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We discuss quantum state tomography via a stepwise reconstruction of the eigenstates of the mixed states
produced in experiments. Our method is tailored to the experimentally relevant class of nearly pure states, or
simple mixed states, which exhibit dominant eigenstates and thus lend themselves to low-rank approximations.
The developed scheme is applicable to any pure-state tomography method, promoting it to mixed-state tomog-
raphy. Here, we demonstrate it with machine learning-inspired pure-state tomography based on neural-network
representations of quantum states. The latter have been shown to efficiently approximate generic classes of
complex (pure) states of large quantum systems. We test our method by applying it to experimental data from
trapped ion experiments with four to eight qubits.
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I. INTRODUCTION

In times where quantum experiments and quantum devices
have reached unprecedented size and complexity, their verifi-
cation has become increasingly hard and yet indispensable.
Noise and imperfections cause deviations of the produced
states from the target states, which may, in many cases, put
their intended purpose in jeopardy. Quantum state tomogra-
phy is the process of reconstructing the states produced in
quantum experiments or devices from their measurement data.
Based on statistical analysis of a near-complete set of this
measurement data, the realized states can, in principle, be
fully reconstructed with high accuracy [1–4].

However, full, unconditional quantum state tomography
becomes prohibitively expensive with increasing Hilbert
space dimension, both from an experimental perspective (the
required number of measurements scales exponentially with
the system size) and from the perspective of data post-
processing. Strategies to mitigate these costs include exploit-
ing symmetries, minimizing the number of required measure-
ments, or adaptive measurement schemes [5–9].

One reason behind this cost explosion is that full state
tomography recovers the entire quantum state, while, in many
circumstances, low-rank approximations are sufficient to re-
trieve the relevant information. This is, in particular, the case
if the target state is pure and the produced state thus can be ex-
pected to exhibit a clear hierarchy in its spectrum, featuring a
dominant eigenvalue-eigenstate pair, followed by increasingly
irrelevant subdominant eigenvalue-eigenstate pairs.

In this paper, we leverage on this idea, proposing the
stepwise reconstruction of quantum states in terms of their
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leading eigenvalue-eigenstate pairs, cf. Fig. 1. Our scheme is
based on the insight that highly efficient methods for pure-
state tomography can also be used to robustly recover the
(dominant) eigenstates of mixed states. Tailored iteration then
allows one to recover the eigenvalue-eigenstate pairs of mixed
states up to a desired rank. Such (low-rank) reconstruction of
mixed states not only delivers valuable structural information
about the state produced but also comes with substantially
reduced costs.

Our scheme promotes any pure-state tomography method,
i.e., any measurement data-based state estimation that is con-
strained within the set of pure states, to mixed-state tomogra-
phy. Such restriction to pure states can be favorable for several
reasons. Besides being computationally more efficient, many
physically motivated many-body ansatz states, e.g., matrix
product states, entangled plaquette states, and string-bond
states, are naturally formulated in terms of pure states [11].
Moreover, pure states are conceptually simpler [12,13] and
thus allow tailored approaches such as, e.g., disentangling
the state at local sites [6], or reconstructing the generating
unitary [12].

To demonstrate our reconstruction scheme, we here use
and adjust a recently developed method for pure-state to-
mography based on neural-network representations of quan-
tum states [14]. Neural-network representations have been
proven versatile in an increasing number of applications in
quantum physics [11,15–18], and quantum state tomography
appears particularly well-suited, due to its inherently data-
driven nature. Indeed, neural quantum states (NQS) have
been shown [14] to be viable for tomography of complex,
high-dimensional pure states, leveraging both the efficient
and scalable representation of neural networks and their great
expressional power. As we show here, these benefits carry
over to the eigenstate reconstruction of mixed states.

Our reconstruction scheme may be reminiscent of prin-
cipal component analysis (PCA), a common technique in
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FIG. 1. Stepwise reconstruction of a (nearly pure) mixed state ρ = ∑n
i=1 pi|�i〉〈�i| (pi+1 � pi) from measurement data. (a) The mixed

state ρ resides in the (N2 − 1)-dimensional, convex space M(N ) of N-dimensional density matrices. The (N2 − 2)-dimensional boundary
of M(N ) is composed of all density matrices with rank r < N , and the pure states form a continuous, 2(N − 1)-dimensional subset of this
boundary [10]. The closest (in terms of trace distance) pure state to ρ is its dominant eigenstate |�1〉. (b) A neural-network ansatz, constrained
to the submanifold of pure states, is trained to find the closest pure state in compliance with the measurements. It thereby approximates
the dominant eigenstate |�1〉 and its corresponding eigenvalue, the dominant eigenvalue p1, which captures the distance of |�1〉 from ρ.
Geometrically, this corresponds to finding the direction of projection along which ρ is closest to the boundary. This projection is equivalent to
the operation 〈�1|ρ|�1〉, mapping M(N ) to a set of hyperplanes corresponding to different values of 〈�1|ρ|�1〉. (c) The state ρ ′, defined by
(1 − p1)ρ ′ = ρ − p1|�1〉〈�1|, belongs to the [(N − 1)2 − 1]-dimensional subspace of density matrices formed by the intersection of M(N )
and the “0-hyperplane.” This subspace is “extracted” (shown schematically) and (d) constitutes the starting point for the next iteration step
based on ρ ′. Repeating this procedure then allows one to collect the eigenstate-eigenvalue pairs of ρ up to desired rank.

data science, which also aims at approximating matrices in
terms of their spectral properties. However, in contrast to
PCA, where a priori knowledge of the full matrix is pre-
sumed, here, the eigenvalue-eigenstate pairs are iteratively
reconstructed, directly from the measurement data, and only
up to a desired rank. In this sense, our method represents a
systematic way to reconstruct the density matrix step-by-step,
targeting states which exhibit a clear hierarchy among their
eigenvalues (i.e., states with low entropy). In contrast to other
methods based on low-rank approximations (e.g., Ref. [5]),
our scheme does not require to specify a priori the rank
of the approximation. Moreover, in the presence of generic
noise, the proposed, stepwise low-rank reconstruction may
deliver a more faithful reconstruction of the produced state,
as compared to extracting this information from single-shot
low-rank approximations.

This article is structured as follows: In Sec. II we develop
the theoretical foundation towards the robust recovery of the

dominant eigenstates. We then introduce our iterative eigen-
state reconstruction method in Sec. III. Section IV reviews
the Neural Quantum States and their utilization for pure-
state and mixed-state tomography [14,15]. In Sec. V, we
then demonstrate our iterative reconstruction method, based
on neural-network pure-state tomography, using experimental
data from trapped-ions experiments. Finally, we summarize
our results, along with an outlook, in Sec. VI.

II. OPTIMAL LOW-RANK APPROXIMATIONS
OF DENSITY MATRICES

We begin with formulating four propositions on low-rank
approximations, which provide us with the theoretical under-
pinning for the reconstruction of mixed states from pure-state
tomography. Their proofs are detailed in Appendix B.
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Let us assume ρ to be the density matrix to be recon-
structed,

ρ =
n∑

i=1

pi|�i〉〈�i|, (1)

where p1 � p2 � ... � pn. As the two most relevant measures
of distance between quantum states, we consider the fidelity
F between two states ρ and σ ,

F (ρ, σ ) = [Tr(
√√

σρ
√

σ )]2, (2)

and their trace distance T ,

T (ρ, σ ) = 1

2
Tr

√
(ρ − σ )†(ρ − σ )

= 1

2
Tr|ρ − σ | = 1

2

n∑
i=1

|λi|, (3)

where λi are the eigenvalues of the Hermitian matrix
(ρ − σ ). We then find the following propositions regulating
the recovery of the dominant eigenstates of the density matrix
ρ:

Proposition 1: In terms of fidelity, the unique closest
pure state to ρ is its dominant eigenstate |�1〉, with fidelity
F (ρ, |�1〉〈�1|) = p1.

Proposition 2: In terms of trace distance, the unique closest
pure state to ρ is its dominant eigenstate |�1〉, with trace
distance T (ρ, |�1〉〈�1|) = 1 − p1.

Proposition 3: In terms of fidelity, the unique closest rank-r
approximation to ρ is

σ = κ (r)−1
r∑

i=1

pi|�i〉〈�i|, (4)

with fidelity F (ρ, σ ) = κ (r) and κ (r) := p1 + p2 + ... + pr .
Proposition 4: There are infinitely many rank-r approx-

imations to ρ which achieve the same trace distance as
σ , T (ρ, σ ) = 1 − κ (r).

Detailed proofs of these propositions can be found in
Appendix B.

We can draw several conclusions from these propositions:
First, Propositions 1 and 2 clarify that pure-state approxi-
mations can reliably recover the dominant eigenstate of a
density matrix. Notably, such reconstruction appears robust
under variation of the underlying distance measure. This is
important, because in tomography, distance measures can only
be approximately reconstructed from the finite measurement
data. However, Propositions 3 and 4 indicate that single-shot
rank-r approximations are prone to degeneracies, depending
on the choice of distance measure, and thus putting the
successful reconstruction of the state in jeopardy.

These conclusions motivate an iterative approach for state
recovery, based on stepwise pure-state approximations. An
algorithm for the iterative reconstruction of a rank-r approxi-
mation will be outlined in the following section.

We remark that, in the context of tomography, where
explicit representations of target states are not available, the
calculation of fidelity typically scales exponentially, which
renders it intractable even for moderate numbers of qubits
[19]. In that case, one may confine to local observables as
estimators of accuracy (which can be sampled efficiently from

the restricted Boltzmann machines outlined below [19]). Here
again, iterative pure-state approximations appear preferrable
to single-shot rank-r approximations, due to their inherent
robustness with respect to distance measures.

III. ITERATIVE EIGENSTATE RECONSTRUCTION

We now present a scheme which, in principle, promotes
any method for pure-state tomography to mixed-state to-
mography. Below, we will demonstrate this via pure-state
tomography with neural-network quantum states [14]. In the
following, let Pm denote a family of projectors, corresponding
to measurements in the experiment.

A. Schematic mixed-state reconstruction

STEP 1: Based on the measurement statistics Tr(Pmρ), em-
ploy a chosen method for pure-state tomography to determine
the pure state |�̂1〉 which is closest (by a chosen distance
measure) to ρ.

STEP 2: Numerically calculate the measurement statis-
tics for the eigenstate approximation |�̂1〉, Tr(Pm|�̂1〉〈�̂1|) =
〈�̂1|Pm|�̂1〉.

STEP 3: Determine the dominant eigenvalue p̂1 corre-
sponding to |�̂1〉 (the procedure for which is discussed be-
low). Then calculate the measurement statistics for the hypo-
thetical state ρ ′ according to

Tr(Pmρ ′) = 1

1 − p̂1
(Tr(Pmρ) − p̂1〈�̂1|Pm|�̂1〉), (5)

where

ρ ′ = 1

1 − p̂1
(ρ − p̂1|�̂1〉〈�̂1|)

≈ 1

1 − p̂1

n∑
i=2

pi|�i〉〈�i| (6)

describes the unknown state ρ reduced by its dominant
eigenstate contribution. Note that the estimation of p̂1 should
guarantee that the resulting measurement probabilities remain
well-defined, i.e., nonnegative. The hypothetical state ρ ′, how-
ever, is merely an auxiliary construct and thus is not required
to be physical.

STEP 4: Return to STEP 1 with the new measurement
statistics Tr(Pmρ ′), and proceed to extract |�̂2〉 and p̂′

2 =
p̂2/(1 − p̂1), i.e., the new largest eigenstate-eigenvalue pair.

TERMINATION: Terminate after reaching the desired rank
k, i.e., after extracting the k eigenstates corresponding to
the first k largest eigenvalues. The constructed (normalized)
density matrix then becomes

ρ̂ = 1∑k
i=1 p̂i

k∑
i=1

p̂i|�̂i〉〈�̂i|. (7)

We emphasize that, by construction, the scheme delivers the
spectral decomposition of well-defined quantum states. This
is in particular the case, if, as we implement it, subsequent
eigenstate approximations are forced to be orthogonal to the
preceding ones. The scheme can be expected to provide us
with accurate state approximations up to rank r, if || p̂i|�̂i〉 −
pi|�i〉|| � pr+1 for all i � r.

022412-3



MELKANI, GNEITING, AND NORI PHYSICAL REVIEW A 102, 022412 (2020)

To verify that an iteration step results in an improved state
approximation, one can, for instance, compare the respec-
tive (before and after the additional iteration step) likelihood
functions of the state approximations with respect to the
measurement data. If the likelihood improves, then the step is
approved and a further iteration step can be tried (if desired).
If the likelihood remains unchanged or deteriorates, then the
step is discarded and the iteration terminates.

B. Estimation of the dominant eigenvalue

Knowledge of the approximation |�̂1〉 to the dominant
eigenstate |�1〉 allows us to estimate the corresponding eigen-
value p1 from the measurements statistics Tr(Pmρ). In princi-
ple, the trace distance provides us with a straightforward way
to retrieve a corresponding estimation p̂1, since

1 − p1 = T (ρ, |�1〉〈�1|). (8)

The trace distance, in turn, can be estimated from the mea-
surement statistics according to

T (ρ, |�1〉〈�1|) = maxP|Tr(Pρ) − 〈�1|P|�1〉|, (9)

where the maximization is over all projectors [20]. We then
estimate

1 − p̂1 ≈ 1 − p1

= T (ρ, |�1〉〈�1|)
≈ maxPm |Tr(Pmρ) − 〈�1|Pm|�1〉|, (10)

where the Pm denote the measurement projectors used in the
tomography experiment. However, the naive application of
Eq. (10) is problematic, since it systematically overestimates
p1, which then results in unphysical measurement statistics in
Eq. (5). The reason for the overestimation is that the finite set
of measurement operators Pm is unlikely to contain the (close
to) maximizing projectors.

To exclude unphysical measurement statistics, we here
choose to employ the estimate

pb
1 = minPm

Tr(Pmρ)

〈�̂1|Pm|�̂1〉
, (11)

which follows from the constraint Tr(Pmρ ′) � 0, cf. Eq. (5).
Using pb

1 as p̂1 thus guarantees by construction that the
subsequent measurement statistics remain nonnegative. Note
that the estimate is exact if both (i) |�̂1〉 = |�1〉 and (ii) there
exists an m, such that Pm = |�1〉〈�1|, as can easily be seen by
decomposing

pb
1 = minPm

(
p1

〈�1|Pm|�1〉
〈�̂1|Pm|�̂1〉

+
n∑

i=2

pi
〈�i|Pm|�i〉
〈�̂1|Pm|�̂1〉

)
. (12)

We remark that, if |�̂1〉 = |�1〉, then pb
1 � 1 cannot underes-

timate p1. However, if |�̂1〉 �= |�1〉, then we find numerically
that the measurements Pm, which underestimate p1 (and thus
determine pb

1), have little overlap with |�1〉, 〈�1|Pm|�1〉 � 1.
To see this more clearly, we write

|�̂1〉 = c1|�1〉 + c2|�〉, (13)

where |�〉 is the (orthogonal) deviation from |�1〉. We can
then write 〈�̂1|Pm|�̂1〉 = |c1|2〈�1|Pm|�1〉 + R, with the rest

R = 2Re(c1c∗
2〈�1|Pm|�〉) + |c2|2〈�|Pm|�〉. Assuming R �

|c1|2〈�1|Pm|�1〉 (since |c2| � |c1|), we can expand the de-
nominator in Eq. (11),

Tr(Pmρ)

〈�̂1|Pm|�̂1〉
≈

(
p1 +

∑n
i=2 pi〈�i|Pm|�i〉
〈�1|Pm|�1〉

)

×
(

1 − R

|c1|2〈�1|Pm|�1〉
)

1

|c1|2 . (14)

We thus find that the p1 estimation attributed to a mea-
surement Pm decreases with growing R. This happens if the
overlap of Pm with |�〉 increases. In other words, p1 is under-
estimated if there exist measurement operators Pm that have
sufficiently large overlap with |�〉 (and hence little overlap
with |�1〉). This insight will guide us below in choosing the
cost function.

Note that there exist proposals to retrieve spectral informa-
tion of unknown density matrices ρ by applying additional,
general random unitaries to ρ [21–23] (see also Ref. [24]). In
contrast, we here use knowledge of the dominant eigenstate to
approximate its corresponding eigenvalue.

IV. TOMOGRAPHY WITH NEURAL-NETWORK
QUANTUM STATES

Hereafter, we study how to implement the above intro-
duced scheme for mixed-state reconstruction with the recently
developed pure-state tomography based on NQS. To this end,
we briefly review the NQS ansatz and its usage for pure state
tomography [14].

A. Neural-network quantum states

We consider a quantum system composed of n qubits,
with its Hilbert space spanned by some reference basis 
σ =
(s1, s2, ..., sn), with si = ±1. A pure quantum state is then
completely characterized by the 2n (complex) coefficients
〈
σ |�〉 = �(
σ ). In the definition of the neural-network quan-
tum state ansatz which we implement here [14], these coeffi-
cients are approximated by two real-valued neural networks,
pλ and pμ, based on the restricted Boltzmann machine (RBM)
architecture, such that

�λ,μ(
σ ) =
√

pλ(
σ )

Zλ

exp [i�μ(
σ )/2], (15)

where �μ(
σ ) = log pμ(
σ ), and Zλ denotes a normalization
constant. We remark that alternative neural-network quantum
state implementations exist, e.g., based on complex-valued
RBMs [15].

Briefly, an RBM consists of two layers: the visible layer
with N nodes (visible neurons), corresponding to the physical
spins; and the hidden layer with M (in our case equal to
N) auxiliary nodes hi (hidden neurons). The hidden neurons
are coupled to the visible ones, but there is no coupling
among neurons in the same layer, as schematically illustrated
in Fig. 2. Consequently, an RBM can be expressed in the
succinct form:

pκ (
σ , 
h) = exp

⎛
⎝∑

i j

W κ
i j sih j +

∑
i

aκ
i si +

∑
j

bκ
j h j

⎞
⎠. (16)
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FIG. 2. Schematic depiction of a restricted Boltzmann machine.
Every node i in the visible layer (blue circles) is connected via a
weight Wi j with every node j in the hidden layer (red circles). There
are no intralayer connections. In addition, all nodes are connected to
bias nodes (not depicted). For our applications, the number of hidden
nodes can always be chosen equal to the number of visible nodes,
α = N/M = 1.

The edge weights Wi j and the bias weights ai and bi form the
parameters to be optimized, subject to some data-based train-
ing. If trained successfully, then an RBM delivers a compact
approximation to a probability distribution, characterized by
the network parameters. Such a compressed representation of
the underlying probability distribution then reduces the risk of
overfitting [25]. The distribution of interest can be retrieved by
either marginalizing over the hidden states:

pκ (
σ ) =
∑


h
pκ (
σ, 
h)

= exp

(∑
i

aκ
i si

)∏
j

2 cosh

(∑
i

W κ
i j si + bκ

j

)
, (17)

or by sampling from the distribution via alternate Gibbs
sampling. Sampling is generally efficient, in particular in high
dimensions, which contributes to the attractiveness of the
RBM model. Moreover, sampling can be used to efficiently
calculate the expectation values of many physical observables
[26,27]. We discuss sampling in some detail in Appendix A.

RBMs, and specifically NQS, are steadily gaining popu-
larity in condensed matter and many-body quantum physics,
and have already been successfully applied in a wide range of
problems, ranging from studying topological states with long-
range quantum entanglement [28,29], to maximizing the vio-
lation of Bell inequalities [30], to determining steady states of
dissipative many-body systems [31–34]. Open-source pack-
ages, accelerating and facilitating their implementation, are
readily available [27,35].

B. Pure-state tomography

We now discuss the usage of NQS for the tomography of
pure states, as introduced in [14]. The starting point for the
reconstruction is a series of independent projection measure-
ments on a pure state, |ψ (
σ [b] )|2[:= Pb(
σ [b] )]. Here the basis
rotations b are applied to 
σ to obtain a collection of projection
bases 
σ [b]. The RBMs are then trained on this data set such
that the network parameters, λ and μ, maximize the data-set
likelihood, i.e., |�λ,μ(
σ [b] )|2 ≈ Pb(
σ [b] ). For simplicity (and
following Ref. [14]), we assume that both RBMs, pλ and pμ,
feature an equal number of hidden and visible nodes, N = M.

The Kullback-Leibler divergence, which quantifies the sta-
tistical distance between two probability distributions, can be
used as cost function,

C =
∑

b

KL(1)
b =

∑
b

∑

σ [b]

Pb(
σ [b] ) log
Pb(
σ [b] )

|�λ,μ(
σ [b] )|2 . (18)

Typically, the cost is minimized iteratively by gradient
descent [14], but with increasing system sizes the calculation
of the gradients may become intractable. This increase in
computational cost is overcome by techniques like stochastic
gradient descent and Monte Carlo simulation based on block
Gibbs sampling (Appendix A). We remark that other choices
for cost functions are conceivable and may result in improved
performance, e.g., the contrastive divergence between the data
and the RBM after a sequence of k block Gibbs sampling
steps [25].

Pure-state tomography with NQS has been shown to re-
liably reconstruct pure states of up to 20 qubits, reaching
double-nine fidelities [14,25,36]. Moreover, the method has
been shown to be robust under Gaussian noise prevalent in
tomographic measurements, to perform well on physically
relevant many-body and quantum optics states, and to be
efficient by the use of Gibbs sampling on the RBMs.

A possible way to generalize neural-network state tomog-
raphy to mixed states relies on purification, i.e., the system
is augmented by a quantum environment, which subsequently
is traced out [37]. However, this partial trace over the aux-
iliary degrees of freedom complicates the training procedure
unfavorably for large system sizes [38], and demonstrations
have been restricted to small system sizes (N = 2) [37].
Here, we take the alternative approach of leveraging powerful
neural-network pure-state tomography towards the iterative,
eigenstate-wise reconstruction of mixed states.

C. Mixed-state tomography

To combine neural-network tomography for pure states
with our iterative state-reconstruction scheme, we first need
to reexamine the choice of cost function. This may be sur-
prising, since above we have shown that, in ideal conditions,
the determination of the dominant eigenstate is robust under
different choices of the distance measure. This would then
suggest to base the cost on any convenient distance measure,
e.g., motivated by Eq. (9),

L1 =
∑

m

|Tr(Pmρ) − 〈�̂1|Pm|�̂1〉|. (19)
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FIG. 3. Performance of different cost functions in quantifying the statistical difference between measurements on a generic mixed
state (taken from a trapped-ions experiment, where 4 ion qubits were prepared in an approximate W state [39]) and a pure state. The
latter is generated by applying a small random unitary rotation to the true dominant eigenstate. These states are then arranged by
their fidelity with respect to the mixed state along the column [ε(F ) = 6000 ∗ (1 − Fidelity)] and by their corresponding value of pb

1

along the row [ε(pb
1) = 10 ∗ (p1 − pb

1)/p1]. Here, Lk = ∑
m |Tr(Pmρ ) − 〈�1|Pm|�1〉|k , KL(1) = ∑

m Tr(Pmρ ) log Tr(Pmρ )
|〈�1|Pm |�1〉|2 , and KL(2) =∑

m |〈�1|Pm|�1〉|2 log |〈�1|Pm |�1〉|2
Tr(Pmρ ) . Clearly, KL(1) is most unfaithful to the fidelity.

Alternatively, one might wish to use the Kullback-Leibler
divergence, as in pure-state tomography. However, in realistic
conditions, for instance, if the data is noisy, then different
distance measures behave differently, and thus produce results
of varying quality. This is because different distance measures
tend to emphasize different statistical properties: While statis-
tical distances like L2 or the Kullback-Leibler divergence tend
to underscore the importance of larger probability values, as
these are statistically most relevant, other choices like L1 put
more weight on small probability values.

In our case, the distance measure should feature a balanced
treatment of the extremes of small and large probabilites: On
the one hand, we have seen above that measurements exhibit-
ing small detection probabilities have a significant impact on
the quality of the estimation of the dominant eigenvalue p1

[cf. Eq. (14)]; on the other hand, measurements with large de-
tection probabilities are statistically significant for the reliable
estimation of the dominant eigenstate |�1〉 [cf. Eq. (9)]. In
numerical experiments, we found that L1.5 performs best for
our purpose, cf. Fig. 3:

L1.5 =
∑

m

|Tr(Pmρ) − 〈�̂1|Pm|�̂1〉|1.5. (20)

In addition, the training of the subsequent, subdominant
eigenstates is improved by adding to the cost the overlap with

the previously learnt dominating eigenstates, enforcing their
orthogonality.

As a proof-of-principle demonstration, we discuss our
scheme with a two-qubit state, prepared in a mixture of
the four Bell states, with the respective eigenvalues p1 =
0.9, p2 = 0.09, p3 = 0.009, and p4 = 0.001 (Note that this
choice preserves the presence of a dominant eigenstate at
any iteration depth). The measurement data is based on
the Pauli observables. We obtain excellent recovery of the
first (dominant) eigenstate-eigenvalue pair, with |〈�̂1|�1〉|2 =
0.99995 and pb

1 = 0.9002. In the second iteration step, we still
obtain an excellent eigenstate approximation, |〈�̂2|�2〉|2 =
0.99998; the eigenvalue, however, is underestimated by about
15%, pb

2 = 0.077, which hints at an error progression from the
previous dominant eigenstate approximation, cf. our discus-
sion in Sec. III. Since this error in the eigenvalue estimation
exceeds the tolerance threshold for the next iteration step,
we terminate here at an overall reconstruction fidelity of
96.6%.

Let us remark that we believe that there is still great
potential for improving the cost function, by more directly
exploiting the characteristic statistical differences between
mixed states and their dominant eigenstates. For example,
the measurements on the dominant eigenstates exhibit sys-
tematically reduced entropies as compared to the full mixed
state, cf. Fig. 4(a). Even more significantly, the eigenstate
accentuates measurement outcomes with extreme statistics,
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FIG. 4. The measurement statistics of a mixed state and its dom-
inant eigenstate are strongly correlated and yet exhibit characteristic
differences. We demonstrate this with experimental data from a
trapped-ions experiment [39], where 4 ion qubits were prepared in
an approximate W state. (a) All the 34 = 81 possible Pauli measure-
ments exhibit reduced entropies for the dominant eigenstate when
compared to the full mixed state. (b) Moreover, the dominant eigen-
state accentuates measurement outcomes with extreme statistics,
enhancing strong and suppressing weak measurement contributions.
Shown are the detection probabilities for all the (2 × 3)4 = 1,296
possible Pauli-basis projections.

enhancing strong, and suppressing weak measurement con-
tributions; see Fig. 4(b). We checked these statistical features
for generic random density matrices. We leave the construc-
tion of cost functions that enbody these insights for future
work.

To further improve the estimation of pb
1, one may take into

account that tomographic measurements come with unavoid-
able, intrinsic noise, which suggests to discard measurement
operators below a preset detection threshold. Moreover, an
additional “noise layer” in the RBM architecture may further
contribute to mitigate measurement errors [36].

V. APPLICATION TO TRAPPED-IONS EXPERIMENTS

We evaluated the iterative state reconstruction with neural-
network tomography [40] using experimental data from
trapped-ions experiments [39], where 4 to 8 ion qubits were
prepared in approximate W states and subsequently subjected
to full state tomography. Referring to compressed sensing [5],
we constructed the measurement operators Pm from the eigen-
states of a random subset of about 3n( 3

2 )n Pauli observables,
σi1 ⊗ σi2 ⊗ ... ⊗ σin (i ∈ {x, y, z}), out of the complete set of
3n Pauli observables. We remark that, for the system sizes
considered, the normalized distributions pλ(
σ ) and pμ(
σ )
could be determined explicitly and Gibbs sampling was not
required.

We applied iterative state reconstruction up to the second
eigenstate (rank-2 approximation) for system sizes of 4 to
8 qubits. The results are given in Table I. We find that the
dominant eigenstate is recovered with >99% fidelity for all
the system sizes considered. This robust performance in the
reconstruction of the first eigenstate with above 99% fidelity
was also confirmed by additional testing on a family of
randomly generated density matrices. The reliable knowledge
of the dominant eigenstates then lets us assess the quality of
the target state production (e.g., offsets from the (pure) target
state caused by systematic errors in the coherent control), in
terms of the overlap of the dominant eigenstate with the target
W state. This provides an alternative to the more standard
assessment in terms of the overlap of the produced mixed state
with the target state [39], which contains also contributions
from all subdominant eigenstates.

The estimation of the dominant eigenvalue, which informs
us about the “purity offset” from the (pure) target state (e.g.,
induced by coupling to an environment, or by parameter
drifts between different runs of the experiment [41]), shows a
deteriorating scaling behavior: While the dominant eigenvalue
is less than 4% off in the 4-qubit case, it is underestimated by
about 33% in the case of 8 qubits, which hints at an increasing
influence of the error in the eigenstate approximation, cf.
our discussion in Sec. III. While a growing estimation error
appears natural with regard to the decreasing purity of the
dominant eigenstate contribution, its magnitude may appear
surprising in view of the excellent eigenstate approximations;
however, as indicated by Eq. (14), measurement projectors
with very small overlap with the eigenstate tend to strongly
amplify the error of the eigenstate approximation, resulting
in erroneous minima in the estimate Eq. (11). Note that this
issue could be circumvented in an adaptive measurement
scheme, where knowledge of the dominant eigenstates is used
to implement measurements that maximize the overlap with
the eigenstates.

Along with the error scaling of the estimation of the first
eigenvalue, we observe an increasingly poor reconstruction of
the second eigenstate and eigenvalue, cf. Table I. This may
be due to the incomplete subtraction of the first eigenstate, cf.
Eq. (6), or because, with increasing Hilbert space dimension,
the second and the third eigenvalue become comparable of
size and the respective eigenstates thus harder to discriminate.

We define the relative fidelity RF (ρ, σ ) as the ratio be-
tween the fidelity achieved and the maximum fidelity possible
at a given rank r, RF (ρ, σ ) = F (ρ, σ )/κ (r). We find that the
relative fidelity drops from 0.98 at 4 qubits to (still competi-
tive) 0.92 at 8 qubits. For comparison, Ref. [5] reports a rank-
3 reconstruction fidelity of 0.82 for the same approximate
8 qubit W state, which translates into a relative fidelity of
0.95. (Reference [5] reports a rank-3 reconstruction fidelity
of 0.91, which is, however, larger than the maximum fidelity
achievable in our definition of fidelity, κ (3) = 0.86. We thus
assume they chose the square-root convention to define the
fidelity.)

We still see large potential for an improved scaling behav-
ior in the reconstruction of the state properties beyond the
dominant eigenstate. This may be achieved, for example, by
estimating both eigenstates and eigenvalues simultaneously,
by employing a three-layer generalization of NQS [42] or by
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TABLE I. Iterative rank-2 reconstruction of the approximate W states produced in Ref. [39], ranging from 4 to 8 ion qubits. The four left
columns specify the state ρ in terms of its leading eigenvalues, with κ (2) := p1 + p2 being the maximum fidelity a rank-2 approximation of
ρ can achieve. The center six columns display the outcome of the iterative reconstruction. The overlap |〈�̂1|�1〉|2 between the dominant
eigenstate |�1〉 and its approximation |�̂1〉 learned by the NQS maintains double-9 quality through all system sizes considered. The
reconstructed second eigenstate and the estimates pb

i of the respective eigenvalues pi display deteriorating scaling behavior. The rank-2
approximations σ := κ̂ (2)−1

∑2
i=1 pb

i |�̂i〉〈�̂i|, with κ̂ (2) = pb
1 + pb

2 for normalization, feature fidelities F (ρ, σ ) with the actual mixed states ρ

ranging from 0.90 (4 qubits) to 0.74 (8 qubits). This results in relative fidelities RF (ρ, σ ) = F (ρ, σ )/κ (2) ranging from 0.98 (4 qubits) to 0.92
(8 qubits). The rightmost two columns display the fidelity of ρ with the target W state (cf. [39]), and the fidelity of the approximated dominant
eigenstate |�̂1〉 with the target W state. Our results confirm that the recovered dominant eigenstate-eigenvalue pair provides us with a viable
assessment of the quality of the target state production.

N p1 p2 κ (2) p3 |〈�̂1|�1〉|2 pb
1 |〈�̂2|�2〉|2 pb

2 F(ρ, σ ) RF (ρ, σ ) F (ρ,W ) |〈�̂1|W 〉|2

4 0.860 0.063 0.922 0.037 0.999 0.836 0.852 0.018 0.905 0.981 0.85 0.985
5 0.824 0.073 0.896 0.042 0.998 0.765 0.769 0.008 0.860 0.960 0.76 0.930
6 0.813 0.070 0.883 0.042 0.998 0.690 0.801 0.010 0.865 0.979 0.79 0.974
7 0.782 0.060 0.843 0.044 0.993 0.545 0.284 0.008 0.805 0.955 0.76 0.981
8 0.751 0.061 0.812 0.046 0.994 0.505 0.246 ≈ 0 0.748 0.922 0.72 0.959

implementing adaptive measurement schemes. Irrespectively,
the dominant eigenvalue estimate may be taken as a fair
assessment of the overall quality of the state produced, which,
along with the dominant eigenstate, provides the arguably
most relevant information about the state production.

We remark that we also tested the quality of the eigenstate
recovery with training data significantly reduced below the
compressed sensing threshold. In that case, the training data
is presumably not sufficient to single out a unique mixed
state. Nevertheless, we still obtained very good agreement
for the dominant eigenstate approximation. This may hint
at the greater robustness of pure-state tomography, and at
the supportive generalization behavior of the neural-network
ansatz. In the case of incomplete measurement data, one may
then test against overfitting by splitting the data into a training
and a test set.

VI. CONCLUSIONS

We presented a scheme for quantum state tomography via
the stepwise retrieval of the eigenstates and eigenvalues of the
mixed states produced in experiments. Our scheme iteratively
exploits that dominant eigenstates can be robustly extracted
from mixed-state measurement data using pure-state tomog-
raphy methods, inheriting their scaling behavior. As a specific
method for pure-state tomography, we chose the efficient and
scalable representation and training of pure states based on
restricted Boltzmann machines. We demonstrated our scheme
with experimental data from trapped-ions experiments, where
approximate W states from 4 to 8 qubits were produced. We
find that the dominant eigenstates can be excellently retrieved,
with fidelities consistently exceeding 0.99. In the 4-qubit case,
we reach an overall fidelity of 0.90 for a rank-2 approxima-
tion, which corresponds to a relative fidelity of 0.98. In the 8
qubit case, we still reach an overall fidelity of 0.75 for a rank-2
approximation, corresponding to a relative fidelity of 0.92.

Our scheme is designed to deliver low-rank approxima-
tions, following the cost scaling of pure-state tomography and
with the rank not required to be set a priori. It is particularly
well-suited for the experimentally relevant case of density
matrices exhibiting dominant eigenstates, where pure-state

tomography methods can be expected to produce accurate
approximations of the latter. In contrast to a full matrix
reconstruction, which scales as O(n2) in computational cost,
our procedure scales as O(nr), where r denotes the rank to be
achieved. Moreover, the computational burden is mitigated,
since in each step only a pure state needs to be processed,
which can then be stored separately. We conjecture that the
stepwise optimization of pure states may, due to their inherent
coherence (which constrains the measurement statistics) and
in line with compressed sensing, also have a positive effect on
the required amount of training data.

From a conceptual perspective, our scheme directly and
efficiently delivers the arguably most relevant information
about successful state production in experiments: The leading
eigenstate(s) can inform the experimenter about systematic
errors in the state production, while the dominant eigenvalue
captures and quantifies the impact of decoherence and uncon-
trolled parameter fluctuations. This reasoning also straight-
forwardly generalizes to cases where the target states are
(low-rank) mixed states. The practicality of such condensed
and structured assessment of experimentally produced states
can only increase with growing system size and exponentially
growing Hilbert space dimension.

We still see considerable potential for improving the eigen-
value estimation. Our present method displays a consistent
underestimation of the eigenvalues, with an error of less than
4% in the 4-qubit case, which rises to about 33% in the case
of 8 qubits. Possible improvement strategies include mod-
ified neural-network architectures, more refined eigenvalue
estimations, cost functions that are optimized with respect
to the statistical characteristics of eigenstates, and adaptive
measurement schemes. We leave this for future research.
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APPENDIX A: GIBBS SAMPLING

Gibbs sampling of a restricted Boltzmann machine (RBM)
enables one to infer the values of the probability distribution
P(
σ ) = p(
σ )/Z without the need to calculate every p(
σ )
individually, as it would be required to determine the normal-
ization Z . To this end, one devises a two-step Markov-chain
sampling with transition probabilities:

Tσ [(
σ, 
h) −→ (
σ ′, 
h)] = P(
σ ′, 
h)∑

σ ′′ P(
σ ′′, 
h)

= P(
σ ′|
h), (A1)

Tσ [(
σ, 
h) −→ (
σ, 
h′)] = P(
σ , 
h′)∑

h′′ P(
σ , 
h′′)

= P(
h′| 
σ ). (A2)

That is, from a given configuration (
σ , 
h) of the RBM, we can
treat either the visible nodes 
σ as evolving stochastically as a
function of the hidden nodes 
h or vice versa. These conditional
probabilities are very efficient to compute, as nodes within
same layers are independent of each other. For example,

P(
σ ′|
h) = exp
( ∑

i j W κ
i j s

′
ih j + ∑

i aκ
i s′

i + ∑
j bκ

j h j
)

∑

σ ′′ e

∑
i j W κ

i j s′′
i h j+

∑
i aκ

i s′′
i +∑

j bκ
j h j

=
∏

i exp
( ∑

j W κ
i j s

′
ih j + aκ

i s′
i

)
∏

i

(
e
∑

j W κ
i j h j+aκ

i + e− ∑
j W κ

i j h j−aκ
i
) . (A3)

We can factorize this expression to obtain

P(s′
i = 1|
h) = 1

1 + exp
[ − 2

(∑
j W κ

i j h j + aκ
i

)] , (A4)

and similarly,

P(h′
j = 1|
σ ) = 1

1 + exp
[ − 2

(∑
i W κ

i j si + bκ
j

)] . (A5)

Repeating these Markov-chain steps Ns times from a ran-
domly generated initial configuration, the resulting 
σ is effec-
tively sampled from the distribution P(
σ ), regardless of the
starting point. Producing sufficiently many samples according
to the distribution then allows to infer p(
σ )/Z , as it is needed
to determine the gradients.

This provides a method to circumvent the problem of need-
ing to calculate explicitly all the outputs pλ(
σi) and pμ(
σi )
corresponding to each input 
σi which becomes very expensive
when the state space enlarges to, say, order of 220.

APPENDIX B: PROOFS OF PROPOSITIONS

In the following we present the proofs of the propositions
from Sec. II.

1. Rank-1 approximations

The case of rank-1 approximations is special for two
reasons: First, the rank-1 approximation of a density matrix
corresponds to its closest pure state and hence is conceptually
important. Second, in this case both fidelity and trace distance
are optimized uniquely by the same pure state.

a. Fidelity

The unique closest pure state to ρ is its dominant eigenstate
|�1〉.

The proof is trivial: Let |�〉 be the closest pure state. Note
that τ = |�〉〈�| has eigenvalues 1 (with multiplicity 1) and 0
(with multiplicity n − 1), so that

√
τ = τ . Then,

F (ρ, τ = |�〉〈�|) = [Tr(
√√

τρ
√

τ )]2

= [
√

〈�|ρ|�〉]2

= 〈�|ρ|�〉, (B1)

which is maximized uniquely by |�〉 = |�1〉, with fidelity p1.

b. Trace distance

We claim that the minimum trace distance T between ρ

and a pure state is bounded by 1 − p1. A straightforward
computation then shows that |�1〉 reaches this bound.

To prove the claim, and that |�1〉 is the unique solution,
we make use of Weyl’s inequality [43]: Let Q and P be
two Hermitian matrices, and define M = Q + P. Label the
eigenvalues of Q by qi, of P by pi, and of M by mi, such
that q1 � q2 � ... � qn, p1 � p2 � ... � pn, and m1 � m2 �
... � mn. Weyl’s inequality then states that

q j + pk � mi � qr + ps, (B2)

whenever

j + k − n � i � r + s − 1. (B3)

In our case M = Q + P = (−σ ) + ρ, and therefore
(q1, q2, ..., qn−1, qn) = (0, 0, ..., 0,−1), as σ is a pure
state. First, let j, r, i, k = n and s = 1 (one can check that
condition Eq. (B3) holds), so that Weyl’s inequality Eq. (B2)
gives

pn − 1 � mn � p1 − 1

⇒ 1 − p1 � |mn| � 1 − pn. (B4)

Second, let r = 1, j = n − 1, s = i, k = i + 1 for i = 1 to
n − 1, so that Weyl’s inequality Eq. (B2) gives

pi+1 � mi � pi

⇒ pi+1 � |mi| � pi (B5)

for i = 1 to n − 1. Therefore, using Eqs. (B4) and (B5),

(1 − p1) +
n∑

i=1

pi+1 �
n∑

i=1

|mi| � (1 − pn) +
n∑

i=1

pi

2(1 − p1) �
n∑

i=1

|mi| � 2(1 − pn)

022412-9



MELKANI, GNEITING, AND NORI PHYSICAL REVIEW A 102, 022412 (2020)

or

(1 − p1) � T (ρ, σ ) = 1

2

n∑
i=1

|mi| � (1 − pn). (B6)

The inequality, (1 − p1) � T (ρ, σ ) becomes an equality if
mn = p1 + qn = p1 − 1 and pi+1 + qn−1 = pi+1 = mi. For
this to happen it is necessary that the eigenspaces corre-
sponding to the eigenvalues in the equations have nonvan-
ishing intersection [44]. In particular, it is required that the
eigenspace corresponding to p1, which is given by |�1〉, and
the eigenspace corresponding to qn, which is given by |�〉,
have a nonvanishing intersection, implying that |�〉 = |�1〉,
uniquely.

2. Rank-r approximations

a. Fidelity

Let τ = ∑r
i=1 qi|�i〉〈�i| be the closest rank-r ap-

proximation with |�i〉 ∈ H (r) and H (r) an r-dimensional
(Hilbert-)subspace of H (n). We will work in the basis of the
solution, so that τ = diag(q1, q2, ..., qr, 0, ..., 0). Define D =∑r

i=1 |�i〉〈�i| and consider the normalized r × r submatrix
of ρ given by

ρ ′ = DρD

Tr(DρD)
. (B7)

By construction, ρ ′ is Hermitian and has trace one. To verify
that it is also positive semi-definite, we argue that, for any |x〉
in the Hilbert space (ignoring the normalization term for ρ ′,
which is positive),

〈x|ρ ′|x〉 = 〈x|DρD|x〉 = 〈x|D
〈x|D†D|x〉ρ

D|x〉
〈x|D†D|x〉 〈x|D

†D|x〉2

= 〈x′|ρ|x′〉〈x|D|x〉2, (B8)

where |x′〉 = D|x〉
〈x|D†D|x〉 also lies in the Hilbert space, and we

used D†D = D. Noting that both of these terms in the multi-
plication are nonnegative, we conclude that ρ ′ is nonnegative,
i.e., positive semi-definite. Hence, since ρ ′ is Hermitian, has
trace one, and is positive semi-definite, it constitutes a valid
density matrix (of at most rank r). For the fidelity we then
obtain

F (ρ, τ ) = [Tr(
√√

τρ
√

τ )]2 = [Tr(
√√

τρ ′√τ )]2Tr(DρD)

= F (ρ ′, τ )Tr(DρD), (B9)

where we have used D
√

τ = √
τD = √

τ . Note that the first
term is maximized (to one) when both rank-r matrices are the

same, that is, τ = ρ ′. The second term, on the other hand,
simplifies to

Tr(DρD) = Tr

⎛
⎝ i=r, j=n,k=r∑

i=1, j=1,k=1

|�i〉〈�i|p j |� j〉〈� j |�k〉〈�k|
⎞
⎠

=
i=r, j=n∑
i=1, j=1

p j |〈�i|� j〉|2. (B10)

Now let
∑r

i=1 |〈�i|� j〉|2 = k j � 1, where the inequality be-
comes an equality if |� j〉 can be decomposed into the incom-
plete |�i〉 basis. We can then write

Tr(DρD) =
n∑

j=1

p jk j, (B11)

which is maximized (to κ) when k j = 1 for 1 � j � r (then,
k j = 0 for r + 1 � j � n). In other words, the first r dominant
eigenvectors |� j〉 lie in the same subspace as spanned by
the |�i〉. Maximization follows, since any other choice of
k j would have to trade the factor of a large pi (small i)
for a larger factor accompanying a small pi (large i), which
would reduce the trace. Consequently, τ = ρ ′ is the unique
solution maximizing both terms. Since ρ is diagonal in that
case, we obtain ρ ′ = σ . Therefore, σ is the unique rank-r
approximation of ρ that is closest to it (in terms of fidelity),
with fidelity F (ρ, σ ) = κ .

b. Trace distance

We conjecture, on the basis of numerical experiments, that
σ also minimizes the trace distance to ρ, with T (ρ, σ ) =
1 − κ . Here, however, we show that there exist infinitely
many rank-r approximations which reach this optimization,
all having the first r dominant eigenstates of ρ as their support.

Consider a rank-r approximation τ = ∑r
i=1 qi|�i〉〈�i| =

diag(q1, q2, ..., qr, 0, ..., 0), such that qi � pi for i = 1 to r.
Since

∑r
i=1 qi = 1 � ∑r

i=1 pi, this condition is satisfied by
infinitely many matrices, and σ is one of them. The trace
distance then evaluates as

T (ρ, τ ) = 1

2

(
r∑

i=1

|pi − qi| +
n∑

i=r+1

|pi − 0|
)

= 1

2

[
r∑

i=1

(qi − pi ) + (1 − κ )

]

= 1

2
[(1 − κ ) + (1 − κ )]

= 1 − κ. (B12)
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