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Tunable optomechanically induced transparency by controlling the dark-mode effect
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We study tunable optomechanically induced transparency by controlling the dark-mode effect induced by
two mechanical modes coupled to a common cavity field. This is realized by introducing a phase-dependent
phonon-exchange interaction, which is used to form a loop-coupled configuration. Combining this phase-
dependent coupling with the optomechanical interactions, the dark-mode effect can be controlled by the quantum
interference effect. In particular, the dark-mode effect in this two-mechanical-mode optomechanical system can
lead to a double-amplified optomechanically induced transparency (OMIT) window and a higher efficiency
of the second-order sideband in comparison with the standard optomechanical system. This is because the
effective mechanical decay rate related to the linewidth of the OMIT window becomes a twofold increase
in the weak-coupling limit. When the dark-mode effect is broken, controllable double transparency windows
appear and the second-order sideband, as well as the light delay or advance, is significantly enhanced. For
an N-mechanical-mode optomechanical system, we find that in the presence of the dark-mode effect, the
amplification multiple of the linewidth of the OMIT window is nearly proportional to the number of mechanical
modes, and that the OMIT with a single window becomes the one with N tunable windows by breaking the
dark-mode effect. The study will be useful in optical information storage within a large-frequency bandwidth
and multichannel optical communication based on optomechanical systems.

DOI: 10.1103/PhysRevA.102.023707

I. INTRODUCTION

Cavity optomechanical systems [1–3] are an important
platform for manipulating mechanical properties through op-
tical means and studying cavity-field statistics by mechan-
ically changing the cavity boundary [4–20]. Optomechani-
cally induced transparency (OMIT) [21–23], as a prominent
application closely relevant to this platform, is the result of
destructive interference between the anti-Stokes field and the
probe field. The underlying physical mechanism is analogous
to electromagnetically induced transparency [24,25]. The per-
formance of an OMIT process is mainly described by the op-
tical transmission and delay, which will directly determine the
information transfer efficiency and storage time, respectively.
Recently, various schemes have been proposed to tune the
transmission rate and group delay of the signal light, such as
OMIT in hybridized optomechanical systems [26–35], OMIT
with higher-order sidebands [36–38], OMIT in quadratically
nanomechanical systems [39,40], nonreciprocal OMIT [41],
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OMIT with Bogoliubov mechanical modes [42], and OMIT
at exceptional points [43].

Although great advances have been made to improve
OMIT, it remains a long-standing challenge to significantly
broaden the linewidth of the OMIT window determining the
frequency bandwidth of the information transmission and
realize the ultralong optical delay [21–23]. The physical origin
behind this obstacle is that the effective mechanical decay rate
relating to the linewidth of the OMIT window is governed by
the pump laser power (i.e., the intracavity photon number)
[21–23], while a high pump power will cause the bistability
of the system [22,23,26,35,36].

In parallel, the optomechanical dark mode [44–46], pro-
posed in a system of two optical cavities coupled to a common
mechanical resonator, has attracted much attention in recent
years. It can be employed for the realization of high efficient
quantum state conversion [45,46] and the exploitation of cir-
cumventing the decay [11,45–47]. Meanwhile, two mechani-
cal modes or magnon modes coupled to a common cavity field
can also be hybridized into a bright mode and a dark mode
decoupled from the system [48–53]. This physical mechanism
has been broadly applied to gradient memory or information
storage [49], and energy transfer [50]. In particular, the effec-
tive mechanical decay rate of the bright mode is nearly twice
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FIG. 1. (a) Schematic diagram of the three-mode loop-coupled optomechanical system formed by a cavity-field mode a (with a decay rate
κ) optomechanically coupled to two mechanical modes b1 and b2 (with decay rates γ1 and γ2). Two mechanical modes are coupled to each
other via a phase-dependent phonon-phonon interaction with the coupling strength η and the modulation phase θ . The system is driven by a
strong pump field of frequency ωL and a weak probe field of frequency ωp. (b) Frequency spectrum for the system shown in (a). The first-order
sidebands with frequencies ωL ± � are referred to as the Stokes and anti-Stokes fields, respectively. The sidebands with frequencies ωL ± 2�

are the second-order upper or lower sidebands. (c) We extend the scheme in (a) to a net-coupled optomechanical system: a cavity mode is
simultaneously coupled to N � 3 (N is an integer) mechanical modes via optomechanical couplings, and the nearest-neighboring mechanical
modes are coupled to each other through the phase-dependent phonon-exchange couplings Hj for j = 1-(N − 1).

that of the individual mechanical mode [48–53]. Thus, based
on the characteristic that the narrow linewidth of the OMIT
window results from the effective mechanical decay rate of
the mechanical mode [21–23], it is natural to ask the question
whether we can significantly widen the OMIT window or steer
the switch from the OMIT with a single transparent window to
the case of multiple transmission windows by controlling the
dark-mode effect in a multimechanical-mode optomechanical
system.

In this paper, we study the sensitive impacts of the dark-
mode effect on the optical properties, including the optical
transmission, group delay, and higher-order sidebands. We
consider a three-mode loop-coupled optomechanical system
composed of a cavity-field mode optomechanically coupled
to two mechanical modes, which are coupled to each other
by a phase-dependent phonon-phonon interaction. Combin-
ing this phase-dependent phonon-phonon coupling with the
optomechanical interactions, the quantum interference effect
leads to the breaking of the dark mode. We find that in the
presence of the dark mode, OMIT and second-order sidebands
can be significantly enhanced compared to those in a standard
optomechanical system, and the amplification multiple of
the linewidth of the OMIT window is nearly proportional
to the number of mechanical modes. This provides a route
to achieve the optical transmission within a large-frequency
bandwidth. When breaking the dark-mode effect, the OMIT
with a single window becomes one with multiple windows,
and the transmission windows can be controlled and switched
periodically by tuning the modulation phase. These results
provide the possibility to enhance or steer the performance
of OMIT, and realize the switch from single-channel to multi-
channel optical communication. In particular, the significantly
enhanced second-order sideband and light delay or advance,
which are potentially useful for the precise sensing [37,54–
58] and optical storage or quantum communication [21–23],
respectively, can be achieved by controlling the dark-mode
effect.

The rest of this paper is organized as follows. In Sec. II,
we describe the model and present the OMIT solution. In
Sec. III, we analyze OMIT, second-order sideband, and group
delay by using the dark-mode effect. In Sec. IV, we extend our
studies to the case of the N-mechanical-mode optomechanical
system. Finally, we provide a brief conclusion in Sec. V.
For keeping the completeness of this work, we present four
appendices, in which we show some algebra equations and
sideband parameters (Appendix A), the detailed calculation
of the effective mechanical decay rate (Appendix B), the
detailed derivation of Eq. (36) (Appendix C), and a pos-
sible experimental realization and a derivation of a phase-
dependent phonon-hopping interaction between two mechan-
ical resonators (Appendix D).

II. MODEL AND SOLUTIONS

We consider a three-mode loop-coupled optomechanical
system, which consists of an optical cavity mode coupled
to two mechanical modes via radiation-pressure force, as
shown in Fig. 1(a). The two mechanical modes are coupled to
each other via a phase-dependent phonon-phonon interaction
with coupling strength η and modulation phase θ . Note that
this model can be implemented in either photonic crystal
optomechanical setups [59] or circuit electromechanical sys-
tems [60,61]. In the photonic crystal optomechanical systems,
the phase-dependent phonon-exchange interaction has been
suggested by using two assistant cavity fields [59]. The phase-
dependent phonon-exchange coupling in the circuit elec-
tromechanical setups can be indirectly induced by coupling
the two mechanical modes to a charge qubit (see Appendix D)
[62]. A pump laser with frequency ωL and field amplitude
εL = √

2κPL/h̄ωL, and a probe laser with frequency ωp and
amplitude εp = √

2κPp/h̄ωp are applied to this system. Here,
PL and Pp are the control and probe light powers, respectively,
and κ is the cavity-field decay rate. In a rotating frame defined
by the unitary transformation operator exp(−iωLa†at ), the

023707-2



TUNABLE OPTOMECHANICALLY INDUCED TRANSPARENCY … PHYSICAL REVIEW A 102, 023707 (2020)

system Hamiltonian reads as (with h̄ = 1)

H = H0 + Hint + Hdr, (1)

with

H0 = 	ca†a +
2∑

l=1

ωl b
†
l bl , (2a)

Hint =
2∑

l=1

gla
†a(bl + b†

l ) + η(eiθ b†
1b2 + e−iθ b†

2b1), (2b)

Hdr = i(εLa† + εpa†e−i�t − H.c.), (2c)

where a (a†) and bl (b†
l ) are, respectively, the annihilation

(creation) operators of the cavity mode and the lth mechanical
mode, with the corresponding resonance frequencies ωc and
ωl . The optomechanical and the phonon-phonon interaction
strengths are denoted by gl and η, respectively. The cavity-
pump and probe-pump detunings are given by

	c = ωc − ωL, � = ωp − ωL. (3)

When the control and probe lasers are simultaneously injected
into the cavity, we consider the high-order sidebands with
frequencies ωL ± n� (n represents the order of the sidebands)
induced by the nonlinear optomechanical interaction. The
frequency spectrum of the optomechanical system is shown in
Fig. 1(b), in which the first-order sidebands with frequencies
ωL ± � correspond to the anti-Stokes and Stokes fields and
the sidebands with frequencies ωL ± 2� denote the second-
order upper or lower sideband, respectively. The Langevin
equations for the operators of the optical and mechanical
modes can be written as

ȧ = −(κ + i	c)a − i
∑
l=1,2

gla(bl + b†
l )

+ εL + εpe−i�t +
√

2κain, (4a)

ḃ1 = −(γ1 + iω1)b1 − ig1a†a − iηeiθb2 +
√

2γ1b1,in, (4b)

ḃ2 = −(γ2 + iω2)b2 − ig2a†a − iηe−iθ b1 +
√

2γ2b2,in, (4c)

where κ and γl are the decay rates of the cavity mode and
the lth mechanical mode, respectively. The operators ain and

bl,in are, respectively, the noise operators of the cavity-field
mode and the lth mechanical mode. We express the variables
in Eq. (4) as the sum of their steady-state values and quantum
fluctuations, namely, a = α + δa and bl=1,2 = βl + δbl . As
the control field is assumed to be sufficiently strong, all
the operators can be identified with their expectation values
[22,36]. Then, the equations for the expectation values of
these fluctuations can be obtained as [22,36]

δȧ = −(κ + i	)δa −
∑
l=1,2

iglα(δbl + δb†
l )

−
∑
l=1,2

iglδa(δbl + δb†
l ) + εpe−i�t , (5a)

δḃ1 = −(γ1 + iω1)δb1 − ig1(α∗δa + αδa†)

− iηeiθ δb2 − ig1δa†δa, (5b)

δḃ2 = −(γ2 + iω2)δb2 − ig2(α∗δa + αδa†)
− iηe−iθ δb1 − ig2δa†δa, (5c)

where the quantum noise terms (ain and bl=1,2,in) can be
ignored due to their zero mean values. The parameter 	 =
	c + ∑

l=1,2 gl (βl + β∗
l ) denotes the effective detuning of the

cavity field shifted by the optomechanical interactions, and
the steady-state mean values are given by α = εL/(κ + i	),
β1 = −i(g1|α|2 + ηeiθβ2)/(γ1 + iω1), and β2 = −i(g2|α|2 +
ηe−iθβ1)/(γ2 + iω2). In Eq. (5), the nonlinear terms, such as
δa†δa and δa(δbl + δb†

l ), are kept to generate the required
second-order sidebands, and the higher-order sidebands are
neglected. The response of the probe field for the first- and
second-order sidebands to the system can be exhibited by
using the following ansatz [22,36]:

δa = A−
1 e−i�t + A+

1 ei�t + A−
2 e−2i�t + A+

2 e2i�t , (6a)

δb1 = B−
1,1e−i�t + B+

1,1ei�t + B−
1,2e−2i�t + B+

1,2e2i�t , (6b)

δb2 = B−
2,1e−i�t + B+

2,1ei�t + B−
2,2e−2i�t + B+

2,2e2i�t . (6c)

By substituting Eq. (6) into Eq. (5), we obtain 12 algebraic
equations which are divided into two groups, as shown in
Appendix A. After solving Eqs. (A1) and (A2), we obtain
the coefficients of the first- and second-order upper sidebands,
which can describe the linear and nonlinear responses of the
system. The coefficient of the first-order upper sideband is

A−
1 = T (1)

2 [−κ + i(	 + �)] − 2i|α|2(g2
2T (1)

3,1 + g2
1T (1)

3,2

) − 4iT (1)
1 g1g2η|α|2 cos θ

−T (1)
2 [	2 + (κ − i�)2] + 4|α|2	(

g2
2T (1)

3,1 + g2
1T (1)

3,2

) + 8T (1)
1 g1g2η|α|2	 cos θ

εp, (7)

and that of the second-order upper sideband is

A−
2 = χ1(�)(A+

1 )∗ + i[g1(B−
1,1 + (B+

1,1)∗) + g2(B−
2,1 + (B+

2,1)∗)]A−
1

χ2(�) − [κ + i(	 − 2�)]
, (8)

with

(A+
1 )∗ = −2(α∗)2[κ − i(	 + �)]

[
2g1g2ηT (1)

1 cos θ + (
g2

1T (1)
3,2 + g2

2T (1)
3,1

)]
(iκ + 	 + �)

({
4|α|2	(

g2
2T (1)

3,1 + g2
1T (1)

3,2

) − T (1)
2 [	2 + (κ − i�)2]

} + 8g1g2η|α|2T (1)
1 	 cos θ

)εp, (9)

χ1(�) = 2iα{g1α[(B+
1,1)∗ + B−

1,1] + g2α[(B+
2,1)∗ + B−

2,1] − A−
1 (iκ + 	 + 2�)}[2g1g2ηT (2)

1 cos θ + (
g2

1T (2)
3,2 + g2

2T (2)
3,1

)]
[
(iκ + 	 + 2�)T (2)

2 − 2|α|2(g2
1T (2)

3,2 + g2
2T (2)

3,1

)] − 4g1g2η|α|2T (2)
1 cos θ

, (10)

χ2(�) = [
[κ − i(	 + 2�)]−1 − iT (2)

2

[
2|α|2(g2

1T (2)
3,2 + g2

2T (2)
3,1 + 2g1g2ηT (2)

1 cos θ
)]−1]−1

. (11)
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Other parameters used are displayed in Appendix A. In the
following, by using the input-output relation [63], we obtain
the transmission rate of the probe field and the efficiency of
the second-order sideband [22,23,36,38]:

|tp|2 =
∣∣∣∣1 − κ

εp
A−

1

∣∣∣∣
2

, �p =
∣∣∣∣− κ

εp
A−

2

∣∣∣∣. (12)

The associated transmission group delay caused by the rapid
phase dispersion is given by [23]

τ1 = d arg(tp)

d�
|�=ωl , (13)

where arg(x) takes the argument of the complex number x.

III. OMIT BY CONTROLLING THE DARK MODE

A. Dark-mode effect and its breaking

In this section, we analyze the dark-mode effect and its
breaking in the three-mode optomechanical system. In the
strong-driving regime, the linearized optomechanical Hamil-
tonian can be inferred from the equations of motion for the
quantum fluctuations in Eq. (5). Under the rotating-wave
approximation (RWA), the linearized optomechanical Hamil-
tonian takes the form

HRWA = 	δa†δa + ω1δb†
1δb1 + ω2δb†

2δb2 + η(eiθ δb†
1δb2

+ e−iθ δb†
2δb1) + G1(δaδb†

1 + δb1δa†)

+ G2(δaδb†
2 + δb2δa†), (14)

where 	 is the effective detuning of the cavity field shifted
by the optomechanical interactions, and Gl = gl |α| is the
linearized optomechanical coupling strength.

To investigate the dark-mode effect in this system, we
first consider the case where the phase-modulated phonon-
exchange interaction is absent, i.e., η = 0. In this case, due
to an optically mediated coupling, the two mechanical modes
are hybridized into a bright mode and a dark mode, which are
expressed as

B+ = 1√
G2

1 + G2
2

(G1δb1 + G2δb2), (15)

B− = 1√
G2

1 + G2
2

(G2δb1 − G1δb2). (16)

Then, the Hamiltonian in Eq. (14) can be rewritten with the
two hybridization modes B± as

HHyb = 	δa†δa + ω+B†
+B+ + ω−B†

−B− + ζ (B†
+B− + B†

−B+)

+ G+(δaB†
+ + B+δa†), (17)

where we introduce these parameters

ω+ = G2
1ω1 + G2

2ω2

G2
1 + G2

2

, ω− = G2
2ω1 + G2

1ω2

G2
1 + G2

2

, (18)

ζ = G1G2(ω1 − ω2)

G2
1 + G2

2

, G+ =
√

G2
1 + G2

2. (19)

It can be seen from Eq. (19) that when ω1 = ω2, we have ζ =
0, and thus the mode B− is decoupled from both the cavity

mode a and the mode B+, which means that the dark mode
B− appears in this system.

To break the dark-mode effect, a phase-dependent phonon-
exchange interaction between the two mechanical modes is
considered. Then, by introducing two new bosonic modes B̃+
and B̃− defined as

B̃+ = f δb1 − eiθ hδb2, B̃− = e−iθ hδb1 + f δb2, (20)

Hamiltonian (14) becomes

HD = 	δa†δa + ω̃+B̃†
+B̃+ + ω̃−B̃†

−B̃− + (G̃∗
+δaB̃†

+

+ G̃+B̃+δa†) + (G̃∗
−δaB̃†

− + G̃−B̃−δa†), (21)

where the coupling strengths and resonance frequencies are
given by

G̃+ = f G1 − e−iθ hG2, G̃− = eiθ hG1 + f G2,

ω̃± = 1
2 (ω1 + ω2 ±

√
(ω1 − ω2)2 + 4η2), (22)

with f = |ω̃− − ω1|/
√

(ω̃− − ω1)2 + η2 and h = η f /(ω̃− −
ω1). When the two mechanical modes have the same frequen-
cies, ω1 = ω2 = ωm, and coupling strengths, G1 = G2 = G,
the coupling strengths in Eq. (22) can be simplified as

G̃+ =
√

2G(1 + e−iθ )/2, G̃− =
√

2G(1 − eiθ )/2. (23)

It follows from Eq. (23) that, when θ = nπ for an integer n,
the cavity mode a is decoupled from one of the two hybridized
mechanical modes B̃− (for an even number n) and B̃+ (for an
odd number n). These features mean that the dark-mode effect
can be broken by tuning the modulation phase θ �= nπ .

B. OMIT and second-order sidebands
in the presence of the dark mode

In the above sections, we have derived the transmission
rate of the probe field and the efficiency of the second-order
sideband, and have analyzed how to control the dark-mode
effect in the two-mechanical-mode optomechanical system.
Now, we study OMIT and its second-order sidebands in the
presence of the dark mode (η = 0). To make the results
feasible in experiments, we use the parameters realized in
recent experiments [64,65], i.e., λ = 1064 nm, L = 25 mm,
κ = 2π × 215 kHz, ωl=1,2 = ωm = 2π × 947 kHz, ml=1,2 =
145 ng, Ql = 6700 (γl = ωl/Ql ), and εp = 0.05εL.

A single OMIT is due to the destructive interference be-
tween the probe field and the anti-Stokes scattering stimulated
by the red-sideband driving [21–23]. Correspondingly, in the
case of the two mechanical modes, there exist two routes
of destructive interferences which lead to two transparency
windows in the OMIT spectrum. However, we find some
counterintuitive phenomena in the presence of the dark mode
(η = 0) shown in Fig. 2. There exists only one transparency
window and one second-order sideband window in the two-
degenerate-mechanical-mode optomechanical system [see the
red dashed lines in Figs. 2(b) and 2(c)]. Physically, this is due
to the fact that the bright mode plays an effective role in the
destructive interference and the dark mode is decoupled from
the system. Moreover, compared to a standard optomechanical
system consisting of a cavity mode and a single mechanical
mode, it exhibits not only a multifold amplified OMIT win-
dow, but also a significantly enhanced second-order sideband
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FIG. 2. In the presence of the dark-mode effect (η = 0), (a) the linewidth �eff of the OMIT window as a function of the pump power P
for a standard optomechanical system (g2 = 0, blue solid lines) and a two-degenerate-mechanical-mode optomechanical system (g1 = g2, red
dashed lines). (b) The transmission rate |tp|2 of the probe light, and (c) the efficiency �p(%) of the second-order sideband as a function of the
probe-pump detuning � when PL = 1.5 mW for a standard optomechanical system (blue solid lines) and a two-degenerate-mechanical-mode
optomechanical system (red dashed lines). Here we take the normalized cavity-pump detuning 	/ωm = 1.

in the two-degenerate-mechanical-mode optomechanical sys-
tem. In a standard optomechanical system, the width of the
OMIT window is related to the effective mechanical decay
rate given by [21–23]

�eff = γm + γopt, (24)

where γopt ≈ G2/κ stands for the optomechanically induced
mechanical decay rate for a single mechanical mode (with the
mechanical decay rate γm), and G = g|α| (|α|2 is the intra-
cavity photon number) denotes the linearized optomechanical
coupling strength.

For the two-degenerate-mechanical-mode optomechanical
system, we can also obtain the effective mechanical damping
rate of the bright mode by adiabatically eliminating the cav-
ity field in the large-cavity-decay regime (see Appendix B),
which is given by

�eff = γm + 2γopt. (25)

Because of the parameter relation γopt � γm [66–69] in the
weak-coupling regimes, we can see from Eq. (25) that the
linewidth of the OMIT window is approximately twice am-
plified in comparison with the case of the standard optome-
chanical system [see Eq. (24)]. Correspondingly, we plot the
linewidth �eff of the OMIT window as a function of the
pump power P, as shown in Fig. 2(a). On the one hand,
the linewidth �eff of the OMIT window is significantly
widened with the increase of the pump power P in both
the degenerate-mechanical-mode and prototype cases. On the
other hand, the OMIT window in the degenerate case [see the
red dashed line in Fig. 2(a)] is approximately twofold ampli-
fied in comparison with the prototype case [see the blue solid
line in Fig. 2(a)] due to the existence of the dark-mode effect.
This physical mechanism can be potentially used in the optical
information storage within a large-frequency bandwidth.

C. OMIT and the second-order sidebands
by breaking the dark mode

Since the above counterintuitive results are due to the
dark-mode effect, it is natural to ask the question whether
we can break the dark-mode effect to further explore the
OMIT and the second-order sidebands. Thus, we compare the

dark-mode-breaking case (η = 0.05ωm and θ = π/2) with the
dark-mode-unbreaking case (η = 0), as shown in Fig. 3. In
the dark-mode-unbreaking case, a single transparency win-
dow emerges around � = ωm, when 	 = ωl=1,2 = ωm [see
Fig. 3(a)].

In contrast, when switching to the dark-mode-breaking
case, a single OMIT window with linewidth (γm + 2γopt) is
divided into two symmetrical narrow OMIT windows around
� ≈ 0.95ωm and � ≈ 1.05ωm with the linewidth (γm + γopt).
Physically, the two degenerate mechanical modes are dressed

FIG. 3. (a), (b) The transmission rate |tp|2 of the probe light
and (c), (d) the efficiency �p(%) of the second-order sideband as
a function of the probe-pump detuning � and the pump light power
PL in both the dark-mode-unbreaking (η = 0) and -breaking (η =
0.05ωm and θ = π/2) cases. (e) |tp|2 and (f) �p(%) as functions
of � when PL = 1.5 mW. Other parameters used are g1 = g2 and
	/ωm = 1.
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FIG. 4. (a) The transmission rate |tp|2 of the probe light as a
function of the phonon-phonon coupling η and the probe-pump
detuning � when θ = π/2. (b) |tp|2 versus θ and � when η/ωm =
0.05. The white dashed lines correspond to θ = 0, π , and 2π . (c) |tp|2
as a function of � when η takes different values: η/ωm = 0 (black
solid line), 0.02 (green dashed-dotted line), and 0.1 (red dotted line),
under θ = π/2. (d) |tp|2 versus θ at the two transparency windows
�/ωm = 0.95 (left) and �/ωm = 1.05 (right), when η/ωm = 0.05.
Here, the switch points (SP) stand for the cross between the left and
right transmission rates. Here we choose PL = 1.5 mW, g1 = g2, and
	/ωm = 1.

into two well-separated dressed modes by breaking the dark-
mode effect (see Sec. III A), and there exist the two routes
of destructive interference which result in the two trans-
parency windows even in the degenerate-mechanical-mode
optomechanical system. Meanwhile, the second-order side-
band shows that a single local minimum value is tuned to two
symmetrical minimum values around � ≈ 0.95ωm and � ≈
1.05ωm. This is because the anti-Stokes field is resonantly
enhanced, which promotes OMIT and leads to the suppression
of the second-order sidebands.

Now, we investigate the sensitive effects of the phonon-
phonon coupling strength η and the modulation phase θ on
the transmission rates of the probe light and second-order
sidebands. It is shown in Figs. 4(a) and 4(c) that the switching
between a single wide transparency window and two narrow
transparency windows can be realized by tuning η for θ =
π/2. The distance of the two OMIT windows is mainly
determined by the coupling strength between the two phonon
modes [27]. Meanwhile, the transmission rate of the probe
light depends on θ , as shown in Figs. 4(b) and 4(d). In
the region 0 < θ < π (π < θ < 2π ), the left (right) OMIT
window always becomes much deeper and broader while the
right (left) one becomes weaker with the modulation phase
θ , e.g., the right (left) transparency even becomes completely
absorbed by decreasing the phase down near θ = π (2π ).

Furthermore, it is shown in Fig. 4(d) how the OMIT at
the two transparency points �/ωm = 0.95 (left) and �/ωm =
1.05 (right) is modulated by the phase θ . There are two switch
points (SP) (i.e., the symmetrical transparency points |tp|2left =

FIG. 5. The efficiency �p(%) of the second-order sideband as
a function of the phonon-phonon coupling η and the probe-pump
detuning � when the modulation phase takes different values (a) θ =
0 and (b) θ = π/2. (c) �p(%) versus θ and � when η/ωm = 0.05;
the white dashed lines correspond to θ = 0, π , and 2π . (d) �p(%)
versus � when η takes different values: η/ωm = 0.1 and 0.2, for θ =
π . Here, we consider PL = 1.5 mW, g1 = g2, and 	/ωm = 1.

|tp|2right) when the modulation phase is given by θ = π/2
and 3π/2. It obviously shows that the OMIT performance
of the left window (the blue solid line) is better than that
of the right one (the red dashed line) between the two SP
(i.e., π/2 < θ < 3π/2), while the opposite situation that the
OMIT performance of the right one (the red dashed line)
is better than that of the left window (the blue solid line)
appears in the rest region (i.e., 0 < θ < π/2 and 3π/2 <

θ < 2π ). Moreover, one transparency window is lost in the
presence of the dark mode (θ = nπ for an integer n). Thus,
the periodically controllable and switchable OMIT can be
performed by tuning the modulation phase θ . Physically, the
combination of the θ -dependent phonon-phonon interaction
with the optomechanical couplings breaks the dark-mode
effect and splits the OMIT spectrum with a single window.

Correspondingly, the dependence of the second-order side-
band on the θ -dependent phonon-phonon interaction is shown
in Fig. 5. We can see from Fig. 5(a) that due to the existence
of the dark-mode effect for θ = 0 (see Sec. III A), there
always exists only one local minimum window even with
the increase of the phonon-phonon coupling η. When θ =
π/2 in Fig. 5(b), the local minimum window is split into
two windows in the second-order sideband by tuning η, in
which the second-order sideband is significantly enhanced.
For example, the maximum efficiency of the second-order
sidebands is about 9% [Fig. 5(b)], which is much higher than
that of the case θ = 0 [Fig. 5(a)]. The θ -dependent second-
order sideband is exhibited in Fig. 5(c) when η/ωm = 0.05.
We can see from Fig. 5(c) that in the region 0 < θ < π

(π < θ < 2π ), the maximum efficiency becomes much larger
(weaker). Especially, the highest efficiency emerges when
the modulation phase takes θ = π . This indicates that the
second-order sidebands shown in Fig. 5(d) can be significantly
enhanced by increasing η when θ = π [e.g., �p is about
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FIG. 6. (a) Optical group delay τ1 as a function of the applied pump power PL for the dark-mode-unbreaking case (η = 0) at its transmission
window �/ωm = 1 (the black solid line) and the dark-mode-breaking case (η = 0.05ωm and θ = π/2) at the left OMIT window � = 0.95ωm

(the blue dashed-dotted line) and the right OMIT window � = 1.05ωm (the red dashed line), respectively. (b) At the left OMIT window
� = 0.95ωm and (c) the right OMIT window � = 1.05ωm, τ1 versus θ when η = 0.05ωm and PL = 1.5 mW. The insets in (b) and (c) are the
zoomed-in plots of τ1 as a function of the modulation phase θ . Here, we consider g1 = g2 and 	/ωm = 1.

12.5%, which is three times larger than that of θ = 0 shown
in Fig. 5(a)]. The significant enhancement of the second-order
sidebands is important for its potential applications in weak-
signal sensing [37,54–58], e.g., precise sensing of weak forces
[54] and charges [37,55].

D. Controllable group delay

In general, the optical group delay can be created due
to the fact that the dispersion curve varies drastically with
the frequency within the OMIT window [23], which can be
useful in optical information storage without absorption. In
the dark-mode-unbreaking case (η = 0), the slow-light effect
emerges at its transmission window 	 = ωm [the black solid
line in Fig. 6(a)]. When breaking the dark-mode effect (e.g.,
η = 0.05ωm and θ = π/2), the group delay time significantly
increases at both the left transmission window 	 = 0.95ωm

[the blue dashed-dotted line in Fig. 6(a)] and the right trans-
mission window 	 = 1.05ωm [the red dashed line in Fig. 6(a)]
in comparison with the dark-mode-unbreaking case. This
implies that we can significantly develop the storage of the
signal light by breaking the dark-mode effect.

In the dark-mode-breaking case, we also plot the optical
group delay τ1 as a function of the modulation phase θ at
the left transmission window 	 = 0.95ωm [the blue solid line
in Fig. 6(b)] and the right transmission window 	 = 1.05ωm

[the red solid line in Fig. 6(c)]. The slow-to-fast and fast-to-
slow light effects can emerge at the two OMIT windows by
tuning the modulation phase θ [see the insets in Figs. 6(b)
and 6(c)]. The delay time of the signal light can even reach
520 μs for the left window [see Fig. 6(b)] and 620 μs for the
right window [see Fig. 6(c)], which is approximatively 100
times longer for the group delay in comparison with the dark-
mode-unbreaking case. These results can lead to achieving
ultraslowing or ultra-advancing signals, which can be used in
optical storage or quantum communication [21–23].

IV. TUNABLE OMIT IN AN N-MECHANICAL-MODE
OPTOMECHANICAL SYSTEM

In this section, we extend our scheme to investigate the
OMIT in an N-mechanical-mode optomechanical system, in

which a cavity mode is optomechanically coupled to N � 3
(for an integer N) mechanical modes. And the neighbor-
ing mechanical modes are coupled to each other through
the phase-dependent phonon-phonon interactions Hj for j =
1-(N − 1) with the coupling strength η j and modulation phase
θ j [see Fig. 1(c)]. Thus, the Hamiltonian of the net-coupled
optomechanical system can be written, in a frame rotating at
the driving frequency, as

HI = 	ca†a +
N∑

j=1

ω jb
†
jb j +

N∑
j=1

g ja
†a(b j + b†

j )

+ i(εLa† + εpa†e−i�t − H.c.) +
N−1∑
j=1

Hj, (26)

with

Hj = η j (e
iθ j b†

jb j+1 + e−iθ j b†
j+1b j ), (27)

where 	c = ωc − ωL is the detuning of the cavity frequency
ωc with respect to the driving frequency ωL. We consider
the strong driving case of the cavity and then perform the
linearization procedure in this system. Meanwhile, the cou-
plings between the cavity field and these mechanical modes
are much smaller than the mechanical frequency and hence the
RWA is justified. In this case, the linearized optomechanical
Hamiltonian under the RWA is given by

HRWA = 	δa†δa +
N∑

j=1

ω jδb†
jδb j +

N∑
j=1

Gj (δa†δb j + δb†
jδa)

+
N−1∑
j=1

η j (e
iθ j δb†

jδb j+1 + e−iθ j δb†
j+1δb j ), (28)

where 	 = 	c + ∑N
j=1 g j (β j + β∗

j ) is the normalized driv-
ing detuning after the linearization, and Gj = g j |α| is the
linearized optomechanical coupling strength between the jth
mechanical mode and the cavity-field mode. For convenience,
we consider the case where all the mechanical modes have
the same resonance frequencies (ω j = ωm), optomechanical
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FIG. 7. (a) In the presence of the dark-mode effect (η = 0), the transmission rate |tp|2 of the probe light as a function of the probe-pump
detuning � when N = 1 (the black solid curve), N = 2 (the blue dashed curve), N = 3 (the red dashed-dotted curve), and N = 4 (the dotted
olive curve). The transmission rate |tp|2 of the probe light versus � when (b) N = 3 and (c) N = 4, for the dark-mode-unbreaking (η = 0, the
solid lines) and -breaking (η/ωm = 0.05 and θ1 = π/2, the dashed-dotted lines) cases. Other parameters used are PL = 1.5 mW, g1 = g2, and
	/ωm = 1.

coupling strengths (Gj = G), and phonon-exchange coupling
strengths (η j = η).

In the absence of the phase-dependent phonon-phonon
interaction between the adjacent mechanical modes (Hj = 0),
the system exists a bright mode B+ = ∑N

j=1 δb j/
√

N and
(N − 1) dark modes decoupled from the cavity-field mode a.
As a result, there exists only one route of destructive interfer-
ence in the N-degenerate-mechanical-mode optomechanical
system. To see this, we plot the transmission rate of the probe
light |tp|2 as a function of the probe-pump detuning � with
the increase of the number of mechanical modes, as shown in
Fig. 7(a). It is obviously shown that the OMIT window can
be amplified by increasing the number of mechanical modes.
Physically, this can be explained by the enhanced effective
mechanical decay rate of the bright mode, which is given by

�effect = γm + Nγopt. (29)

Equation (29) shows that, in comparison with the typical
optomechanical system, approximately N times amplification
can be observed for the OMIT linewidth [see Fig. 7(a)]. This
study provides a route to realize the optical transmission
within a large-frequency bandwidth.

To control the dark-mode effect in this N-mechanical-
mode optomechanical system, we introduce the phase-
dependent phonon-phonon couplings (Hj �= 0) between the
neighboring mechanical modes. We can diagonalize the
Hamiltonian of these coupled mechanical modes as [70,71]

Hmrt = ωm

N∑
j=1

δb†
jδb j + η

N−1∑
j=1

(eiθ j δb†
jδb j+1 + e−iθ j δb†

j+1δb j )

=
N∑

k=1

�kB†
kBk, (30)

where Bk describes the kth diagonalized mechanical mode
with the resonance frequency

�k = ωm + 2η cos

(
kπ

N + 1

)
. (31)

The relationship between δb j and Bk is given by

δb j =
⎧⎨
⎩

1
A

∑N
k=1 sin

(
kπ

N+1

)
Bk, j = 1

1
A e−i

∑ j−1
ν=1 θν

∑N
k=1 sin

(
jkπ

N+1

)
Bk, j � 2

(32)

where A = √
(N + 1)/2. The Hamiltonian in Eq. (28) can

be rewritten with these diagonalized mechanical normal
modes as

HRWA = 	δa†δa + ∑N
k=1 �kB†

kBk + Hom, (33)

where the Hamiltonian Hom with the optomechanical coupling
reads as

Hom = G

A

N∑
k=1

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

eiϕ sin

(
jkπ

N + 1

)⎤
⎦aB†

k

+ H.c., (34)

with

ϕ =
j−1∑
ν=1

θν. (35)

We can find from Eq. (34) that the function of these modula-
tion phases is dominated by Eq. (35). Hence, the dark-mode-
broken effect can be realized by modulating a single phase.
For simplicity, below we consider θ j = 0 for j = 2-(N − 1).
For an even k, the interaction between the cavity mode and
the mechanical normal mode Bk can be expressed as (see
Appendix C)

Hck = G

A

[(
1 − eiθ1

)
sin

(
kπ

N + 1

)]
aB†

k + H.c., k = even.

(36)
We see from Eq. (36) that when θ1 = 2nπ , the coupling
strength between the kth mechanical normal mode Bk=even and
the cavity mode a is equal to zero. In this case, all the even
normal modes are decoupled from the cavity field. Thus, the
dark modes can be broken by choosing a proper parameter
(θ1 �= 2nπ ).
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When switching from the dark-mode-unbreaking to -
breaking cases, a single transparency window is divided
into multiple transparency windows, and the number of the
transparency windows depends on the number of mechanical
modes [see Figs. 7(b) and 7(c)]. Physically, this is the result
of the destructive interferences between the weak probe field
and the multiple anti-Stokes fields which are generated by
the interactions of the strong-coupling field and the dressed
mechanical modes. These results indicate that we can steer
the switch from single-channel to multichannel optical com-
munications by breaking the dark-mode effect.

V. CONCLUSION

In summary, we presented a theoretical proposal to en-
hance and steer the OMIT, second-order sidebands, and group
delay by controlling the dark-mode effect. In the three-mode
loop-coupled configuration, the combination of the phase-
dependent phonon-phonon interaction between the two me-
chanical modes with the optomechanical couplings controls
the dark-mode effect via the quantum interference effect. In
the presence of the dark mode, there exists only one OMIT
window in the two-mechanical-mode optomechanical system,
and this transmission window is nearly twofold amplified
compared to that in the typical optomechanical system. We
also studied the switching from the OMIT with a single

window to that of the tunable double windows by breaking
the dark-mode effect. Moreover, the controllable second-order
sidebands and the slow-to-fast or fast-to-slow light switching
can be achieved by controlling the dark-mode effect. Finally,
we extended this method to investigate the optical transmis-
sion in an N-mechanical-mode optomechanical system.
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APPENDIX A: ALGEBRA EQUATIONS AND SIDEBAND PARAMETERS

In this Appendix, we present 12 algebra equations divided into two groups and the sideband parameters used in Eqs. (7) and
(8). The linear response of the probe field is described by the first group,

εp = [κ + i(	 − �)]A−
1 + i[g1α(B−

1,1 + (B+
1,1)∗) + g2α(B−

2,1 + (B+
2,1)∗)],

0 = [γ1 + i(ω1 − �)]B−
1,1 + i[g1(α∗A−

1 + α(A+
1 )∗) + ηeiθ B−

2,1],

0 = [γ2 + i(ω2 − �)]B−
2,1 + i[g2(α∗A−

1 + α(A+
1 )∗) + ηe−iθ B−

1,1],
(A1)

0 = [κ − i(	 + �)](A+
1 )∗ − i[g1α

∗(B−
1,1 + (B+

1,1)∗) + g2α
∗(B−

2,1 + (B+
2,1)∗)],

0 = [γ1 − i(ω1 + �)](B+
1,1)∗ − i[g1(α∗A−

1 + α(A+
1 )∗) + ηe−iθ (B+

2,1)∗],

0 = [γ2 − i(ω2 + �)](B+
2,1)∗ − i[g2(α∗A−

1 + α(A+
1 )∗) + ηeiθ (B+

1,1)∗],

while the second-order sideband is exhibited by the second group,

0 = [κ + i(	 − 2�)]A−
2 + i{g1[αB−

1,2 + α(B+
1,2)∗ + A−

1 (B−
1,1 + (B+

1,1)∗)] + g2[α(B−
2,2 + (B+

2,2)∗) + A−
1 (B−

2,1 + (B+
2,1)∗)]},

0 = [γ1 + i(ω1 − 2�)]B−
1,2 + i[g1(α∗A−

2 + α(A+
2 )∗ + (A+

1 )∗A−
1 ) + ηeiθB−

2,2],

0 = [γ2 + i(ω2 − 2�)]B−
2,2 + i[g2(α∗A−

2 + α(A+
2 )∗ + (A+

1 )∗A−
1 ) + ηe−iθ B−

1,2],

0 = (κ − i	 − 2i�)(A+
2 )∗ − i{g1[α∗B−

1,2 + α∗(B+
1,2)∗ + (A+

1 )∗B−
1,1 + (A+

1 )∗(B+
1,1)∗] + g2[α∗B−

2,2 + α∗(B+
2,2)∗ (A2)

+ (A+
1 )∗B−

2,1 + (A+
1 )∗(B+

2,1)∗]},
0 = (γ1 − iω1 − 2i�)(B+

1,2)∗ − i[g1(α∗A−
2 + α(A+

2 )∗ + (A+
1 )∗A−

1 ) + ηe−iθ (B+
2,2)∗],

0 = (γ2 − iω2 − 2i�)(B+
2,2)∗ − i[g2(α∗A−

2 + α(A+
2 )∗ + (A+

1 )∗A−
1 ) + ηeiθ (B+

1,2)∗].

The other parameters used in Eqs. (7) and (8) are

B−
1,1 = g1α

∗V1[γ2 + i(ω2 − �)] − ig2α
∗V1ηeiθ

(iκ + 	 + �)
({

4|α|2	(
g2

2T (1)
3,1 + g2

1T (1)
3,2

) − T (1)
2 [	2 + (κ − i�)2]} + 8g1g2η|α|2T (1)

1 	 cos θ
)εp, (A3)
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B−
2,1 = g2α

∗V1[γ1 + i(ω1 − �)] − ig1α
∗V1ηe−iθ

(iκ + 	 + �)
({

4|α|2	(
g2

2T (1)
3,1 + g2

1T (1)
3,2

) − T (1)
2 [	2 + (κ − i�)2]

} + 8g1g2η|α|2T (1)
1 	 cos θ

)εp, (A4)

(
B+

1,1

)∗ = −iV2[g1α
∗(iγ2 + ω2 + �) − g2α

∗ηe−iθ ]

(iκ + 	 + �)
({

4|α|2	(
g2

2T (1)
3,1 + g2

1T (1)
3,2

) − T (1)
2 [	2 + (κ − i�)2]

} + 8g1g2η|α|2T (1)
1 	 cos θ

)εp, (A5)

(B+
2,1)∗ = −eiθ g1α

∗ηV3 + g2α
∗V3(iγ1 + ω1 + �)

−({
4|α|2	(

g2
2T (1)

3,1 + g2
1T (1)

3,2

) − T (1)
2 [	2 + (κ − i�)2]

} + 8g1g2η|α|2T (1)
1 	 cos θ

)εp, (A6)

where

V1 = [−η2 + (iγ1 + ω1 + �)(iγ2 + ω2 + �)][κ − i(	 + �)]2, (A7)

V2 = [η2 + (−iγ1 + ω1 − �)(iγ2 − ω2 + �)][κ − i(	 + �)]2, (A8)

V3 = [−η2 + (iγ1 − ω1 + �)(iγ2 − ω2 + �)][κ − i(	 + �)], (A9)

T (1)
1 = −ω1ω2 + η2 + (γ1 − i�)(γ2 − i�), (A10)

T (1)
2 = [η2 + (−iγ1 + ω1 − �)(iγ2 − ω2 + �)]{η2 + [γ1 − i(ω1 + �)][γ2 − i(ω2 + �)]}, (A11)

T (1)
3,1 = (

γ 2
1 + ω2

1 − �2 − 2iγ1�
)
ω2 − ω1η

2, (A12)

T (1)
3,2 = (

γ 2
2 + ω2

2 − �2 − 2iγ2�
)
ω1 − ω2η

2, (A13)

and T (2)
1 , T (2)

2 , T (2)
3,1 , and T (2)

3,2 can be obtained with replacing the � as 2� in the T (1)
1 , T (1)

2 , T (1)
3,1 , and T (1)

3,2 .

APPENDIX B: DERIVATION OF THE EFFECTIVE
MECHANICAL DECAY RATE OF THE BRIGHT MODE

In this Appendix, we derive the effective mechanical decay
rate of the bright mode in the two-mechanical-mode op-
tomechanical system. We consider the case where the phase-
dependent phonon-exchange interaction and the probe field
are absent (i.e., η = 0 and εp = 0). Based on Eq. (4), the
linearized Langevin equations for quantum fluctuations are
given by

δȧ = −(κ + i	)δa − i
∑
l=1,2

Gl (δbl + δb†
l ) +

√
2κain,

(B1a)

δḃl=1,2 = −iG∗
l δa − (γl + iωl )δbl − iGlδa† +

√
2γl bl,in,

(B1b)

where 	 = 	c + ∑
l=1,2 gl (βl + β∗

l ) is the normalized driv-
ing detuning, and Gl = gl |α| denotes the linearized optome-
chanical coupling strength between the cavity-field mode and
the lth mechanical mode.

Below, we consider the case where the linearized optome-
chanical coupling strengths G1,2 are real and the system works
in the parameter regime ω1,2 � κ � G1,2 � γ1,2. In this
case, the cavity-field mode can be eliminated adiabatically,
and then the solution of the cavity-field fluctuation operator
δa(t ) at the timescale t � 1/κ can be obtained as

δa(t ) ≈ − iG1

κ + i(	 + ω1)
δb†

1(t ) − iG1

κ + i(	 − ω1)
δb1(t )

− iG2

κ + i(	 + ω2)
δb†

2(t ) − iG2

κ + i(	 − ω2)
δb2(t )

+ Fa,in(t ), (B2)

where we introduce the noise operator

Fa,in(t ) =
√

2κe−(κ+i	)t
∫ t

0
ain(s)e(κ+i	)sds. (B3)

Substitution of Eq. (B2) into Eqs. (B1 b) and (B1) leads to the
equations of motion

δḃ1(t ) = −(�1 + i�1)δb1(t ) + ξ1δb2(t ) − iG1Fa,in(t )

− iG1F †
a,in(t ) +

√
2γ1b1,in(t ),

δḃ2(t ) = ξ2δb1(t ) − (�2 + i�2)δb2(t ) − iG2Fa,in(t )

− iG2F †
a,in(t ) +

√
2γ2b2,in(t ), (B4)

where we introduce the parameters

ξ1 = G1G2[κ + i(	 + ω2)]

κ2 + (	 + ω2)2
− G1G2[κ − i(	 − ω2)]

κ2 + (	 − ω2)2
,

ξ2 = G1G2[κ + i(	 + ω1)]

κ2 + (	 + ω1)2
− G1G2[κ − i(	 − ω1)]

κ2 + (	 − ω1)2
,

(B5)

and

�l = γl + γl,opt, �l = ωl − ωl,opt, (B6)

with

γl,opt = G2
l κ

κ2 + (	 − ωl )2
− G2

l κ

κ2 + (	 + ωl )2
,

ωl,opt = G2
l (	 + ωl )

κ2 + (	 + ωl )2
+ G2

l (	 − ωl )

κ2 + (	 − ωl )2
, l = 1, 2.

(B7)
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Under the parameter condition ω1,2 � κ � G1,2 and at reso-
nance 	 = ω1 = ω2, we have

ξ1 ≈ −[G1G2/κ − i(G1G2/2ω2)],
(B8)

ξ2 ≈ −[G1G2/κ − i(G1G2/2ω1)],

and

γl,opt ≈ G2
l /κ, ωl,opt ≈ G2

l /(2ωl ), l = 1, 2. (B9)

Here, we assume that the two mechanical modes have the
identical resonance frequencies (ωl = ωm), decay rates (γl =
γm), and optomechanical couplings (Gl = G). Thus, we can
obtain the optomechanically induced mechanical decay rate
γl,opt = γopt and the resonant frequency ωl,opt = ωopt. Then,
the equations of motion for the bright mode B+ can be

written as

Ḃ+ = ḃ1 + ḃ2√
2

= −(�eff + i�eff )B+

+ 2iG1Fin +
√

2γmB+,in, (B10)

where

�eff = γm + 2γopt, (B11a)

�eff = ωm − 2ωopt, (B11b)

B+,in = [b1,in(t ) + b2,in(t )]/
√

2, (B11c)

Fin = [Fa,in(t ) + F †
a,in(t )]/

√
2. (B11d)

Here, �eff and �eff are, respectively, the effective mechani-
cal decay rate and resonant frequency of the bright mode B+.

APPENDIX C: DERIVATION OF EQ. (36)

In this Appendix, we show a detailed derivation of Eq. (36). Based on Eqs. (34) and (35), for N � 3, we obtain the effective
coupling coefficient between the cavity a and the mode Bk as

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A

{[
sin

(
1

N + 1
kπ

)
+ ei

∑N−1
ν=1 θν sin

(
N

N + 1
kπ

)]

+
[

eiθ1 sin

(
2

N + 1
kπ

)
+ ei

∑N−2
ν=1 θν sin

(
N − 1

N + 1
kπ

)]

+
[

ei(θ1+θ2 ) sin

(
3

N + 1
kπ

)
+ ei

∑N−3
ν=1 θν sin

(
N − 2

N + 1
kπ

)]
+ · · ·

}
. (C1)

Below, we consider two cases corresponding to odd and even numbers N , respectively.
(i) We first consider the case where N is an odd number and θ j = 0 for j = 2-(N − 1), and the coefficient becomes

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A

{[
sin

(
kπ

N + 1

)
+ eiθ1 sin

(
Nkπ

N + 1

)]

+ eiθ1

[
sin

(
2kπ

N + 1

)
+ sin

(
N − 1

N + 1
kπ

)]

+ eiθ1

[
sin

(
3kπ

N + 1

)
+ sin

(
N − 2

N + 1
kπ

)]
+ · · · + eiθ1 sin

(
kπ

2

)}
. (C2)

When k is an odd number, we have

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A

[
(1 + eiθ1 ) sin

(
kπ

N + 1

)
+ 2eiθ1 sin

(
2kπ

N + 1

)

+ 2eiθ1 sin

(
3kπ

N + 1

)
+ · · · + eiθ1 sin

(
kπ

2

)]
. (C3)

When k is an even number, we obtain

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A

(
1 − eiθ1

)
sin

(
kπ

N + 1

)
. (C4)
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CL C1 C2( 1) ( 2)x x

)b()a(

C1( 1)x C2( 2)x C

FIG. 8. (a) The circuit optomechanical system consists of a microwave cavity represented by the equivalent inductance L and capacitance
C, and two micromechanical resonators bj=1,2. The displacement x j=1,2 of each mechanical resonator results in a time-varying capacitor
Cj=1,2(x j ) and independently modulates the total capacitance C and, hence, the cavity frequency ωc. A phase-dependent phonon-hopping
interaction η(eiθ b†

1b2 + e−iθ b†
2b1) between the two micromechanical resonators is generated via a superconducting quantum circuit given in

(b). (b) Schematic diagram of the superconducting quantum circuit: a Josephson junction with the Josephson energy EJ and the capacitance
CJ is connected to three gate voltages Vj=1,2,3(t ) through the corresponding gate capacitance Cj=1,2(x j ) and C3. Two mechanical resonators
are coupled the superconducting charge qubit through the gate capacitances Cj=1,2(x j ). The gate voltages are properly designed such that a
phase-dependent phonon-hopping interaction between the two mechanical resonators can be induced. The phase drops across these capacitor
Cj=1,2,3 and the Josephson junction are marked as φ j and φ, respectively.

(ii) Then, we consider the case where N is an even number and θ j = 0 for j = 2-(N − 1), and the coefficient can be simplified
as

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A

{[
sin

(
kπ

N + 1

)
+ eiθ1 sin

(
N

N + 1
kπ

)]

+ eiθ1

[
sin

(
2kπ

N + 1

)
+ sin

(
N − 1

N + 1
kπ

)]

+ eiθ1

[
sin

(
3kπ

N + 1

)
+ sin

(
N − 2

N + 1
kπ

)]
+ · · ·

}
. (C5)

If k is an odd number, we obtain

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A

[
(1 + eiθ1 ) sin

(
kπ

N + 1

)
+ 2eiθ1 sin

(
2kπ

N + 1

)

+ 2eiθ1 sin

(
3kπ

N + 1

)
+ · · ·

]
. (C6)

If k is an even number, we have

G

A

⎡
⎣sin

(
kπ

N + 1

)
+

N∑
j=2

ei
∑ j−1

ν=1 θν sin

(
jkπ

N + 1

)⎤
⎦ = G

A
(1 − eiθ1 ) sin

(
kπ

N + 1

)
. (C7)

According to Eqs. (C2)–(C7), we can summarize that for an even number k, the optomechanical interaction between the
mechanical mode Bk=even and the cavity mode a is described by Eq. (36).

APPENDIX D: A POSSIBLE EXPERIMENTAL
REALIZATION AND A DERIVATION OF A

PHASE-DEPENDENT PHONON-HOPPING INTERACTION
BETWEEN TWO MECHANICAL RESONATORS

1. A possible experimental realization

In this Appendix, we propose a possible experimental
implementation of our scheme, as shown in Fig. 8(a). The

proposal can be implemented via the circuit optomechanical
system [60,61] consisting of a microwave cavity described
by the equivalent inductance L and capacitance C, and two
micromechanical resonators b j=1,2. The electromechanical
coupling arises when the displacement x j=1,2 of each me-
chanical resonator, which is expressed as time-varying capaci-
tors Cj=1,2(x j ), independently modulates the total capacitance
C, and therefore the resonance frequency of the cavity ωc.
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This electromechanical coupling can be described by g j =
(ωc/2C)∂Cj/∂x j . Meanwhile, an effective phase-dependent
phonon-hopping interaction between the two mechanical res-
onators is introduced by coupling them to a superconduct-
ing charge qubit. Note that this effective phase-dependent
phonon-hopping interaction can be generated in a supercon-
ducting quantum circuit, as shown in Fig. 8(b). The detailed
derivation of the phase-dependent phonon-exchange interac-
tion is presented in the next subsection.

2. Derivation of a phase-dependent phonon-hopping interaction
between two mechanical resonators

Below, a detailed derivation of an effective phase-
dependent phonon-hopping interaction between two mechani-
cal resonators will be presented in a superconducting quantum
circuit, where the two mechanical resonators are coupled
to a superconducting charge qubit, as shown in Fig. 8(b).
In this circuit, a Josephson junction with the Josephson en-
ergy EJ and the capacitance CJ is connected to three gate
voltages Vj=1,2,3(t ) through the corresponding gate capaci-
tances Cj=1,2(x j ) and C3. Here, the two gate capacitors with
capacitances Cj=1,2(x j ) are formed by one fixed plate and
one mechanical resonator. The third capacitor has a constant
capacitance. We denote the phase drops across these capacitor
Cj=1,2,3 and the Josephson junction as φ j and φ, respectively.
In this circuit, the energy stored in these capacitors is the total
kinetic energy [72], which can be written as

T = 1

2
C1(x1)�̇2

1 + 1

2
C2(x2)�̇2

2 + 1

2
C3�̇

2
3 + 1

2
CJ�̇

2, (D1)

where � j=1,2,3 and � are the generalized magnetic fluxes
associated with the phase drops φ j and φ across the capac-
itances Cj and the Josephson junction. The relation between
the generalized magnetic flux and the phase drop is defined by
φ j=1,2,3 = 2π� j/�0, where �0 is the magnetic flux quanta.
The Josephson energy is identified as the potential energy,
which takes the form as [72]

U = −EJ cos

(
2π

�0
�

)
, (D2)

where EJ is the Josephson energy of this junction.
Based on these voltages relations in these loops, we have

the relations

Vj (t ) + �̇ j + �̇ = 0, j = 1, 2, 3 (D3)

then the Lagrangian of this system can be expressed as

L = T − U

= 1

2
C1(x1)V 2

1 (t ) + 1

2
C2(x2)V 2

2 (t ) + 1

2
C3V

2
3 (t )

+ 1

2
[C1(x1) + C2(x2) + C3 + CJ ]�̇2

+ [C1(x1)V1(t ) + C2(x2)V2(t ) + C3V3(t )]�̇

+ EJ cos

(
2π

�0
�

)
. (D4)

We introduce the momentum canonically conjugate to � as

P = ∂L

∂�̇
= [C1(x1)V1(t ) + C2(x2)V2(t ) + C3V3(t )]

+ [C1(x1) + C2(x2) + C3 + CJ ]�̇. (D5)

Then, the Hamiltonian of this circuit can be derived as

H = 1

2

4e2

C� (x1, x2)
[n̂ − ng(x1, x2, t )]2 − EJ cos

(
2π

�0
�

)

− 1

2

[
C1(x1)V 2

1 (t ) + C2(x2)V 2
2 (t ) + C3V

2
3 (t )

]
, (D6)

where we introduce the Cooper-pair number operator n̂, the
gate capacitance C� (x1, x1), and the gate Cooper-pair number
ng, which are defined by

P = 2en̂,C� (x1, x2) = C1(x1) + C2(x2) + C3 + CJ , (D7)

and

ng(x1, x2, t ) = 1

2e
[C1(x1)V1(t ) + C2(x2)V2(t ) + C3V3(t )].

(D8)
The quantization of this circuit can be performed by introduc-
ing the commutative relation between the number operator n̂
and the phase operator φ̂ as [φ̂, n̂] = i. Then, we can express
the Hamiltonian in the eigenrepresentation of the number
operator as

H = 1

2

4e2

C� (x1, x2)

∑
n∈Z

[n − ng(x1, x2, t )]2|n〉〈n|

−EJ

2

∑
n∈Z

(|n〉〈n + 1| + |n + 1〉〈n|)

−1

2

[
C1(x1)V 2

1 (t ) + C2(x2)V 2
2 (t ) + C3V

2
3 (t )

]
. (D9)

In this work, we consider the case where this circuit works
in the charge qubit regime EC � EJ , with EC = 4e2/C� being
the Coulomb energy. In particular, we choose the gate charge
in the vicinity of 1

2 , so that the states |0〉 and |1〉 have almost
degenerate energies. In this case, other states have higher
energies and can be ignored in the our discussions. Then, the
Hamiltonian becomes

H ≈ 1

2

4e2

C� (x1, x2)

[
ng(x1, x2, t )2|0〉〈0|

+ [
1 − ng(x1, x2, t )

]2|1〉〈1|] − 1

2

[
C1(x1)V 2

1 (t )

+C2(x2)V 2
2 (t ) + C3V

2
3 (t )

]

− EJ

2
(|0〉〈1| + |1〉〈0|). (D10)

By introducing the Pauli operators |0〉〈0| − |1〉〈1| = σz and
|0〉〈0| + |1〉〈1| = I , we can express the Hamiltonian as

H = 1

2

4e2

C� (x1, x2)

[
ng(x1, x2, t ) − 1

2

]
σz

−EJ

2
σx + M, (D11)
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where the term M stands for the ac voltage driving term on
these two mechanical resonators

M = 1

4

4e2

C� (x1, x2)
[1 − 2ng(x1, x2, t ) + 2n2

g(x1, x2, t )]

−1

2

[
C1(x1)V 2

1 (t ) + C2(x2)V 2
2 (t ) + C3V

2
3 (t )

]
. (D12)

We consider the case in which the voltage drivings are far
off resonance to these two mechanical resonators (namely, the
driving frequencies of the two voltages are much smaller than
the resonance frequencies of the two mechanical resonators)
and then the term M will be discarded in our following
discussions. When the vibration amplitudes of the mechanical
resonators are much smaller than the distances between the
fixed plate and the rest mechanical resonator of the capacitors,
we can approximate the capacitances as

C1(x1) ≈ C10

(
1 − x1

l1

)
, C2(x2) ≈ C20

(
1 − x2

l2

)
, (D13)

where Cj0 (for j = 1, 2) are the capacitances of the gate
capacitors when the mechanical resonators are at rest, and
l j=1,2 are the rest distances between the fixed plate and the
mechanical resonators in these gate capacitors. In addition,
we choose the following gate voltages for our purpose:

V1(t ) = V10 cos (ω1t + ϕ1),

V2(t ) = V20 cos (ω2t + ϕ2),

V3(t ) = e − C10V1(t ) − C20V2(t )

C3
. (D14)

In this case, we can obtain the relation

ng(x1, x2, t ) − 1

2
= −

[
C10V10

2e

x1

l1
cos(ω1t + ϕ1)

+C20V20

2e

x2

l2
cos(ω2t + ϕ2)

]
. (D15)

By making the rotation for the qubit −σx → τz and σz → τx,
we can express the Hamiltonian up to the first order of the
mechanical displacements x1 and x2 as

HI ≈ EJ

2
τz − EC

2

[
C10V10

2e

x1

l1
cos (ω1t + ϕ1)

+ C20V20

2e

x2

l2
cos (ω2t + ϕ2)

]
τx, (D16)

where EC = 4e2/C�0 under the approximation C� (x1, x2) ≈
(C10 + C20 + CJ ) ≡ C�0. We should point out that the me-
chanical displacement terms in C� (x1, x2) only introduce the
second-order terms of x j=1,2/l j , which have been neglected in
our considerations.

By including the free Hamiltonian of the two mechanical
resonators and using the relations x j=1,2 = √

h̄/(2mωm)(b j +
b†

j ) and p j=1,2 = −i
√

h̄mωm/2(b j − b†
j ), the total Hamilto-

nian of this circuit system becomes

HI ≈ ωmb†
1b1 + ωmb†

2b2 + ω0

2
τz

− [g1(b1 + b†
1)(ei(ωd t+ϕ1 ) + e−i(ωd t+ϕ1 ) )

+ g2(b2 + b†
2)(ei(ωd t+ϕ2 ) + e−i(ωd t+ϕ2 ) )]

× (τ+ + τ−), (D17)

where we consider the case ω1 = ω2 = ωd and introduce
these parameters

g1 = EC

4

C10V10

2e

x10

l1
, g2 = EC

4

C20V20

2e

x20

l2
, (D18)

ω0 = EJ , with x j0 = √
h̄/(2mωm) being the zero-point fluctu-

ation of these mechanical resonators.
To analyze the physical processes in this system, we now

work in the rotating frame with respect to

H0 = ωmb†
1b1 + ωmb†

2b2 + ω0

2
τz, (D19)

then the Hamiltonian becomes

VI (t ) = −g1(τ+b†
1ei(ω0+ωm+ωd )t eiϕ1 +b1τ−e−i(ω0+ωm+ωd )t e−iϕ1 )

− g2(τ+b†
2ei(ω0+ωm+ωd )t eiϕ2 +b2τ−e−i(ω0+ωm+ωd )t e−iϕ2 )

− g1(τ+b†
1ei(ω0+ωm−ωd )t e−iϕ1 +b1τ−e−i(ω0+ωm−ωd )t eiϕ1 )

− g2(τ+b†
2ei(ω0+ωm−ωd )t e−iϕ2 +b2τ−e−i(ω0+ωm−ωd )t eiϕ2 )

− g1(τ+b1ei(ω0−ωm+ωd )t eiϕ1 +b†
1τ−e−i(ω0−ωm+ωd )t e−iϕ1 )

− g2(τ+b2ei(ω0−ωm+ωd )t eiϕ2 +b†
2τ−e−i(ω0−ωm+ωd )t e−iϕ2 )

− g1(τ+b1ei(ω0−ωm−ωd )t e−iϕ1 +b†
1τ−e−i(ω0−ωm−ωd )t eiϕ1 )

− g2(τ+b2ei(ω0−ωm−ωd )t e−iϕ2

+ b†
2τ−e−i(ω0−ωm−ωd )t eiϕ2 ). (D20)

Here, we can see that in this system there are eight phys-
ical processes, which are determined by the four detunings
ω0 + ωm ± ωd and ω0 − ωm ± ωd . From the viewpoint of the
qubit and the resonators, the terms including ω0 + ωm ± ωd

and ω0 − ωm ± ωd are the counterrotating terms and the
corotating terms, respectively. In this work, the motivation
for introducing the ac voltages V1(t ) and V2(t ) is to pick
up the phase-sensitive interactions between the mechanical
resonators and the charge qubit. For this purpose, we choose
the ac voltages with the frequency ωd to pick up the terms with
ω0 − ωm − ωd . Namely, we choose the parameters to satisfy
the following parameter conditions:

ω0 + ωm ± ωd � ω0 − ωm + ωd � ω0 − ωm − ωd . (D21)

The terms with ω0 + ωm ± ωd and ω0 − ωm + ωd are the
far-off-resonance terms and the terms with ω0 − ωm − ωd are
the target terms which work in the large-detuning regime.
The energy levels and these involved resonance frequencies
of this coupled qubit-resonator system are shown in Fig. 9. In
this case, the qubit-resonator interactions work in the large-
detuning regime 	 � gj=1,2

√
n j , where n j is the maximal

excitation number involved in the jth mechanical resonator,
and then we can obtain a phase-dependent photon-hopping
interaction between the two mechanical resonators. Here, the
phase is the difference between the two phases ϕ1 and ϕ2

associated with the qubit-resonator couplings.
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FIG. 9. Schematic diagram of the energy levels and these in-
volved resonance frequencies of this coupled qubit-resonator system.
Two mechanical resonators with resonance frequency ωm are phase
dependently coupled to the superconducting charge qubit with the
energy separation ω0. The ac gate voltages with frequency ωd are
applied to the Josephson junction through the gate capacitors.

Based on the above analyses, we can obtain the approxi-
mate Hamiltonian as

VI (t ) ≈ −[τ+(g1b1e−iϕ1 + g2b2e−iϕ2 )ei	t

+ (g1b†
1eiϕ1 + g2b†

2eiϕ2 )τ−e−i	t ], (D22)

where we introduce the detuning 	 = ω0 − ωm − ωd . The
time factor can be eliminated by going back to the
Schrödinger representation, in which the Hamiltonian of the
system can be written as

Heff = ωmb†
1b1 + ωmb†

2b2 + ω0 − ωd

2
τz

− τ+(g1b1e−iϕ1 + g2b2e−iϕ2 )

− (g1b†
1eiϕ1 + g2b†

2eiϕ2 )τ−. (D23)

In this work, we consider the physical process associated
with the detuning 	 working in the large detuning case.
Then, we can adiabatically eliminate the qubit coherence
in the physical processes and an effective phonon-phonon
interaction between the two mechanical modes can be induced
by the second-order perturbation. In this case, we can derive
an effective Hamiltonian to describe the interactions using the

method of the Frohlich-Nakajima transformation [73,74]. To
this end, we express the effective Hamiltonian Heff as two
parts

H0 = ωmb†
1b1 + ωmb†

2b2 + ω0 − ωd

2
τz,

HI = −τ+(g1b1e−iϕ1 + g2b2e−iϕ2 )

− τ−(g1b†
1eiϕ1 + g2b†

2eiϕ2 ). (D24)

We also introduce the operator

S = 1

	
τ+(g1b1e−iϕ1 + g2b2e−iϕ2 )

− 1

	
(g1b†

1eiϕ1 + g2b†
2eiϕ2 )τ−, (D25)

which is determined by the equation

HI + [H0, S] = 0. (D26)

This equation means that the first-order physical process is
eliminated. An effective Hamiltonian describing the second-
order physical interaction can then be obtained as

H ′
eff = H0 + 1

2
[HI , S]

= ωmb†
1b1 + ωmb†

2b2 + ω0 − ωd

2
τz + g2

1

	
τzb

†
1b1

+ g2
2

	
τzb

†
2b2 +

(
g2

1 + g2
2

)
	

τ+τ−

+ g1g2

	
τz(b†

1b2ei(ϕ1−ϕ2 ) + b†
2b1e−i(ϕ1−ϕ2 ) ). (D27)

The above Hamiltonian shows that there is no transition in the
qubit states, and that a conditional phase-dependent interac-
tion between the two mechanical resonators is introduced. We
assume that the qubit is initial in its ground state |g〉 (τz|g〉 =
−|g〉), then a phase-dependent phonon-hopping interaction is
obtained.
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