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Gauge invariance of the Dicke and Hopfield models
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The Dicke model, which describes the dipolar coupling between N two-level atoms and a quantized
electromagnetic field, seemingly violates gauge invariance in the presence of ultrastrong light-matter coupling,
a regime that is now experimentally accessible in many physical systems. Specifically, it has been shown that,
while the two-level approximation can work well in the dipole gauge, the Coulomb gauge fails to provide the
correct spectra in the ultrastrong coupling regime. Here we show that, taking into account the nonlocality of
the atomic potential induced by the two-level approximation, gauge invariance is fully restored for arbitrary
interaction strengths, even in the N → ∞ limit. Finally, we express the Hopfield model, a general description
based on the quantization of a linear dielectric medium, in a manifestly gauge-invariant form, and show that the
Dicke model in the dilute regime can be regarded as a particular case of the more general Hopfield model.
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I. INTRODUCTION

Models describing the interaction between one or few
modes of the electromagnetic field in a resonator and indi-
vidual or ensembles of few level atoms are a cornerstone
of quantum optics. The simplest examples are the quantum
Rabi [1–3] and the Dicke Hamiltonians [4–7] describing,
respectively, the interaction of a single-mode bosonic field
with a two-level atom, and with an ensemble of N two-level
atoms. Their simplified version obtained after the rotating
wave approximation are the Jaynes-Cummings and Tavis-
Cummings models [8,9], respectively.

Recently, it has been argued that truncations of the atomic
Hilbert space, to obtain a two-level description, violate the
gauge principle [10–12]. Such violations become particularly
relevant in the case of ultrastrong (USC) light-matter cou-
pling, a regime, now experimentally accessible in many phys-
ical systems, in which the coupling strength is comparable
to the transition energies in the system [13,14]. In particular,
it has been shown that, while in the electric dipole gauge
the two-level approximation can be performed as long as the
Rabi frequency remains much smaller than the energies of
all higher-lying levels, it can drastically fail in the Coulomb
gauge, even for systems with an extremely anharmonic spec-
trum [11]. The Dicke Hamiltonian, a model of key importance
for the description of collective effects in quantum optics,
shares analogous worrying problems, not only in the presence
of a small number N of atoms, but also in the so-called
dilute regime, where N → ∞, while the coupling strength be-
tween the field and the resulting collective excitations remains
finite [11]. Examples of realizations of the Dicke model in the
USC dilute regime include intersubband organic molecules
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[15–20], intersubband polaritons [21–24], and Landau
polaritons [25–29].

In quantum electrodynamics, the choice of gauge influ-
ences the form of light-matter interactions. However, gauge
invariance implies that all physical results should be inde-
pendent of this formal choice. As a consequence, the ob-
servation that the quantum Rabi and Dicke model provide
gauge-dependent energy spectra casts doubts on the reliability
of these widespread descriptions.

The source of these gauge violations has been recently
identified and a general method for the derivation of light-
matter Hamiltonians in truncated Hilbert spaces, able to pro-
duce gauge-invariant physical results, even for extreme light-
matter interaction regimes, has been proposed [30]. According
to the gauge principle, the coupling of the matter system
with the electromagnetic field is introduced by the minimal
replacement rule p̂ → p̂ − qÂ, where p̂ is the momentum
of an effective particle, Â is the vector potential of the
field, and q is the charge. It has been known for decades
that approximations in the description of a quantum system
with space truncation can give rise to nonlocal potentials
which can always be expressed as potentials depending on
both position and momenta: V (r, p̂) [31]. In these cases, in
order not to ruin the gauge principle, the minimal coupling
replacement has to be applied not only to the kinetic energy of
the particles in the system, but also to the nonlocal potentials
in the effective Hamiltonian of the matter system [31–33].
Once this procedure is applied, it is possible to obtain gauge-
invariant models, even in the presence of extreme light-matter
interaction regimes [30,34]. This method has been applied to
obtain a quantum Rabi model satisfying the gauge principle
[30]. In the following, we will refer to models not violating
gauge invariance as gauge-invariant (GI) models, even if the
form of the Hamiltonians change after a gauge transformation.
The generalization to N two-level systems (Dicke model) is
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briefly discussed in the Supplemental Material of Ref. [34].
The resulting GI quantum Rabi and Dicke Hamiltonians in the
Coulomb gauge differ significantly in form from the standard
ones and both contain field operators to all orders. A recent
overview of these gauge issues in TLSs can be found in
Ref. [35].

Here, after revisiting the derivation of the GI Dicke model,
we derive the corresponding dilute regime, also known as the
thermodynamic limit [36–39]. In such a limit, applying the
Holstein-Primakoff transformation [40], the standard Dicke
Hamiltonians in the dipole and in the Coulomb gauges, both
bilinear in the bosonic operators, are obtained (see, e.g.,
Ref. [36]). Such Hamiltonian can be diagonalized exactly, us-
ing a multimode Bogoliubov transformation. However, it has
been shown that the effective Hamiltonians in the Coulomb
and dipole gauge give rise to polariton eigenfrequencies
(modes) which can significantly differ for large coupling
strengths [11]. Although the form of the gauge-invariant
Dicke model contains field operators to all orders and appears
very different from a bilinear Hamiltonian, we show that, in
the thermodynamic limit, a bilinear Hamiltonian very similar
to the standard one is obtained. Specifically, the resulting
Dicke Hamiltonian in the Coulomb gauge only differs from
the standard one for the coefficient of the diamagnetic term
(proportional to Â2). However, we show that such a difference
is sufficient to restore gauge invariance.

Another widespread description of the interaction between
the quantized electromagnetic field and collective excitations
is the Hopfield model [41]. This model was initially intro-
duced to describe the interaction of the electromagnetic field
with a harmonic resonant polarization density of a three-
dimensional (3D) dielectric crystal. Nowadays, it is used to
describe the interaction between free or confined light and dif-
ferent kinds of collective excitations, such as optical phonons,
excitons in nanostructures, magnons, and plasmonic crystals,
which can be described as bosonic fields. We compare the
(GI) Dicke and the Hopfield models and apply to the latter
the concepts derived for obtaining the first. In doing so, we
provide a method to derive in a simple way manifestly gauge-
invariant Hopfield models, having only knowledge about the
matter polarization field.

II. DICKE MODEL WITH FINITE NUMBER OF DIPOLES

For the following analysis, we consider a generic setting as
shown in Fig. 1, where a finite number of electric dipoles are
coupled to the single mode of the electromagnetic field in a
resonator (see, e.g., Ref. [11]). The dipoles can be modeled
as effective particles of mass m in potentials V (xi ), where
xi is the separation between the charges q and −q of the ith
dipole. In the absence of any dipole-dipole interaction, and of
the interaction with the electromagnetic field, the Hamiltonian
describing a system of N effective particles can be written as
Ĥ (N )

0 = ∑N
i=1 Ĥ (i)

0 , where

Ĥ (i)
0 = p̂2

i

2m
+ V (xi ). (1)

Assuming that the two lowest-energy levels (h̄ω0 and h̄ω1)
are well separated by the higher-energy levels and considering
the system of dipoles interacting with a field mode of fre-

FIG. 1. Sketch of an optical resonator coupled to N identical,
distinguishable, quantum emitters. We consider two-level emitters
that can be described by means of collective operators Ĵα with α ≡
{x, y, z}, which obey the angular momentum commutation relations
(with cooperation number j = N/2). These atoms interact with a
bosonic mode of frequency ωc via a dipole interaction. The resulting
normalized collective coupling strength scales ∝√

N .

quency ωc ∼ ωx, where ωx ≡ ω1,0 (here ωi, j ≡ ωi − ω j), we
can truncate the Hibert space of each dipole by considering as
a basis only the two lowest-energy levels. In this case, each
dipole can be modeled as a pseudospin, and the Hamiltonian
describing the system of N dipoles, in the absence of interac-
tion with the electromagnetic field, can be written in terms of
collective angular momentum operators Ĵα = (1/2)

∑N
i=1 σ̂ (i)

α

(α = x, y, z) as

Ĥ(N )
0 = �̂Ĥ (N )

0 �̂ = h̄ωx(Ĵz + j), (2)

where σ̂ (i)
α are Pauli matrices and j = N/2, and here �̂ is

the operator projecting each effective particle into a two-level
space. Notice that, after the projection, the operator �̂ repre-
sents the identity operator for the linear space constituted by
the tensor product of all the N two-level spaces. Throughout
this article we will use calligraphic symbols (as, for example,
Ĥ(N )

0 ) to indicate quantum operators in truncated Hilbert
spaces. Notice that the ground state of the system corresponds
to all the spins in their ground state: | j, jz = − j〉, and it is
an eigenstate of Ĥ(N )

0 with eigenenergy equal to zero. When
all the dipoles are in their excited state, the corresponding
collective state | j, jz = j〉 has energy h̄ωxN .

A. Quantum Dicke model in the Coulomb gauge

By applying the minimal coupling replacement, the Hamil-
tonian for the system constituted by N dipoles and a single-
mode electromagnetic resonator in the Coulomb gauge can be
written as

Ĥ (N )
cg =

N∑
i=1

[
( p̂i − qÂ)2

2m
+ V (xi )

]
+ Ĥc, (3)

where Ĥc = h̄ωcâ†â is the bare photonic Hamiltonian includ-
ing a single mode with resonance frequency ωc and annihi-
lation (creation) operator â (â†), and Â = A0(â + â†) is the
vector potential along the x direction with a zero-point ampli-
tude A0. Notice that the vector potential has been assumed
to be constant in the spatial region where the dipoles are
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present. This approximation can be relaxed, even maintaining
the dipole approximation.

It has been shown [30,42] that the minimal coupling
replacement p̂ → p̂ − qÂ determining Eq. (3) can also be
implemented by applying to the matter system Hamiltonian
the following unitary transformation:

Ĥ (N )
cg = ÛN Ĥ (N )

0 Û †
N + Ĥc, (4)

where

ÛN = exp

(
i
q

h̄
Â

N∑
i=1

xi

)
. (5)

By expanding the kinetic terms, Eq. (3) can be written as the
sum of three contributions:

Ĥ (N )
cg = Ĥ (N )

0 + Ĥc + V̂ (N )
cg , (6)

where V̂cg = V̂Ap + V̂D describes the interaction terms

V̂ (N )
Ap = Â

N∑
i=i

p̂i

m
(7)

and

V̂ (N )
D = N

q2

2m
Â2 = D(â + â†)2, (8)

where D = NA2
0q2/(2m). Using the Thomas-Reiche-Kuhn

(TRK) sum rule [43], the coefficient in the diamagnetic term
can be written as q2/2m = ∑

k ωk, j |dk, j |2/h̄, where dk, j =
〈ψk|qx|ψ j〉 are the dipole matrix elements between two en-
ergy eigenstates of the effective particle, that in the following
we assume to be real quantities. The TRK sum rule has
a precise physical meaning, since it expresses the fact that
the paramagnetic and diamagnetic contributions to the phys-
ical current-current response function cancel in the uniform
static limit, which is a consequence of gauge invariance
[44–46]. The physical current operator, corresponding to the
Hamiltonian in Eq. (3), is

Ĵphys = δĤcg

δÂ
= q

N∑
i=1

p̂i

m
+ N

q2

m
Â, (9)

and the corresponding current-current response function in the
uniform static limit is proportional to [46]

−2N
∑

k

ωk, j |dk, j |2 + N
h̄q2

m
= 0. (10)

This relationship expresses the fact that the paramagnetic (first
term on the left-hand side) and diamagnetic (second term
on the left-hand side) contributions to the physical current-
current response function cancel out in the uniform and static
limit [46]. It is interesting to observe that the TRK sum rule
remains valid even in the presence of interatomic potentials
[46]. Very recently, a TRK sum rule for the electromagnetic
field coordinates, which holds even in the presence of USC
interaction with a matter system, has been proposed [47].

Defining the adimensional coupling strengths ηk =
A0dk,0/h̄, the diamagnetic coefficient can be written as

D = Nh̄
∑

k

ωk,0 η2
k . (11)

The standard Dicke Hamiltonian in the Coulomb gauge can
be obtained from Eq. (3) truncating the Hilbert space of each
dipole to include only two energy levels:

H′(N )
cg = �̂Ĥ (N )

cg �̂ = ωcâ†â + h̄ωx(Ĵz + j)

+ 2h̄ωxη(â† + â)Ĵy + j
q2A2

0

m
(â† + â)2, (12)

where η ≡ η1 = A0d1,0/h̄, and the relation ih̄pi/m =
[xi, H (i)

0 ] has been used.
It has been shown that the two-level truncation for the ef-

fective particles ruins the gauge invariance [10]. In particular,
it has been argued that the Coulomb-gauge Hamiltonian in
Eq. (12) is not related by a unitary transformation (hence it
is not gauge equivalent) to the corresponding Hamiltonian
in the dipole gauge. Closely related developments have been
presented in Refs. [11,12,30]. We will discuss this issue in
detail below. Here we limit to showing that the Hamiltonian in
Eq. (12) does not satisfy the gauge principle and how to solve
this problem following Ref. [30]. This Hamiltonian can be
obtained, projecting in two-level spaces the full Hamiltonian
in Eq. (3). Using Eq. (4)

Ĥ′(N )
cg = �̂ÛN

∑
i

[
p̂2

i

2m
+ V (xi )

]
Û †

N�̂ + h̄ωcâ†â. (13)

By applying the unitary operator to the kinetic and potential
terms separately, observing that [V (xi ), ÛN ] = 0, we obtain

Ĥ′(N )
cg = �̂

∑
i

( p̂i − qÂ)2

2m
�̂ + �̂

∑
i

V (xi )�̂ + h̄ωcâ†â.

(14)

It has been shown that truncating the Hilbert space transforms
a local operator like V (xi ) into a nonlocal one which can
be expressed as a function of both position and momentum
[31]: �̂V (xi )�̂ = W (xi, p̂i ). Therefore, the Hamiltonian in
Eq. (14) contains operators [W (xi, p̂i )] depending also on the
particle momenta, where the minimal coupling replacement,
prescribed by the gauge principle, has not been applied.

In particular, we observe that, for a local potential, we have
〈x′|V |x〉 = V (x)δ(x − x′). By using the closure relation, it
can be expressed as V (x, x′) = ∑

n,n′ Vn.n′ψn(x)ψ∗
n′ (x′), where

ψn(x) = 〈x|ψn〉 and {|ψn〉} constitute a complete orthonormal
basis. Notice that the Dirac delta function can be reconstructed
only by keeping all the infinite vectors of the basis. Hence
any truncation of the complete basis can transform a local
potential into a nonlocal one. The action of the resulting
nonlocal potential on a generic state |ψ〉 in the position
representation is

〈x|V |ψ〉 =
∫

dx′〈x|V |x′〉〈x′|ψ〉 =
∫

dx′V (x, x′)ψ (x′).

(15)
Using the translation operator property, 〈x|T̂a|ψ〉 = exp[i(a −
x) p̂]ψ (x), we obtain from Eq. (15)

〈x|V |ψ〉 =
∫

dx′V (x, x′)ei(a−x)p̂ψ (x) = V (x, p̂)ψ (x). (16)

As an example, Fig. 2 shows as a local potential V (x) (in this
case a double-well potential) evolves into a nonlocal one when
increasing the truncation of the Hilbert space. Here n indicates
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FIG. 2. Example of nonlocal potentials V (x, x′) originating from
a local potential V (x) (in this case a double well) after the truncation
of the Hilbert space to the lowest n energy levels. Decreasing the
number of levels, the degree of nonlocality increases. We considered
the potential V (x̃) = Ek[−(β/2)x̃2 + (γ /4)x̃4], where x̃ is a dimen-
sionless coordinate [11], β = 3.95 and γ = 2.08 are dimensionless
coefficients, and Ek is the kinetic-energy coefficient: Ĥ0 = Ek ˆ̃p2/2 +
V (x̃). Note that only dimensionless quantities, as a function of
dimensionless quantities, have been plotted and the three axes have
been omitted.

the number of energy states included in the projection opera-
tor, starting from the ground state.

A formulation preserving the gauge principle can be ob-
tained replacing in Eq. (14) the terms

�̂V (xi )�̂ = W (xi, p̂i )

with

�̂W (xi, p̂i − qÂ)�̂.

Hence this problem, arising from the truncation of the Hilbert
space of the matter system, can be overcome by first applying
to the matter system Hamiltonian (in the absence of inter-
action) Ĥ0 the projection operator �̂, and then the unitary
operator ÛN as follows:

Ĥ (N )
0 → �̂Ĥ (N )

0 �̂ → ÛN�̂Ĥ (N )
0 �̂Û †

N .

Finally, if one asks that the resulting Hamiltonian be within
the truncated Hilbert space, one has to finally project:

ÛN�̂Ĥ (N )
0 �̂Û †

N → �̂ÛN�̂Ĥ (N )
0 �̂Û †

N�̂.

This method is not limited to truncated two-level spaces
but can be applied to any truncated Hilbert space to produce
light-matter interaction Hamiltonians satisfying the gauge
principle. Applying this procedure, we obtain

Ĥ(N )
cg = ÛNĤ(N )

0 Û†
N + h̄ωcâ†â, (17)

where ÛN = �̂ÛN�̂. Using repeatedly the properties of the
identity operator �̂ = �̂2, we obtain

ÛN = exp [2iη(â + â†)Ĵx]. (18)

Here, once the Hilbert space is truncated, the operator � is
assumed to describe the identity operator in the truncated
Hilbert space. This last procedure is essential in order to
obtain unitary operators acting on Ĥ0. According to the
gauge principle, the coupling with the electromagnetic field
has to compensate for the space- and time-dependent unitary
transformations applied to the wave function of the particle.
Field-dependent unitary operators can compensate for unitary
transformations of the quantum state of the particle even in
the presence of Hilbert space truncation. As shown in a very
recent work [48], this procedure is essential to implementing
the gauge principle in truncated Hilbert spaces.

The unitary transformation ÛNĤ0Û†
N describes the rotation

of the system of pseudospins around the x axis by an angle
φ̂ = 2η(â + â†). The resulting Hamiltonian is

Ĥ(N )
cg = h̄ωcâ†â + h̄ jωx + h̄ωx{Ĵz cos[2η(â† + â)]

+ Ĵy sin[2η(â† + â)]}. (19)

This result shows that the occurrence of a nonlocal potential,
arising from the truncation of the matter system Hilbert space,
changes significantly the structure of the Coulomb-gauge
interaction Hamiltonian (see, e.g., Ref. [49] for comparison).
The price that one has to pay for preserving the gauge prin-
ciple in such a truncated space is that the total Hamiltonian
contains field operators at all orders, in contrast to the standard
Coulomb gauge Hamiltonian in Eq. (12).

B. Dicke model in the dipole gauge

The Hamiltonian in the dipole gauge for a collection of
N effective particles, Ĥ (N )

dg , corresponds to the Power-Zienau-
Woolley Hamiltonian after the dipole approximation. It can be
obtained directly from the Hamiltonian in the Coulomb gauge
with the electric dipole approximation Eq. (3) by means of a
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gauge transformation, which is also a unitary transformation:

Ĥ (N )
dg = T̂N Ĥ (N )

cg T̂ †
N , (20)

where T̂N = Û †
N . We obtain

Ĥ (N )
dg = Ĥ (N )

0 + T̂N ĤcT †
N . (21)

Applying the Baker-Campbell-Hausdorff lemma, we have

Ĥ (N )
dg = Ĥ (N )

0 +Ĥc + i
qA0

h̄
(â† − â)

∑
i

xi+
(

qA0

h̄

)2 ∑
i, j

xix j .

(22)

The standard Dicke Hamiltonian in the dipole gauge can be
obtained from Eq. (22) truncating the Hilbert space of each
dipole to include only two energy levels: Ĥ(N )

dg = �̂Ĥ (N )
dg �̂.

Observing that q�̂
∑

i xi�̂ = 2d1,0Ĵx, and using the fact that
�̂ is the identity operator for the resulting collection of two-
level systems, we obtain

Ĥ(N )
dg = h̄ωcâ†â + h̄ωx(Ĵz + j) + 2 ih̄η ωc(â† − â)Ĵx

+ 4h̄ η2 ωc Ĵ2
x . (23)

Comparing Eq. (4) and Eq. (21) (notice that T̂N = Û †
N ), we

observe that, while the Coulomb-gauge Hamiltonian can be
obtained by applying a unitary transformation to the bare
matter Hamiltonian, the dipole-gauge Hamiltonian is obtained
by applying the H.c. transformation to the bare photonic
Hamiltonian.

We will show in the next subsection that, in contrast to
the standard derivation of the Coulomb-gauge Dicke Hamil-
tonian, the dipole gauge Hamiltonian in Eq. (23) does not
violate the gauge principle. This behavior can be understood
by observing that a truncation on the number of modes in
the photonic system, as a single-mode description of the res-
onator, despite determining a loss of spatial locality [50], does
not introduce any spatial nonlocality in the quadratic potential
of the single-mode Hamiltonian, since different normal modes
are independent and correspond to different effective particles.
On the contrary, truncating the Hilbert space of an individual
mode, e.g., considering a few photon system, could produce
issues analogous to those appearing in the Coulomb gauge.

Equation (23) describes the Dicke Hamiltonian in the
dipole gauge. It includes a self-polarization term induced by
the interaction with the electromagnetic field (∝Ĵ2

x ). Neglect-
ing it can lead to unphysical results [51] and to the loss
of gauge invariance. This Hamiltonian slightly differs from
that derived in [11], where the intra-atom self-polarization
terms ∝x2

i are included in the atomic potentials and give
rise to a renormalization of the atomic transition frequency
ω1,0 and of the coupling η. While the full inclusion of these
terms into the qubit Hamiltonian might seem to be the most
accurate approach to derive a reduced two-level Hamiltonian,
it applies the two-level truncation to the different terms of the
light-matter interaction Hamiltonian with a different level of
accuracy. Specifically, while the terms ∝x2

i are included in
the atomic potentials before the diagonalization of the atomic
Hamiltonian, the other terms are taken into account only after
the application of the two-level approximation. Moreover,
the resulting self-polarization term Ĵ2

x = (1/4)
∑

i, j σ̂
(i)
x σ̂

( j)
x

still includes the intra-atomic contributions (i = j), although
these determine only a rigid shift of all the energy levels. In
Ref. [11] it is shown that, when the coupling strength is quite
high, including the intra-atom self-polarization terms in the
atom potential before the diagonalization of the full atomic
Hamiltonian, can result in less accurate results.

C. Gauge invariance of the Dicke model

The Dicke Hamiltonian in the dipole gauge in Eq. (23) can
also be derived directly applying a gauge (unitary) transfor-
mation to the Dicke Hamiltonian in the Coulomb gauge in
Eq. (17) [or alternatively in Eq. (19)]:

Ĥ(N )
dg = T̂NĤ(N )

cg T̂ †
N , (24)

where T̂N = Û†
N . Equation (24) demonstrates that the two

formulations of the Dicke model Ĥ(N )
cg and Ĥ(N )

dg are related
by a gauge transformation. Such a relation is not fulfilled if
Ĥ(N )

cg is replaced by Ĥ′(N )
cg .

III. DICKE MODEL IN THE N → ∞ LIMIT

The starting point for our analysis in the thermodynamic
limit is the Holstein-Primakoff representation [40] of the an-
gular momentum operators Ĵz = b̂†b̂ − j, Ĵ+ = b̂†

√
2 j − b̂†b̂,

and Ĵ− = Ĵ†
+ [notice that Ĵ± = Ĵx ± iĴy]. Here b̂ and b̂† are

bosonic operators. This allows one to obtain effective Hamil-
tonians that are exact in the standard thermodynamic limit
N → ∞ and η → 0, with η

√
N → λ remaining a finite quan-

tity.
We proceed in the thermodynamic limit by replacing

the angular momentum operators introduced in the previous
section by using the Holstein-Primakoff representation, ex-
panding the square roots, and finally neglecting terms with
powers of j in the denominator, since these go to zero in the
considered limit [52]. We can start from the Hamiltonian of
the collective spin system in the absence of interaction with
the electromagnetic field in Eq. (2). We obtain

Ĥ0 = h̄ωxb̂†b̂. (25)

A. Dipole gauge

Applying the Holstein-Primakoff representation to Eq. (23)
and performing the thermodynamic limit (N → ∞, η

√
N →

λ), we obtain

Ĥdg = h̄ωcâ†â + h̄ωxb̂†b̂ + ih̄λ ωc(â† − â)(b̂ + b̂†)

+ h̄ωc λ2 (b̂ + b̂†)2. (26)

B. Coulomb gauge

In contrast to the Dicke Hamiltonians in the dipole gauge
Ĥ(N )

dg , and in the standard Coulomb gauge Ĥ′(N )
cg , the correct

Coulomb gauge Dicke Hamiltonian Ĥ(N )
cg contains field oper-

ators at all orders. At a first sight, this feature prevents the
possibility to obtain a harmonic Dicke Hamiltonian in the
thermodynamic limit as obtained from Ĥ(N )

dg . Hence the ther-
modynamic limit, apparently, would destroy gauge invariance.
Actually, as we are going to show, this is not the case.
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Starting from Eq. (19), performing a series expansion of
cos [2η(â† + â)] and sin [2η(â† + â)], we obtain

Ĥ(N )
cg = h̄ωcâ†â + h̄

Nωx

2
+ h̄ωx(b̂†b̂ − N/2)

× [1 − 2η2(â† + â)2 + O(η4)]

− ih̄ωx

√
N

2
(b̂† − b̂)[2η(â† + â) + O(η3)]. (27)

In the thermodynamic limit (N → ∞,
√

Nη → λ), only terms
up to the second order in η remain different from zero, and we
finally obtain

Hcg = h̄ωcâ†â + h̄ωxb̂†b̂ − ih̄ωxλ (b̂† − b̂)(â†

+ â) + h̄D(â† + â)2, (28)

where we defined D = ωxλ
2. As a result, also the correct

Coulomb gauge Hamiltonian H(N )
cg [Eq. (19)] reduces to a

Hamiltonian which describes a harmonic system constituted
by two interacting harmonic oscillators, like the dipole gauge
Hamiltonian.

In the same limit, the standard Coulomb gauge Hamilto-
nian H′(N )

cg , not satisfying the gauge principle, becomes

H′
cg = h̄ωcâ†â + h̄ωxb̂†b̂ − ih̄ωxλ (b̂† − b̂)(â† + â)

+ h̄D′(â† + â)2, (29)

where we used Eq. (11), and defined D′ = ∑
k ωk,0λ

2
k = D/h̄.

Ĥ′
cg in Eq. (29) is very similar to Ĥcg in Eq. (28). They only

differ for the diamagnetic coefficient multiplying the term
(â† + â)2. While the coefficient in Eq. (29) (D′) contains a
sum over all the allowed transitions from the ground state, the
one in Eq. (28) (D < D′), more consistently, contains only the
contribution from the single two-level transition considered in
the two-level approximation leading to the Dicke model. As
we will show in the next subsection, this difference determines
the loss or the preservation of gauge invariance. Moreover, it
has been observed that the value of the diamagnetic coefficient
with respect to ωxλ

2 can prevent or allow a superradiant phase
transition in Dicke models [53].

It is interesting and reassuring that also after the truncation
of the Hilbert space of the atomic ensemble, using Eq. (28),
the paramagnetic and diamagnetic contributions to the phys-
ical current-current response function [44–46] still cancel in
the uniform static limit. In particular, in the present case, it is
proportional to

− (ωxλ)2

ωx
+ D = 0. (30)

This does not occur using the Hamiltonian in Eq. (29):

− (ωxλ)2

ωx
+ D′ �= 0. (31)

C. Gauge invariance

In order to demonstrate that Ĥcg and Ĥdg are related
by a unitary (gauge) transformation and hence display the
same spectrum of eigenergies, we start applying the Holstein-
Primakoff representation to the unitary operator which imple-
ments the minimal coupling replacement in Eq. (17), as well

as the gauge transformation of the Dicke model [see Eq. (24)].
Taking the standard limits (N → ∞, with

√
Nη = λ finite),

we obtain

ÛN → Û = exp [iλ(â + â†)(b̂ + b̂†)]. (32)

The Dicke Hamiltonian in the Coulomb gauge Ĥcg can be
readily obtained by applying the generalized minimal cou-
pling replacement using Eq. (25) and Eq. (32):

Ĥcg = ÛĤ0 Û† + h̄ωcâ†â. (33)

This approach is particularly interesting, since it provides
a recipe to obtain the correct Coulomb-gauge light-matter
interaction Hamiltonian starting from the knowledge of the
unperturbed Hamiltonian of a bosonic excitation Ĥ0 and its
associated polarization operator, which in this case is p̂ =√

Nd1,0(b̂ + b̂†). Notice that the unitary operator in Eq. (33)
can be expressed as Û = exp (iÂp̂/h̄). Thus, within this ap-
proach, it is not necessary to start explicitly considering a col-
lection of effective two-level atoms, but it is sufficient to start
from a bosonic Hamiltonian for the bare matter system and
then to use the generalized minimal coupling replacement in
Eq. (33). We will discuss further this point and its connection
with the Hopfield model in the next section.

Applying to Ĥcg the unitary transformation T̂ ĤcgT̂ †,
where T̂ = Û†, the corresponding Hamiltonian in the dipole
gauge in Eq. (26) is easily recovered:

T̂ ĤcgT̂ † = Ĥdg. (34)

Equation (34) demonstrates that Ĥdg and Ĥcg are related by a
unitary transformation as required by gauge invariance; hence
they will display the same eigenvalues. In contrast, Ĥ′

cg is not

related to Ĥdg by a unitary transformation and thus it will
display different energy levels.

We now provide a direct check of the breakdown of gauge
invariance of the Dicke model as described by the standard
Hamiltonian in the Coulomb gauge Eq. (29). Specifically, we
compare the resonance frequencies of the two collective po-
lariton modes obtained by diagonalizing (using Bogoliubov-
Hopfield transformations) the Hamiltonians Eqs. (26), (28),
and (29). For the polariton frequencies, resulting from the
diagonalization of Eq. (26), we obtain

ω2
dg± = 1

2

[
ω̃2

x + ω2
c ±

√(
ω̃2

x − ω2
c

)2 + 4λ2ωxωc
]
, (35)

where ω̃x =
√

ωx(ωx + 4λ2/ωc).
Diagonalizing the Hamiltonian in Eq. (28) results in the

polariton frequencies

ω2
cg± = 1

2

[
ω̃2

c + ω2
x ±

√(
ω̃2

c + ω2
x

)2 − 4 ω2
cω

2
x

]
, (36)

with ω̃c = √
ωc(ωc + 4D).

The polariton frequencies ω′
cg± resulting from the diago-

nalization of the standard Coulomb-gauge Dicke Hamiltonian
in Eq. (29) can be obtained from Eq. (36) after the replacement
D → D′.

The unitary gauge transformation in Eq. (34) implies that
ωdg± = ωcg±. This relation can be explicitly shown after
some algebraic manipulation. On the contrary, the polariton
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FIG. 3. Frequencies ωcg± = ωdg± and ω′
cg± of the two polari-

ton modes, obtained diagonalizing the Dicke model, in the limit
N → ∞, as a function of the normalized coupling strength λ for
(a) the resonant case (ωc = ωx) and (b) for the detuned case with
ωx = 0.8ωc.

frequencies obtained from Ĥ′
cg are different:

ω′
cg± �= ωcg± = ωdg±.

Figure 3 displays ωcg±/ωc = ωdg±/ωc and ω′
cg±/ωc as a

function of λ, for D′ = 2D. The choice of α ≡ D′/D depends
on the specific system. Here we used the reasonable value
α = 2.

The differences are relevant, starting from normalized
coupling strengths λ ∼ 0.4. Hence we can conclude that
for coupling strengths λ � 0.4 the standard Coulomb-gauge
Dicke Hamiltonian (in the thermodynamic limit) provides
significantly wrong polariton frequencies in agreement with
the results in Ref. [11].

D. Superradiant quantum phase transitions

In the past, it was shown [54] that, when the number of
atoms tends to infinity, the Dicke model can undergo a transi-
tion to a superradiant phase, where the system exhibits a spon-
taneous coherent electromagnetic field. The initial predic-
tion used the rotating wave approximation (Tavis-Cummings
model). However, soon after, using a Hamiltonian similar to
that in Eq. (26), it was shown that photon condensation is
robust against the addition of counter-rotating terms [55,56].
These early studies soon stimulated great interest on the Dicke
model as well as a long-standing and still ongoing debate and
controversies (see Ref. [7] for a recent review). A thorough
detailed description of the whole debate is beyond the scope
of this article. Here we limit ourselves to briefly describing
how the results presented here enter this debate.

The Dicke model Hamiltonian in Eq. (26) also exhibits
a quantum phase transition [57], which can occur at zero
temperature by tuning the light-matter coupling λ across a
quantum critical point. Above the quantum critical point, the
ground state of the cavity QED system is twice degenerate.

To the best of our knowledge, this phase transition has
never been observed in thermal equilibrium systems. How-
ever, it has been realized with quantum simulators made of
atoms in an optical cavity subject to both dissipation and
driving [58,59].

Early on, it was pointed out that addition of the neglected
diamagnetic term (proportional to Â2) in the Dicke model,
naturally generated by applying minimal coupling, forbids
the phase transition as a consequence of the TRK sum rule
(no-go theorem for superradiant phase transition) [60,61].
Specifically, using the Hamiltonian in Eq. (29), it has been
shown that the superradiant phase transition can occur only if

ωxλ
2 > D′ = D/h̄,

where

D = NA2
0q2/(2m).

However, the TRK sum rule, which can be expressed as

D′ =
∑

k

ωk,0λ
2
k = D/h̄

(here ωk,0 and λk are the transition frequencies and coupling
rates between the ground state and all the excited states of the
atom), implies that ωxλ

2 � D′.
More recently [53], it has been shown that the TRK sum

rule also forbids the quantum phase transitions, in the case of
cavity QED systems consisting of real atoms coupled to the
field via minimal coupling Eq. (29). Such a no-go theorem
does not apply to circuit QED systems. If this phase transition
can be observed using superconducting circuit systems is still
a subject of debate.

The general debate on a superradiant phase transition was
enriched by a work providing a microscopic derivation of the
Dicke model in the dipole gauge [62]. In this model [see, e.g.,
Eq. (26)], there is no diamagnetic term preventing the Dicke
phase transition. Hence the authors claim that the basis of
no-go argumentations concerning the Dicke phase transition
with atoms in electromagnetic fields dissolves. Actually, this
puzzling ambiguity was addressed in previous work [49].
In the electric dipole gauge, the system is described by the
original Dicke Hamiltonian. As a consequence, in the dipole
gauge, the quantum operator −iωc(â − â†) does not corre-
spond, as in the Coulomb gauge, to the electric-field operator
but to the displacement operator. Although above the critical
coupling 〈â〉 �= 0, the phase transition leads to a spontaneous
polarization of the two-level systems, however, it does not
lead to a spontaneous transverse electric field. This occurs
because the electric-field operator in the dipole gauge is

Ê = −iωc[â − â† − λ(b̂ − b̂†)].

More recent work [10] confirms this view and applies it to
circuit QED systems.

This article, showing accurately that the Dicke model in the
thermodynamic limit provides gauge-independent physical
results, eliminates any gauge ambiguities in discussions on the
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superradiant phase transition in cavity QED systems consist-
ing of real atoms coupled to the field via minimal coupling.
In particular, the same results obtained in the dipole gauge
are obtained in the Coulomb gauge if the correct Coulomb-
gauge Hamiltonian in Eq. (29) is adopted, and if the system
operators Ô, as well the system states, are transformed accord-
ing to the proper unitary transformation: Ôdg = T̂ ÔcgT̂ † and
|ψdg〉 = T̂ |ψcg〉. Finally, we observe that, using the Coulomb
gauge Dicke model in Eq. (29), since the TRK sum rule is
satisfied [see Eq. (30)], the superradiant phase transition is
forbidden because (following, e.g., Ref. [53]) it would require
ωxλ

2 < D.

IV. GAUGE INVARIANCE OF THE HOPFIELD MODEL

The Hopfield model provides a full quantum description
of the interaction between the electromagnetic field and a
dielectric which is described by a harmonic polarization den-
sity. The original treatment considers a 3D uniform dielectric
with a single resonance frequency describing dispersionless
collective excitations. This exactly solvable model was ini-
tially applied to the case of excitonic polaritons. Afterwards,
it has been applied and/or generalized to describe a great
variety of systems with different dimensionalities and degrees
of freedom, including quantum well [63] and cavity polaritons
[64], phonon polaritons [65,66], and plasmonic nanoparticle
crystals [67]. A generalized Hopfield model for inhomoge-
neous and dispersive media has been proposed [68]. Here
we analyze the original model, its gauge properties, and its
connection with the Dicke model in the thermodynamic limit.

The field operators are given in terms of the bosonic pho-
tonic operators âk,λ and the bosonic operators b̂k,λ describing
the destruction of the polarization quanta by

Â(r) =
∑
k,λ

A(0)
k ek,λ(âk,λ + â†

−k,λ)eik·r,

(37)
P̂(r) = P(0)

∑
k,λ

ek,λ(b̂k,λ + b̂†
−k,λ)eik·r,

where k is the wave vector, λ labels the two transverse
polarizations, ek,λ are the polarization unit vectors, and we
have defined A(0)

k = √
h̄/(2ε0V ωk ) and P(0) = √

h̄ω0β/(2V ).
Here, V is the quantization volume, ωk and ω0 are the bare
resonance frequencies of the photonic modes and of the matter
system waves, respectively, and β is the polarizability [41].

The Hopfield Hamiltonian in the Coulomb gauge can be
written as

ĤHop
cg = h̄

∑
k,λ

ωkâ†
k,λâk,λ + h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ

+ ih̄ω0

∑
k,λ

�k (âk,λ + â†
−k,λ)(b̂k,λ − b̂†

−k,λ)

+ h̄ω0

∑
k,λ

�2
k (âk,λ + â†

−k,λ)2, (38)

where �k = VA(0)
k P(0)/h̄.

It is interesting to observe that this equation can be written
in the compact form

ĤHop
cg = h̄

∑
k,λ

ωkâ†
k,λâk,λ + ÛHop

(
h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ

)
Û †

Hop,

(39)
where

ÛHop = exp

[
i
∑
k,λ

�k (âk,λ + â†
−k,λ

)(b̂k,λ − b̂†
−k,λ

)

]
. (40)

We observe that this unitary operator coincides with the
Hermitian conjugate of the operator describing the Coulomb
→ dipole gauge transformation in a system with a polarization
density operator given by Eq. (37):

ÛHop = T̂ †
Hop, (41)

where

T̂Hop = exp

[
i

h̄

∫
dr Â(r) · P̂(r)

]
. (42)

This relationship implies that the Hopfield Hamiltonian in
the dipole gauge can be easily obtained:

ĤHop
dg = T̂HopĤHop

cg T̂ †
Hop = T̂Hop

(
h̄

∑
k,λ

ωkâ†
k,λâk,λ

)
T̂ †

Hop

+ h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ. (43)

After simple algebra, we obtain

ĤHop
dg = h̄

∑
k,λ

ωkâ†
k,λâk,λ + h̄ω0

∑
k,λ

b̂†
k,λb̂k,λ

−ıh̄
∑
k,λ

ωk�k (âk,λ − â†
−k,λ)(b̂k,λ + b̂†

−k,λ)

+ h̄
∑
k,λ

ωk�
2
k (b̂k,λ + b̂†

−k,λ)2. (44)

Equation (43) demonstrates that Eq. (38) and Eq. (44) are
related by a unitary (gauge) transformation and hence display
the same energy spectrum. The compact forms in Eq. (39) and
Eq. (43) are manifestly gauge related. Moreover, being man-
ifestly related by a unitary transformation, they provide the
same energy spectra and the same matrix elements of physical
observables. Of course, both the corresponding operators and
the vector states have to be transformed accordingly, when
changing from one gauge to the other. If needed, a continuous
set of gauge transformations which depend on one parameter
can be considered. It is sufficient to, e.g., start from the Hamil-
tonian in the Coulomb gauge and then consider a unitary
transformation using modified unitary operators, where the
exponent in Eq. (42) is multiplied by such a parameter (see,
e.g., Ref. [12]).

These results open the way to the application of the gen-
eralized minimal coupling replacement [see Eqs. (39), (41),
and (42)] to promptly derive general gauge-invariant Hopfield
Hamiltonians. Given a generic polarization operator like that
in Eq. (37), using the unitary operator in Eq. (42), it is possible
to directly obtain the total Hamiltonian in the Coulomb or
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dipole gauge by applying the corresponding transformation
to the bare matter system Hamiltonian [see Eq. (39)] or to the
bare photonic Hamiltonian [see Eq. (44)]. From this point of
view, the Dicke model in the dilute regime can be regarded as
a particular case of the Hopfield model where the polarization
density operator is P̂ = (

√
Nd1,0/V )(b̂ + b̂†) (see Sec. III C).

V. CONNECTION WITH THE PEIERLS SUBSTITUTION

Throughout this work we considered ensembles of nonin-
teracting atoms. It remains an open problem how to construct
gauge-invariant model Hamiltonians for interacting atoms.
Here we limit ourselves to briefly analyzing the simplest
case of spinless electrons in a one-dimensional inversion-
symmetric crystal with N sites (one atom per site) in a
tight-binding approximation (see, e.g., Refs. [46,69]). In the
absence of the interaction with the field, and considering
a single orbital φ j (x) = φ(x − Rj ) (here Rj indicates the
site coordinate) per atom, the model Hamiltonian can be
written as

Ĥ0 = E0

N∑
j=1

| j〉〈 j| − t
N∑

j=1

(| j + 1〉〈 j| + H.c.), (45)

where E0 = 〈φ j |H0|φ j〉 and t = −〈φ j±1|H0|φ j〉. Considering
the interaction with a uniform field, the model Hamiltonian
becomes

Ĥ = �ÛĤ0Û
†�, (46)

where Û = exp (iqxÂ) and � = ∑
j | j〉〈 j|. Assuming that Û

is almost constant within the spatial range of the localized
orbitals, we have 〈φ j |Û |φ j′ 〉  δ j, j′ exp (iqR jÂ). We obtain

Ĥ0 = E0

N∑
j=1

| j〉〈 j| − t
N∑

j=1

(eiqaÂ| j + 1〉〈 j| + H.c.), (47)

where a = Rj+1 − Rj . This result corresponds to the so-
called Peierls substitution and can be easily generalized to
fields which are slowly varying on the lattice scale replacing
the phase fators in Eq. (47) with exp{iq a

2 [Â(Rj+1) + Â(Rj )]}
[46,70–73]. If more than one orbital per atom is considered,
in addition to the Peierls substitution [46], we expect the
presence (also in the diagonal term proportional to E0) of
additional phase factors depending on the dipole moment
matrix element between two orbitals at the same site, similar
to those obtained for a single atom [30]. Such a development
is left for future work. We conclude this section by observing
that the Peierls substitution method and the results presented
in this work are closely connected. They both implement the
minimal coupling replacement applying unitary operators to

the bare Hamiltonian of the material system. Such a connec-
tion is further explored in a very recent work [48].

VI. DISCUSSION AND OUTLOOK

We have investigated the gauge invariance of the Dicke
model in the dilute regime. In particular, we started from the
derivation of the correct (not violating the gauge principle)
Dicke model in the Coulomb gauge for a finite number N
of dipoles. After that, using the Holstein-Primakoff trans-
formation, we obtained the Coulomb-gauge Dicke Hamilto-
nian in the dilute regime. We demonstrated that it is related
by a gauge (unitary) transformation to the corresponding
Hamiltonian in the dipole gauge. Hence the two gauges, as
required, provide the same energy spectra, in contrast with
the standard Dicke model. The standard Dicke Hamiltonian
in the Coulomb gauge and the one derived here only differ
for the diamagnetic coefficient multiplying the term (â† + â)2.
This difference determines either the loss or the preservation
of gauge invariance.

We also analyzed the Hopfield model, showing its gauge
invariance. We provided a method to derive in a simple way
manifestly gauge-invariant Hopfield models, having knowl-
edge just of the matter polarization field. These results show
that the Dicke model in the dilute regime can be regarded as a
particular case of the more general Hopfield model.

Finally, we briefly discussed the connection of the gauge-
invariant approach here discussed with the Peierls substitution
used to introduce the interaction of crystals with the electro-
magnetic field. This brief analysis suggests a generalization
of the present approach to many-body interacting electron
systems.

Very recently, it has been shown that generalized Dicke
models for two-level systems which do not display inversion
symmetry can generate sizable spin squeezing and entan-
glement [74]. It would be interesting to apply the methods
proposed here to eliminate gauge ambiguities from these
models.
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