in the definition of the coherence function:

〈Ô1(0)Ô2(τ )Ô3(0)〉ss = Tr{Ô2(0)eLτ [Ô3(0)ρ̂ssÔ1(0)]}, (16)

where Ô j are some system operators. The operator Ô3ρ̂ssÔ1

in Eq. (16) leads the steady state ρ̂ss into the new state, which
becomes a decomposition of the Liouvillian eigenmatrices ρ̂i,
i.e.,

Ô3ρ̂ssÔ1 =
∑

i

ciρ̂i. (17)

By recalling the linearity of the trace, we have

〈Ô1(0)Ô2(τ )Ô3(0)〉ss =
∑

i

ciTr{Ô2(0)eLτ [ρ̂i]}. (18)

In the presence of a LEP, one finally has

〈Ô1(0)Ô2(τ )Ô3(0)〉ss =
∑

i

ciτ
ni eλiτ Tr{Ô2(0)ρ̂i}, (19)
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where ni is the degree of the degeneracy of the LEP associated
with the eigenmatrix ρ̂i (see also Ref. [56] for more details).
Moreover, the eigenmatrices ρ̂i correspond to various powers
of the boson operators of the fields [79], which means that
this is the eigenspace of higher-order field moments that is
identified by the TTCFs. In our particular case, Ô1 = â†k ,
Ô2 = â†kâk , and Ô3 = âk . Note that TTCFs, in Eq. (16), can
be applied to any moments of the field, i.e., not necessarily
to the Hermitian moments O2(τ ) = â†k (τ )âk (τ ). As such, it
is possible to reveal an arbitrary order m of a LEP, apart from
that identified by the coherence function g(2k)

ss (τ ).
Experimentally, the spectral properties of dissipative sys-

tems have been measured, in particular regarding the closure
of the Liouvillian gap occurring in dissipative phase transi-
tions [80]. In particular, in Ref. [81] the two-time correlation
function has been used to prove the occurrence of the first-
order phase transition of a semiconductor micropillar, as
predicted in Refs. [82,83]. Moreover, optical hysteresis prop-
erties have been used in Ref. [84] to prove the emergence
of a critical slowing-down effect. Similarly, in Ref. [85] the
emergence of a slow timescale in a one-dimensional super-
conductor chain has been used to pinpoint the precursors of
a dissipative phase transition in a driven-dissipative Bose-
Hubbard model [86,87].

We conclude that observing LEPs using the first- and
second-order correlation functions is within the experimental
reach of current techniques. For instance, an nth-order HEP
would imply the possibility to measure a LEP at least of order
(2n − 1) [61] by means of the coherence function g(2)

ss (τ ). We
note that, however, to access higher-order LEPs using higher-
order coherence functions could be much more challenging.
Indeed, g(2k)

ss (τ ) decays much faster than g(2)
ss (τ ) [cf., Eq. (14)],

thus reducing the visibility of its nonexponential behavior.

IV. EXAMPLE OF A BIMODAL CAVITY WITH
INCOHERENT MODE COUPLING

In this section, we study higher-order LEPs in a bimodal
cavity with incoherent mode coupling. In particular, we ana-
lyze second- and third-order LEPs arising from a HEP of the
second order by calculating first- and second-order coherence
functions, respectively. Also, we calculate the corresponding
power and intensity-fluctuation spectra to reveal their squared
and cubic Lorentzian lineshapes, accordingly. Additionally,
we reveal the anti-PT and PT symmetries of the NHH,
which connect the presence of the LEPs with spontaneous
breaking of such symmetries in the system.

A. Non-Hermitian Hamiltonian exceptional second-order points
and its anti-PT and PT symmetries

1. Anti-PT symmetry and exceptional point of an effective
non-Hermitian Hamiltonian

The dynamics of a density matrix ρ̂ of a bimodal cavity
with incoherent mode coupling is described by the Liouvillian
in Eq. (2) with the free coherent Hamiltonian of the form

Ĥ =
∑

k=1,2

ωkâ†
k âk . (20)

For simplicity, we further assume that the damping matrix γ jk

is symmetric, i.e., γ21 = γ12, and the inner mode decaying
rates are the same, i.e., γ11 = γ22 = γ .

By working in the rotating reference frame with the cen-
tral frequency ω̄ = (ω1 + ω2)/2, the effective NHH, given in
Eq. (5), attains the form

Ĥeff = 1

2

(
� − iγ −iγ12

−iγ12 −� − iγ

)
, (21)

where � = (ω1 − ω2) is a cavity resonance difference.
This NHH is anti-PT symmetric, meaning that its anti-

commutator with a PT operator is zero:

PT Ĥeff (PT )−1 = −Ĥeff . (22)

The action of the time-reversal operator T on the NHH Ĥeff is
equivalent to

T ĤeffT −1 = Ĥ∗
eff ,

where the asterisk indicates complex conjugation. And the
parity operator P is equivalent to the Pauli σ̂x matrix. The
presence of the incoherent mode coupling rate γ12, thus, in-
duces the anti-PT symmetry in the evolution of the field
averages.

The eigenspectrum of the NHH gives two possible eigen-
values:

ν1,2 = −i
γ

2
± i

2
D, (23)

where

D =
√

γ 2
12 − �2. (24)

The unnormalized eigenvectors of the NHH, then, can be
easily found as

ψ1,2 ≡
(

iγ12

� ∓ iD

)
. (25)

From Eqs. (23) and (25) it follows that the NHH Ĥeff , and,
thus, the Liouvillian, attain an EP

γ EP
12 = |�| = |ω1 − ω2|. (26)

At this EP, the NHH experiences a spectral-phase transition,
associated with anti-PT -symmetry breaking, meaning that
cavity fields in Eq. (8) can exist in two different spectral
phases.

We plot the eigenfrequencies ν1 and ν2 in Fig. 1. When
γ12 > �, i.e., the NHH eigenvalues ν1 and ν2 both become
purely imaginary, the NHH eigenstates ψ1 and ψ2 are in the
exact anti-PT -symmetric phase. That is, the eigenmodes ψ1

and ψ2 become asymmetric, the former attaining an effective
gain and the latter acquiring additional losses proportional to
the parameter |D| [see Eq. (23)]. Contrary to this, when γ12 <

�, the eigenvalues are no longer purely imaginary, and the
eigenstates of the NHH are in the broken anti-PT -symmetric
phase. In this case, the two modes are spectrally separated,
and this mode splitting can be defined by the real-valued
parameter |D| given in Eq. (23).
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FIG. 1. Real (red solid curves) and imaginary (blue dashed
curves) parts of the eigenfrequencies ν1 and ν2 of the effective NHH
Ĥeff versus the incoherent coupling rate γ12. These eigenfrequencies
constitute a subset of the eigenfrequencies of the Liouvillian L, of a
bimodal cavity according to Eq. (23). The chosen system parameters
are the frequencies of the modes ω2 = −ω1 = 0.5 [arbitrary units];
the cavity losses for both modes â1 and â2 are γ = 3 [arb. units]. The
system experiences a spectral-phase transition at the EP γ

EP1
12 , ac-

cording to Eq. (26), due to the interplay between the mode frequency
difference � and the incoherent mode coupling γ12.

2. Switching to the PT -symmetric modes

By appropriate unitary transformations, the effective NHH
in Eq. (21) can be recast into a form, where it acquires a PT -
like symmetry, namely, passive PT symmetry. For this, we
can introduce the general combined modes (often referred to
as supermodes) ĉ1 and ĉ2 (see, e.g., Refs. [70,88]), defined via
the rotation (

ĉ1

ĉ2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
â1

â2

)
, (27)

where θ is an appropriate angle. This transformation of â1 and
â2 to the supermodes ĉ1 and ĉ2 can simply be realized with a
tunable linear coupler. In case of optical implementations of
our system, this coupler can be realized by a single tunable
beam splitter or, in more refined implementations, by a Mach-
Zehnder interferometer [89].

For the case under consideration, i.e., γ12 = γ21, the Lind-
blad master equation, given in Eq. (2), can be put in the
diagonal form of the damping matrix γ jk by considering θ =
π/4, i.e., ĉ1, 2 = (â1 ± â2)/

√
2. We have

Lρ̂ = − i
[
Ĥc1,c2 , ρ̂

] +
∑

k=1, 2

γck (nth + 1)

2
D[ĉk]ρ

+ γck nth

2
D

[
ĉ†

k

]
ρ,

(28)

where

Ĥc1,c2 =
∑

k

ω̄ĉ†
k ĉk + �

2

(
ĉ†

1ĉ2 + ĉ†
2ĉ1

)
, (29)

where γc1,c2 = γ ∓ γ12. Hence, the model of the two incoher-
ently coupled modes â1 and â2 becomes that of two dissipative

coherently coupled modes ĉ1 and ĉ2 in the appropriate basis
(see Appendix) for a general form of the Liouvillian L, under
the transformation in Eq. (27).

The effective NHH Ĥeff in Eq. (21), in a rotating reference
frame ω̄, then reads

Ĥ eff
c1,c2

= 1

2

(−iγc1 �

� −iγc2

)
. (30)

This effective NHH in Eq. (30) now indicates that the
supermodes ĉ1 and ĉ2 constitute a passive PT -symmetric
system [1,2,21,22]. Namely, if one applies a gauge transfor-
mation (

ĉ′
1

ĉ′
2

)
= exp

(
−γ

2
t
)(

ĉ1

ĉ2

)
, (31)

the modified NHH in Eq. (30) then reads

Ĥ ′eff
c1,c2

= 1

2

(
iγ12 �

� −iγ12

)
. (32)

This NHH Ĥ ′eff
c1,c2

, in Eq. (32), commutes with the PT operator,
i.e.,

[Ĥ ′eff
c1,c2

,PT ] = 0. (33)

In other words, the initial loss-loss dynamics for the super-
modes ĉ1 and ĉ2 becomes equivalent to the balanced gain-loss
evolution, apart from the global decay rate γ /2.

3. Summary

To sum up, we have shown that, by applying appropriate
unitary transformations to the anti-PT -symmetric NHH in
Eq. (5), one can readily discover a hidden PT symmetry
of the NHH. As such, the EP in Eq. (26) is associated not
only with the anti-PT -symmetry but also with PT -symmetry
breaking of the NHH, induced by the same interplay between
the frequency difference � and incoherent coupling rate γ12.

Note that the exact (broken) anti-PT -symmetric phase is
accompanied by the broken (exact) PT -symmetric phase.
Indeed, the eigenfrequencies of the NHH are left unchanged
under the unitary transformations in Eq. (27), but the ac-
tion of the PT and anti-PT symmetry is opposite for the
purely imaginary eigenfrequencies. Such coexistence of the
opposite symmetric phases has already been pointed out in
Refs. [73,90]. We stress that the possibility to witness different
symmetries of the system by considering different operators
offers great flexibility to explore different dynamical regimes
and various kinds of nontrivial light behavior in this system
in the semiclassical regime [73–75]. Moreover, we have ex-
plained that one can witness not only the PT and anti-PT
symmetries, but can also physically switch between them
by transforming the system two-mode output fields with an
additional tunable linear coupler, e.g., a tunable beam splitter
in optical implementations of the general model discussed.

B. Liouvillian exceptional points of higher orders

As it has been already stressed in Sec. III, a HEP of any
order n implies a LEP of any higher order m � n. Below,
we study the second- and third-order LEPs, which arise due
to the presence of a second-order HEP in the system under
consideration.
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1. Liouvillian exceptional point of second order and squared
Lorentzian power spectra

The presence of an EP of second order in Eq. (26) can
be signalled by a squared Lorentzian lineshape in the power
spectrum of the PT -symmetric modes ĉ1 and ĉ2 [29,91–93].
Indeed, the anti-PT -symmetric modes â1 and â2 generate
two independent spectra, which are not coupled. Thus, it is
impossible to see spectral lines merging which are highlighted
by a squared Lorentzian for these modes. However, the spectra
of the PT -symmetric supermodes ĉ1 and ĉ2 can demonstrate
the modes coalescence effect, characterized by the appearance
of a plateau at the top of the lineshape curve.

The power spectrum S(1)(ω) can be expressed via the first-
order coherence function g(1)

ss (τ ) as

S(1)(ω) = 1

π
Re

∞∫
0

g(1)
ss (τ ) exp(iωτ )dτ. (34)

Mathematically, S(1)(ω) is, thus, the Fourier transform of the
coherence function g(1)

ss (τ ), and, roughly speaking, indicates
the response of the system to the injection of one particle at a
frequency ω.

The coherence function g(1)
ss (τ ), for the supermodes ĉ1 and

ĉ2, with the help of Eq. (11), is found as

g(1)
ĉ1,ĉ2

(τ ) = exp
(− γ τ

2 − iω̄τ
)

D

(
D cosh

Dτ

2
± γ12 sinh

Dτ

2

)
.

(35)

The incoherent power spectra of the supermodes ĉ1 and ĉ2,
thus, take the form

S(1)
ĉ1,ĉ2

(ω) = 1

πD

(
K+(D ∓ γ12)

�2 + K2+
+ K−(D ± γ12)

�2 + K2−

)
, (36)

where � = ω − ω̄, and K± = (γ ± D)/2.
In Fig. 2, we plot both the coherence function g(1)

ĉ1,ĉ2
(τ ) and

power spectra S(1)
ĉ1,ĉ2

(ω) for the supermodes ĉ1 and ĉ2. Away
from an EP, the coherence functions (power spectra) are a
combination of two exponents (Lorentzians) for both fields
ĉ1 and ĉ2. When γ12 = 0, the functions g(1)

ĉ1,ĉ2
(τ ) and spectra

S(1)
ĉ1,ĉ2

(ω) are identical, and the system is in the exact (broken)
PT -symmetric (anti-PT -symmetric) phase of the NHH. But
if the losses γ are sufficiently large, the two cavity resonances
ω1 and ω2 might not be resolved [see Fig. 2(d)]. At the EP
γ12 = γ EP

12 , the coherence functions attain a nonexponential
form:

g(1)
ĉ1,ĉ2

(τ ) = exp
(
−γ τ

2
− iω̄τ

)(
1 ± γ12τ

2

)
. (37)

We note that distinguishing the exponential from nonexpo-
nential behavior could be hard in practice [see Fig. 2(b)]. On
the other hand, at the EP, the two spectra become a combina-
tion of the Lorentzian and squared Lorentzian lineshapes [see
Fig. 2(e)]. Indeed, the power spectra S(1)

ĉ1,ĉ2
at the EP become

SEP1
ĉ1,ĉ2

(ω) = 1

π

4

γ 2 + 4�2

(
γ ∓ γ12 ± 2γ 2γ12

γ 2 + 4�2

)
, (38)

where � is given in Eq. (36).

FIG. 2. First-order coherence function g(1)
ss (τ ) [panels (a)–(c)]

and power spectra S(1)(ω) [panels (d)–(f)] of the supermodes ĉ1 (red
solid curves) and ĉ2 (blue dashed curves), according to Eqs. (35)
and (36), respectively, of the bimodal cavity for various values of
incoherent mode coupling rate γ12: (a), (d) γ12 = 0 [arb. units]; (b),
(e) γ12 = γ

EP1
12 = 1 [arb. units]; and (c), (f) γ12 = 2 [arb. units]. The

reference frame is rotating at the central cavity frequency ω̄. The
remaining system parameters are the same as in Fig. 1. The spectra
of the supermodes ĉ1 and ĉ2 reveal the squared Lorentzian lineshape
at the second-order EP, characterized by a plateau at the top of the
curve [see panel (e), blue dashed curve]. The inset in panel (e) shows
the best Lorentzian fit, represented by a sum of two Lorentzians (gray
solid curve) of the spectrum at the EP (blue dashed curve), which
highlights the distinctiveness of the squared Lorentzian. Thus, one
can experimentally witness the presence of the EP by studying the
power spectra for the model under consideration. Moreover, with
increasing values of the incoherent mode-coupling rate γ12 > γ

EP1
12 ,

the supermode ĉ2 acquires a volcanic cone shape (blue dashed curve),
indicating that its spectrum is represented by the difference of two
Lorentzians [panel (f)].

For larger values of γ12 > γ EP
12 , the first mode ĉ1 expe-

riences further amplification, whereas the second mode ĉ2

encounters an increased damping. Notice also that the ĉ2

mode, representing the difference of two Lorentzians, is no
longer characterized by a single maximum for sufficiently
large γ12 [see Fig. 2(c)]. The Lorentzian subtraction can lead
to a substantial decrease of the spectral signal at the central
cavity frequency ω̄, meaning that the energy is completely
transferred from the mode ĉ2 to ĉ1. The latter leads to the
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observation of electromagnetically induced absorption in the
system [73]. Clearly, the presence of the incoherent mode
coupling gives rise to a number of nontrivial phenomena in
the system, which are related to both anti-PT - and PT -
symmetric systems.

2. Liouvillian exceptional point of third order and cubic
Lorentzian intensity-fluctuation spectra

According to Eq. (15), the second-order coherence func-
tion g(2)(τ ) at the steady state is determined by the coherence
function g(1)(τ ). By exploiting Eqs. (15) and (35), one can
arrive to an explicit expression for the function g(2)

ĉ1,ĉ2
(τ ).

Namely, at the EP in Eq. (26), from Eq. (37), one obtains

g(2)
ĉ1,ĉ2

(τ ) = 1 + exp(−γ τ )
(

1 ± γ12τ

2

)2
, (39)

meaning that the function g(2)
ĉ1,ĉ2

(τ ) signals the presence of a
LEP of the third order. This third-order LEP is also reflected
by the cubic Lorentzian lineshape in the intensity-fluctuation
spectra, which is defined by the second-order coherence func-
tion g(2)(τ ) at the steady state as follows:

S(2)(ω) = 1

π
Re

∞∫
0

[g(2)(τ ) − 1] exp(iωτ )dτ. (40)

By combining Eqs. (39) and (40), one easily arrives at the
following expressions for the intensity-fluctuation spectra (or
noise spectra) for the supermodes at the EP:

S(2)
ĉ1,ĉ2

(ω) ≡ γ ∓ γ12

ω2 + γ 2
− γ γ12(3γ12 ∓ 4γ )

2(ω2 + γ 2)2
+ 2γ 3γ 2

12

(ω2 + γ 2)3
.

(41)

As predicted by Eq. (41), at the EP γ = γ EP
12 of Eq. (26)

the intensity-fluctuation spectra are cubic Lorentzians [see
Figs. 3(d)–3(f)]. Experimentally, resolving the exact cubic
lineshape might be challenging due to the simultaneous pres-
ence of the squared and cubic Lorentzians terms in Eq. (41).
Thus, other techniques and methods might be required to pre-
cisely detect it [56]. As Fig. 3 shows, the intensity-fluctuations
decrease (increase) for the mode ĉ1 (ĉ2), in accordance with
the power spectra in Fig. 2.

3. Liouvillian exceptional point of third order explicitly defined
from the higher-order field moments matrix

From Eqs. (35) and (15) one can even explicitly identify
the Liouvillian eigenvalues, which determine the second-order
coherence function g(2)(τ ), and the merging of which gives
rise a to third-order LEP. We have already shown in Fig. 3
how a third-order LEP gives rise to the cubic Lorentzian in
the intensity-fluctuation spectra, along with a quadratic-time
dynamics for the second-order coherence function g(2)(τ ) in
Eq. (39). The system is U (1) symmetric; that is, the Li-
ouvillian is invariant under any phase shift φ of the boson
operators â j → â j exp(iφ), j = 1, 2. Thus, the time dynamics
of the coherence function g(2)(τ ) is completely determined by
the second-order moments of the fields of the form 〈â†

k âl〉,
k, l = 1, 2. The dynamics of such moments is determined
by the corresponding Liouvillian eigenspace. Therefore, the

FIG. 3. Second-order coherence function g(2)
ss (τ ) [panels (a)–(c)]

and intensity-fluctuation spectra S(2)(ω) [panels (d)–(f)] of the super-
modes ĉ1 (red solid curves) and ĉ2 (blue dashed curves), according
to Eqs. (15) and (40), respectively, of the bimodal cavity for various
values of incoherent mode coupling rate γ12. The system parameters
for each panel are the same as in Fig. 2.

knowledge of the time evolution of the second-order moments
〈â†

k âl〉 can reveal the presence of the third-order LEP.
The dynamics of the second-order moments can be de-

scribed by the averages of â = [(â†
1, â†

2) ⊗ (â1, â2)]T . Indeed,

d

dt
〈â〉 = M〈â〉 + nthb. (42)

The evolution matrix M for this vector of the averages 〈â〉
reads as

M = 1

2

⎛
⎜⎝

−2γ −γ12 −γ12 0
−γ12 2i� − 2γ 0 −γ12

−γ12 0 −2i� − 2γ −γ12

0 −γ12 −γ12 −2γ

⎞
⎟⎠, (43)

and the thermal noise vector is b = [γ , γ12, γ12, γ ]T .
In the supermode basis, the evolution matrix N and the

noise vector d for the vector ĉ = [(ĉ†
1, ĉ†

2) ⊗ (ĉ1, ĉ2)]T are
easily found via the transformation

N = TMT−1, d = Tb, (44)
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where the 4 × 4 transformation matrix T is given by

T = 1

2

(
1 −1
1 1

)
⊗

(
1 −1
1 1

)
. (45)

From Eqs. (42) and (44) it is evident that the dynamics for
the vector of the averages 〈â〉 (〈ĉ〉) cannot, in general, pos-
sess anti-PT (PT ) symmetry because of the presence of the
thermal noise in the form of the vector b (d). Nevertheless,
the matrix iM (iN) is anti-PT (PT ) symmetric. Indeed, the
parity operator P for the vector of the operators â, ĉ becomes

P =
(

0 1
1 0

)
⊗

(
0 1
1 0

)
. (46)

With the help of Eq. (46) one can easily check that

PT (iM)(PT )−1 = −iM,

PT (iN′)(PT )−1 = iN′, (47)

where the modified matrix N′ is obtained from N by applying
the gauge transformation in Eq. (31). The inclusion of the
imaginary prefactor i in the matrices M and N′ in Eq. (47)
ensures that the left-hand side of the equations of motion for
the vectors of the operators 〈â〉 and 〈ĉ〉 remain unchanged
under PT transformation. Thus, in the absence of thermal
photons nth = 0, the dynamics for the averaged vector of
operators 〈â〉 (〈ĉ〉) restores the same anti-PT (PT ) symmetry
imposed by the effective NHH on quantum fields in Eq. (21)
[(30)]. As a result, the LEP of third order, determined from
the evolution matrix M (N), becomes directly associated with
anti-PT -symmetry (PT -symmetry) breaking.

The eigenvalues of the matrix M, and thus of the matrix N,
are found as follows:

λ1,2 = −2iν12, λ3,4 = −γ , (48)

where ν1 and ν2 are the eigenvalues of the NHH given in
Eq. (23). We plot these eigenvalues in Fig. 4. At the EP γ EP

12 ,
the algebraic multiplicity of the eigenvalue λ = −γ equals
four, whereas geometric multiplicity is three. In other words,
there is a coalescence of three Liouvillian eigenvectors, which
are determined by the moments of the operators in the vectors
â and ĉ, but the derivation of their explicit form might require
other approaches [79,94]. We also note that this finding of the
LEP of third order for a second-order HEP in the space of
the vector ĉ has already been observed in the single-photon
regime for a similar system [56].

The presence of higher-order EPs in a system is usually
associated with the enhanced system sensitivity to external
perturbations in the vicinity of the EPs [1,4]. This system’s
enhanced spectral response �ω near an EP of an nth-order
to a perturbation ε scales as �ω ∼ ε

1
n . Remarkably, the sys-

tem spectral sensitivity around the LEP of the third order
can remain the same as it is near the second-order LEP.
That is, the Liouvillian eigenvalues split near the third-order
LEP, as �λ ∼ √

ε, not as a cubic root as one might expect.
This square-root dependence on perturbation around the third-
order LEP arises from the system symmetry and the nature of
the applied perturbation.

As explained earlier, the eigenvalues λ1, λ2, λ3 [Eq. (48)]
belong to the corresponding U (1) Liouvillian eigenspace. As
such, any perturbation of a single system parameter preserves

FIG. 4. (a) Real and (b) imaginary parts of the eigenvalues λ

of the Liouvillian, determined from the evolution matrix M: λ1,2

(green dashed curves), and λ3,4 (gray dash-dotted lines), according
to Eq. (48), versus the incoherent coupling rate γ12. The chosen
system parameters are the same as in Fig. 1. For comparison, the
Liouvillian eigenvalues defined by the NHH from Fig. 1 are shown
as blue solid curves. Thus, for a given subspace of the Liouvillian
eigenspace, determined by the NHH and evolution matrix M, the
EP γ EP in Eq. (26) becomes a LEP of the second and third orders,
respectively.

the U (1) symmetry of the system, e.g., γ → γ + ε. Conse-
quently, the eigenvalue λ3 (and the corresponding Liouvillian
eigenmatrix) remain real (and Hermitian) under such a per-
turbation. Since λ3 never acquires an imaginary part for such
perturbations, only the complex eigenvalues λ1 and λ2, along
with their eigenstates, induce a line splitting in the intensity-
fluctuation spectrum around the third-order LEP. Thus, the
spectral response to such external perturbations scales only
as the square root at the third-order LEP.

This result can be generalized to higher-order LEPs. Since
any Liouvillian eigenvalue comes in conjugate pairs, and
given the PT -symmetric structure of the system, given the
coalescence of (2k + 1) eigenvalues, one eigenvalue must
always remain purely real in the vicinity of the LEP. Such

033715-9



ARKHIPOV, MIRANOWICZ, MINGANTI, AND NORI PHYSICAL REVIEW A 102, 033715 (2020)

an eigenvalue cannot contribute to the enhanced system spec-
tral response under a perturbation. We conclude that, for the
studied system, for any LEPs of odd order (2k + 1), the
system-enhanced sensitivity scales at most as ε

1
2k around the

LEP.
Finally, we would like to stress the mentioned difference

in the dynamics of the higher-order field moments imposed
by the Liouvillian and NHH. To show this explicitly we write
the corresponding evolution matrix MNHH for the vector of the
operators â, derived from the NHH in Eq. (21) as follows:

MNHH = 1

2

⎛
⎜⎝

0 γ12 −γ12 0
γ12 2i� 0 −γ12

−γ12 0 −2i� γ12

0 −γ12 γ12 0

⎞
⎟⎠. (49)

A comparison of Eqs. (43) and (49) demonstrates that, indeed,
the evolution imposed on the same operators is different in
the Liouvillian and NHH formalisms. The eigenvalues of the
matrix MNHH are similar to those in Eq. (48) but shifted by
the value of γ , i.e., λNHH = λL + γ , where λL are given in
Eq. (48). Additionally, the inhomogeneous term b, arising
from the thermal noise, is absent in the equations of motion
for the operators â in the NHH formalism. Therefore, although
the HEPs and LEPs can coincide for the same field moments,
the system eigenspectra and dynamics are different in both
formalisms [54,56].

V. CONCLUSIONS

In this work, we have demonstrated that, for a dissipative
linear bosonic system whose effective NHH exhibits a HEP
of any finite order n, determined by the first-order field mo-
ments, its corresponding LEPs can become at least of order
m � 2k(n − 1) + 1, for k = 1

2 , 1, 2, 3, . . . , which can be de-
termined by higher-order field moments, accordingly. These
higher-order field moments are directly related to the normally
ordered higher-order coherence functions via the quantum
regression theorem.

Thus, we have shown how the coherence functions can
offer a convenient tool to probe extreme system sensitivity to
external perturbations in the vicinity of higher-order LEPs.

As an example, we have studied a bosonic system of a
bimodal cavity with incoherent mode coupling to reveal its
higher-order LEPs. In particular, we analyze second- and
third-order LEPs of such systems arising from a HEP of sec-
ond order by calculating the first- and second-order coherence
functions, respectively. Also, we calculate the corresponding
power and intensity-fluctuation spectra to reveal their squared
and cubic Lorentzian expressions, accordingly. Moreover, our
analysis of such two-mode systems indicates that, for the
LEPs of an odd order (2k + 1), the system-enhanced sensi-
tivity to external perturbations ε scales at most as ε

1
2k .

We also reveal the anti-PT and PT symmetries of the
NHH, which connect the presence of LEPs with spontaneous
breaking of such symmetries in a bimodal cavity with inco-
herent mode coupling. Moreover, we showed the possibility
of switching between the PT and anti-PT symmetries of
the studied bosonic linear systems by applying an additional
tunable linear coupler to two supermodes of the system out-
put. By means of such a coupler one can, thus, transform the

initial loss-loss dynamics for the supermodes to the equivalent
system with a balanced gain-loss evolution. In case of optical
systems, this transformation can be implemented with a single
tunable beam splitter.

We note that usually EPs have been studied in two- or mul-
tiparty systems with gain and loss (i.e., lossy driven systems).
Here, we have analyzed EPs in a multiparty system without
gain, but instead with its subsystems exhibiting losses with
different rates. Such a system effectively leads to a model of a
lossy-driven system.

In conclusion, we believe that our work has shown that
the concept of quantum EPs, as defined via degeneracies of
Liouvillians, is not only of a pure theoretical interest. We have
demonstrated explicitly that the formalism of Ref. [54] can
be tested experimentally at least for general quantum linear
bosonic systems. In particular, LEPs can indeed be identified
by measuring coherence functions or the power and intensity
fluctuation spectra.
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APPENDIX: LIOUVILLIAN L FOR SUPERMODES

Here we show an explicit form of the Liouvillian L for the
supermodes ĉ1 and ĉ2 in Eq. (27).

Considering a general Liouvillian, given in Eq. (2), for two
modes with arbitrary damping matrix γ jk and free Hermitian
Hamiltonian in Eq. (20), after applying the transformations in
Eq. (27), one arrives at the transformed master equation given
by

d

dt
ρ̂ = Lρ̂ = −i

[
Ĥc1 + Ĥc2 + Ĥc1,c2 , ρ̂

]
ρ̂

+Lc1 ρ̂ + Lc2 + Lc1,c2 ρ̂ + Lc2,c1 ρ̂, (A1)

where the coherent part includes

Ĥc1 = (ω1 cos2 θ + ω2 sin2 θ )ĉ†
1ĉ1,

Ĥc2 = (ω1 sin2 θ + ω2 cos2 θ )ĉ†
2ĉ2,

Ĥc1,c2 = 1

2
(ω1 − ω2) sin 2θ (ĉ†

1ĉ2 + ĉ†
2ĉ1), (A2)
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and the incoherent Lindbladian part is

Lcm ρ̂ = nth + 1

2
AmD[ĉm] + nth

2
AmD[ĉ†

m], (A3)

for m = 1, 2, and

Lc j ,ck ρ̂ = nth + 1

2
AjkD[ĉ j ĉ

†
k ] + nth

2
AjkD[ĉ†

j ĉk], (A4)

with j, k = 1, 2 and j �= k. Moreover we have denoted

A1 = γ11 cos2 θ + γ22 sin2 θ − γ̄12 sin 2θ,

A2 = γ11 sin2 θ + γ22 cos2 θ + γ̄12 sin 2θ,

A12 = γ− sin 2θ + γ12 cos2 θ − γ21 sin2 θ,

A21 = γ− sin 2θ + γ21 cos2 θ − γ12 sin2 θ, (A5)

where γ̄12 = (γ12 + γ21)/2, and γ− = (γ11 − γ22)/2. Now,
for the considered symmetric damping matrix (γ11 = γ22

and γ12 = γ21), by taking θ = π/4, the Lindblad operators
in Eq. (A1) become diagonalized. Thus, the initially lossy
system with incoherent mode coupling becomes a lossy sys-
tem with coherent mode coupling with an NHH given in
Eq. (30).
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