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This document consists of ten parts: (I) The dark-mode effect and its breaking in a two-mechanical-resonator op-
tomechanical system; (II) Ground-state cooling of the two mechanical resonators; (III) Phonon scattering probability
and nonreciprocal phonon transfer; (IV) Derivation of the cooling limits of the two mechanical resonators; (V) Analyz-
ing the dark-mode effect and breaking the dark-mode effect in a multi-mechanical-resonator optomechanical system;
(VI) Ground-state cooling of the multiple mechanical resonators; (VII) Discussions on the justification of performing
the rotating-wave approximation (RWA); (VIII) Simultaneous cooling of the mechanical supermodes; (IX) Physi-
cal mechanism for breaking the dark-state effect in a Lambda-type three-level system; (X) A possible experimental
realization and derivation of a phase-dependent phonon-hopping interaction between two mechanical resonators.

I. THE DARK-MODE EFFECT AND ITS BREAKING IN A TWO-MECHANICAL-RESONATOR
OPTOMECHANICAL SYSTEM

In this section, we analyze the dark-mode effect in a two-mechanical-resonator optomechanical system, which is
composed of one cavity-field mode and two mechanical resonators. Note that here we only consider one mechanical
mode in each mechanical resonator. We also show that the dark-mode effect can be broken by introducing a phase-
dependent phonon-exchange interaction between the two mechanical resonators. In a rotating frame defined by the
transform operator exp(−iωLta

†a), the total Hamiltonian of the system reads (~ = 1)

HI = ∆ca
†a+ ω1b

†
1b1 + ω2b

†
2b2 + g1a

†a(b1 + b†1) + g2a
†a(b2 + b†2) + (Ωa+Ω∗a†) + η(eiθb†1b2 + e−iθb†2b1), (S1)

where ∆c = ωc −ωL is the detuning of the cavity-field resonance frequency ωc with respect to the cavity-field driving

frequency ωL. The operators a (a†) and bl=1,2 (b
†
l ) are, respectively, the annihilation (creation) operators of the cavity-

field mode and the lth mechanical resonator, with the corresponding resonance frequencies ωc and ωl. The g1 and
g2 terms in Hamiltonian (S1) describe the optomechanical coupling between the cavity mode and the lth mechanical
resonator, with gl=1,2 being the single-photon optomechanical-coupling strength. The Ω term denotes the cavity-field
driving with the driving amplitude Ω. To control the energy exchange between the two mechanical resonators, we
introduce a phase-dependent phonon-exchange interaction between the two mechanical resonators, with the coupling
strength η and the phase θ.
According to Hamiltonian (S1), the Langevin equations for the annihilation operators of the optical and mechanical

modes can be obtained by phenologically adding the dissipation and noise terms into the Heisenberg equations of
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motion as

ȧ =− {κ+ i[∆c + g1(b1 + b†1) + g2(b2 + b†2)]}a− iΩ∗ +
√
2κain, (S2a)

ḃ1 =− (γ1 + iω1)b1 − ig1a
†a− iηeiθb2 +

√
2γ1b1,in, (S2b)

ḃ2 =− (γ2 + iω2)b2 − ig2a
†a− iηe−iθb1 +

√
2γ2b2,in, (S2c)

where κ and γl=1,2 are the decay rates of the cavity-field mode and the lth mechanical resonator, respectively.

The operators ain and bl=1,2,in (a†in and b†l,in) are the noise operators associated with the cavity-field mode and the
lth mechanical resonator, respectively. These noise operators have zero mean values and the following correlation
functions,

⟨ain(t)a†in(t
′)⟩ =δ(t− t′), (S3a)

⟨a†in(t)ain(t
′)⟩ =0, (S3b)

⟨bl,in(t)b†l,in(t
′)⟩ =(n̄l + 1)δ(t− t′), (S3c)

⟨b†l,in(t)bl,in(t
′)⟩ =n̄lδ(t− t′), (S3d)

where n̄l=1,2 is the average thermal-phonon occupation number associated with the heat bath of the lth mechanical
resonator. In this paper we consider a vacuum bath for the cavity field and a heat bath (with n̄l=1,2) for each
mechanical resonator. The vacuum bath of the cavity field provides the cooling reservoir to absorb the thermal
excitations extracted from the two mechanical resonators.
To cool the mechanical resonators, we consider the strong-driving regime of the cavity such that the average

photon number in the cavity is sufficiently large and then the linearization procedure can be used to simplify the
physical model. To this end, we expand the quantum fluctuations of the system around their steady-state values and
express the operators in Eq. (S2) as a summation of their steady-state mean values and quantum fluctuations, namely

o = ⟨o⟩ss+ δo for operators o = a, a†, bl=1,2, and b†l=1,2. By separating the classical motion and quantum fluctuations,
the linearized equations of motion for quantum fluctuations can be written as

δȧ =− (κ+ i∆)δa− iG1(δb1 + δb†1)− iG2(δb2 + δb†2) +
√
2κain, (S4a)

δḃ1 =− iG∗
1δa− (γ1 + iω1)δb1 − iηeiθδb2 − iG1δa

† +
√
2γ1b1,in, (S4b)

δḃ2 =− iG∗
2δa− iηe−iθδb1 − (γ2 + iω2)δb2 − iG2δa

† +
√
2γ2b2,in, (S4c)

where ∆ = ∆c + 2(g1Re[β1] + g2Re[β2]) is the normalized driving detuning of the cavity field with Re[βl] extracting
the real part of βl, and Gl=1,2 = glα is the strength of the linearized optomechanical coupling between the cavity field
and the lth mechanical resonator. Here, the steady-state solutions of the classical motion (namely the steady-state
average values of the operators of the system) can be obtained as

α ≡⟨a⟩ss =
−iΩ∗

κ+ i∆
, (S5a)

β1 ≡⟨b1⟩ss =
−i
(
g1|α|2 + ηeiθβ2

)
γ1 + iω1

, (S5b)

β2 ≡⟨b2⟩ss =
−i
(
g2|α|2 + ηe−iθβ1

)
γ2 + iω2

. (S5c)

For simplicity, in the following discussions we consider the case where α is real, which is accessible by choosing a
proper driving amplitude Ω. Then the linearized optomechanical coupling strengths G1 and G2 are real.
A linearized optomechanical Hamiltonian can be inferred according to Eqs. (S4). For studying quantum cooling of

the two mechanical resonators, the beam-splitting-type interactions (i.e., the rotating-wave interaction term) between
these bosonic modes are expected to dominate the linearized couplings in this system, and hence we can simplify
the Hamiltonian of the system by making the rotating-wave approximation (RWA). The linearized optomechanical
Hamiltonian in the RWA takes the following form (discarding the noise terms)

HRWA = ∆δa†δa+ ω1δb
†
1δb1 + ω2δb

†
2δb2 +G1(δaδb

†
1 + δb1δa

†) +G2(δaδb
†
2 + δb2δa

†) + η(eiθδb†1δb2 + e−iθδb†2δb1),

(S6)

where δa (δa†) and δbl=1,2 (δb
†
l ) are the fluctuation operators of the cavity-field mode and the lth mechanical resonator,

respectively.
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To see the dark-mode effect in this two-mechanical-resonator optomechanical system, we first consider the case
where the phase-dependent phonon-exchange interaction between the two mechanical resonators is absent, i.e., η = 0.
In this case, the coupled two-mechanical-mode system forms two hybrid mechanical modes: a bright mode and a dark
mode, which are expressed by the new annihilation operators as

B+ =
1√

G2
1 +G2

2

(G1δb1 +G2δb2), (S7a)

B− =
1√

G2
1 +G2

2

(G2δb1 −G1δb2). (S7b)

These new operators satisfy the bosonic commutation relations [B+, B
†
+] = 1 and [B−, B

†
−] = 1. In the absence of the

phonon-exchange interaction (η = 0), the Hamiltonian in Eq. (S6) can be rewritten with the two hybrid modes as

Hhyb = ∆δa†δa+ ω+B
†
+B+ + ω−B

†
−B− + ζ(B†

+B− +B†
−B+) +G+(δaB

†
+ +B+δa

†), (S8)

where we introduce the resonance frequencies ω± and the coupling strengths ζ and G+

ω+ =
G2

1ω1 +G2
2ω2

G2
1 +G2

2

, (S9a)

ω− =
G2

2ω1 +G2
1ω2

G2
1 +G2

2

, (S9b)

ζ =
G1G2(ω1 − ω2)

G2
1 +G2

2

, (S9c)

G+ =
√

G2
1 +G2

2. (S9d)

When ω1 = ω2, the two hybrid modes are decoupled from each other due to ζ = 0, and the mode B− becomes a dark
mode in the sense that it is decoupled from both the cavity mode a and the other hybrid mode B+.
In order to break the dark-mode effect, we introduce a phase-dependent phonon-exchange interaction (i.e., the η

term) between the two mechanical resonators. By introducing two new bosonic modes B̃+ and B̃− defined by

δb1 =fB̃+ + eiθhB̃−, (S10a)

δb2 =− e−iθhB̃+ + fB̃−, (S10b)

Hamiltonian (S6) becomes

HRWA = ∆δa†δa+ ω̃+B̃
†
+B̃+ + ω̃−B̃

†
−B̃− + (G̃∗

+δaB̃
†
+ + G̃+B̃+δa

†) + (G̃∗
−δaB̃

†
− + G̃−B̃−δa

†), (S11)

where we introduce the resonance frequencies ω̃± and the coupling strengths G̃± as

ω̃± =
1

2
(ω1 + ω2 ±

√
(ω1 − ω2)2 + 4η2), (S12a)

G̃+ =fG1 − e−iθhG2, (S12b)

G̃− =eiθhG1 + fG2, (S12c)

with

f =
|ω̃− − ω1|√

(ω̃− − ω1)2 + η2
, (S13a)

h =
ηf

ω̃− − ω1
. (S13b)

In the degenerate-resonator case, namely when the two mechanical resonators have the same resonance frequencies
ω1 = ω2 = ωm, the coupling strengths in Eq. (S12) can be simplified as

G̃+ =(G1 + e−iθG2)/
√
2, (S14a)

G̃− =(G2 − eiθG1)/
√
2. (S14b)
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We proceed to analyze the dependence of the dark-mode effect on the coupling strengths G1 and G2. Concretely, we
will consider three special cases.
(i) In the symmetric-coupling case: G1 = G2 = G, we obtain the relations

G̃+ =G(1 + e−iθ)/
√
2, (S15a)

G̃− =G(1− eiθ)/
√
2. (S15b)

It can be seen from Eq. (S15) that, when θ = nπ for an integer n, one of the two hybrid mechanical modes (the
dark mode) will be decoupled from the cavity-field mode. In this case, the excitation energy stored in the dark mode
cannot be extracted through the optomechanical-cooling channel. In general cases of θ ̸= nπ, the dark-mode effect is
broken and then ground-state cooling of the two mechanical resonators becomes accessible under proper parameter
conditions.
(ii) In the case θ = nπ for an even number n, Eq. (S14) becomes

G̃+ =(G1 +G2)/
√
2, (S16a)

G̃− =(G2 −G1)/
√
2. (S16b)

We can see that the dark mode (i.e., the mode B̃− in this case) can be broken when the two optomechanical coupling
strengths are different G1 ̸= G2. In this case, our numerical simulation indicates that simultaneous ground-state
cooing of the two mechanical resonators can be realized when G2/G1 ≪ 1.
(iii) In the case θ = nπ for an odd number n, we have

G̃+ =(G1 −G2)/
√
2, (S17a)

G̃− =(G2 +G1)/
√
2. (S17b)

In this case, the mode B̃+ becomes the dark mode when G1 = G2. The simultaneous ground-state cooing of the two
mechanical resonators can be realized when G2/G1 ≪ 1, as shown by Fig. S2(d).

II. GROUND-STATE COOLING OF THE TWO MECHANICAL RESONATORS

In this section, we study the cooling performance in this system by evaluating the final average phonon numbers
in the two mechanical resonators. To this end, we proceed to rewrite the linearized Langevin equations (S4) as the
following compact form

u̇(t) = Au(t) +N(t), (S18)

where the fluctuation operator vector u(t), the noise operator vector N(t), and the coefficient matrix A are defined
as

u(t) = [δa(t), δb1(t), δb2(t), δa
†(t), δb†1(t), δb

†
2(t)]

T , (S19)

N(t) = [
√
2κain(t),

√
2γ1b1,in(t),

√
2γ2b2,in(t),

√
2κa†in(t),

√
2γ1b

†
1,in(t),

√
2γ2b

†
2,in(t)]

T , (S20)

and

A =


−(κ+ i∆) −iG1 −iG2 0 −iG1 −iG2

−iG∗
1 −(γ1 + iω1) −iηeiθ −iG1 0 0

−iG∗
2 −iηe−iθ −(γ2 + iω2) −iG2 0 0

0 iG∗
1 iG∗

2 −(κ− i∆) iG∗
1 iG∗

2

iG∗
1 0 0 iG1 −(γ1 − iω1) iηe−iθ

iG∗
2 0 0 iG2 iηeiθ −(γ2 − iω2)

 . (S21)

The formal solution of the linearized Langevin equation (S18) can be written as

u(t) = M(t)u(0) +

∫ t

0

M(t− s)N(s)ds, (S22)
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where the matrix M(t) is defined by M(t) = exp(At). Based on the solution, we can calculate the steady-state average
phonon numbers in the two mechanical resonators by solving the Lyapunov equation. Note that the parameters used
in the following calculations satisfy the stability conditions derived from the Routh-Hurwitz criterion. Namely, the
real parts of all the eigenvalues of the coefficient matrix A are negative.
For studying quantum cooling of the two mechanical resonators, we focus on the final average phonon numbers in

the two mechanical resonators by calculating the steady-state value of the covariance matrix V, which is defined by
the matrix elements

Vij =
1

2
[⟨ui(∞)uj(∞)⟩+ ⟨uj(∞)ui(∞)⟩], i, j = 1− 6. (S23)

In the linearized optomechanical system, the covariance matrix V satisfies the Lyapunov equation

AV +VAT = −Q, (S24)

where “T” denotes the matrix transpose operation and the matrix Q is defined by

Q =
1

2
(C+CT ), (S25)

with C being the noise correlation matrix defined by the matrix elements

⟨Nk(s)Nl(s
′)⟩ = Ck,lδ(s− s′). (S26)

For the Markovian baths considered in this work, the constant matrix C is given by

C =


0 0 0 2κ 0 0
0 0 0 0 2γ1(n̄1 + 1) 0
0 0 0 0 0 2γ2(n̄2 + 1)
0 0 0 0 0 0
0 2γ1n̄1 0 0 0 0
0 0 2γ2n̄2 0 0 0

 . (S27)

Based on the covariance matrix V, the final average phonon numbers in the two mechanical resonators are obtained
by

nf
1 =⟨δb†1δb1⟩ = V52 −

1

2
, (S28a)

nf
2 =⟨δb†2δb2⟩ = V63 −

1

2
, (S28b)

where V52 and V63 can be obtained by solving the Lyapunov equation (S24).

In Figs. S1(a) and S1(b), we plot the final average phonon numbers nf
1 and nf

2 as functions of the ratio ω2/ω1

(the resonance frequency of the second mechanical resonator over that of the first mechanical resonator) and the
scaled cavity-field decay rate κ/ω1 when the phase-dependent phonon-exchange coupling is absent (η = 0), i.e., in the
dark-mode-unbreaking case. Here, we can see that there exists a peak around ω2 = ω1, which means that the two
mechanical resonators cannot be cooled in the degenerate and near-degenerate two-resonator cases. This phenomenon
can be clearly explained based on the dark-mode effect. When ω1 = ω2, the two mechanical resonators form two hybrid
mechanical modes: a bright mode and a dark mode. The dark mode is decoupled from both the cavity-field mode and
the bright mechanical mode and hence the excitation energy stored in the dark mode cannot be extracted through the
optomechanical-cooling channel. When the two mechanical resonators are far-off-resonant with each other, there is
no dark mode, then the ground-state cooling can be realized when this system works in the resolved-sideband regime
and under proper driving condition (red-sideband resonance).
The dark-mode effect can be broken by introducing a phase-dependent phonon-exchange interaction between the

two mechanical resonators, and then the ground-state cooling can be realized in the degenerate and near-degenerate

two-mechanical-resonator cases. In Figs. S1(c) and S1(d), we plot the final average phonon numbers nf
1 and nf

2 in
the two mechanical resonators as functions of the ratio ω2/ω1 and the scaled cavity-field decay rate κ/ω1 in the
dark-mode-breaking case (η/ω1 = 0.05 and θ = π/2). Different from the results in Figs. S1(a) and S1(b), here we can

see that the simutaneous ground-state cooling can be realized (nf
1,2 ≪ 1) in the resolved-sideband regime (κ ≪ ω1),

which is consistent with the sideband-cooling results in a typical optomechanical system. In addition, simultaneous
ground-state cooling of the two mechanical resonators can be reached in a wide parameter range of ω2/ω1. We also
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FIG. S1: (Color online) The final average phonon numbers nf
1 and nf

2 versus the resonance-frequency ratio ω2/ω1 and the cavity-
field decay rate κ scaled by ω1 in both (a,b) the dark-mode-unbreaking case (η/ω1 = 0) and (c,d) the dark-mode-breaking

case (η/ω1 = 0.05 and θ = π/2). (e) The final average phonon numbers nf
1 (blue curves) and nf

2 (red curves) as functions of
ω2/ω1 in both the dark-mode-unbreaking case (η/ω1 = 0, solid curves) and the dark-mode-breaking case (η/ω1 = 0.05 and

θ = π/2, dashed curves) under either κ/ω1 = 0.2 or κ/ω1 = 1.2. (f) The final average phonon numbers nf
1 (blue curves) and

nf
2 (red curves) versus κ/ω1 in both the dark-mode-unbreaking case (η/ω1 = 0, solid curves) and the dark-mode-breaking case

(η/ω1 = 0.05 and θ = π/2, dashed curves) when ω1 = ω2. Here, we consider red-sideband resonance driving ∆ = ω1. Other
used parameters are given by G1/ω1 = G2/ω1 = 0.1, γ1/ω1 = γ2/ω1 = 10−5, and n̄1 = n̄2 = 103.

see that the cooling performance of the first resonator is better than that of the second resonator (nf
1 < nf

2 ). This is
because the phase θ = π/2 is chosen in this case. As we will see in the following section, the nonreciprocal phonon
transfer is more helpful to cool the first (second) resonator when 0 < θ < π (π < θ < 2π).
We note that though the dark mode exists theoretically only in the degenerate-resonator case of this optomechanical

system, i.e., ω1 = ω2, the dark-mode effect works within a finite parameter range of the near-degenerate-resonator
case. To know the width of the frequency-detuning window associated with the dark-mode effect, in Fig. S1(e) we

show the final average phonon numbers nf
1 and nf

2 as functions of the ratio ω2/ω1 in both the dark-mode-unbreaking
(η/ω1 = 0) and -breaking (η/ω1 = 0.05 and θ = π/2) cases. For the dark-mode-unbreaking case, the ground-state
cooling cannot be reached in the degenerate and near-degenerate-resonator cases, as marked by the shadow area. The
width of the shadow area can be characterized by the effective mechanical linewidth (∆ω = |ω2−ω1| ≤ Γl = γl+γl,opt).
This is because the cooling of the two mechanical resonators is suppressed in this region, i.e., the two mechanical
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FIG. S2: (Color online) The final average phonon numbers nf
1 (blue solid curves) and nf

2 (red dashed curves) as functions of
the ratio G2/G1 when the phonon-exchange coupling parameters θ and η take various values: (a) η/ω1 = 0, (b-f) η/ω1 = 0.05
and θ = π/2, 0.9π, π, 1.1π, and 3π/2. Here we choose the optimal driving ∆ = ω1 = ω2 = ωm, κ/ωm = 0.2, G1/ωm = 0.1,
γ1/ωm = γ2/ωm = 10−5, and n̄1 = n̄2 = 103.

resonators have significant spectral overlap and become effectively degenerate. In the dark-mode-breaking case, we can
see that the ground-state cooling can be realized irrespective of the value of the ratio ω2/ω1 in the resolved-sideband
regime (κ/ω1 = 0.2). When the phonon sidebands cannot be resolved, the ground-state cooling is unaccessible in
this system (see the curves corresponding to κ/ω1 = 1.2). Especially, in this shadow area shown in Fig. S1(e), the
emergences of a small valley (the blue dashed curve) and a small hill (the red dashed curve) can be explained based
on the nonreciprocical phonon transfer. At an optimal nonreciprocical phonon-transfer point (ω1 = ω2, θ = π/2),
the phonons in the first mechanical resonator are extracted through both the optomechanical-cooling channel and
the phonon-exchange channel, while the phonons in the second mechanical resonator are extracted only through the
optomechanical-cooling channel. This is because the phonon transmission rate from modes b2 (b1) to b1 (b2) is zero
(a finite value) in this case.
We also investigate the influence of the cavity-field decay rate κ on the cooling efficiency in both the dark-mode-

breaking and -unbreaking cases. In Fig. S1(f), we plot the final average phonon numbers nf
1 and nf

2 as functions of the
scaled cavity-field decay rate κ/ω1 in both the dark-mode-unbreaking and -breaking cases when the two mechanical
resonators have the same resonance frequencies ω1 = ω2. Here, we can see that, in the dark-mode-unbreaking case,

the final phonon numbers nf
1 and nf

2 are approximately 500. This is because the energy (half of the thermal phonons)
stored in the dark mode cannot be extracted and hence the mechanical resonators cannot be cooled. In the dark-
mode-breaking case, the ground-state cooling can be reached when the system works in the resolved-sideband regime.
The optimal working parameter of the cavity-field decay rate (corresponding to the minimal value of the final mean
phonon numbers) is around κ/ω1 ≈ 0.2. This optimal value is reached under the combined competition between the
optomechanical-cooling rate (i.e., the excitation-energy extraction efficiency through the cavity-field decay channel)
and the phonon-sideband resolution condition.
In the above discussions concerning Fig. S1, we only consider the symmetric-coupling case, i.e., G1 = G2. To better

understand quantum cooling in this system, we also investigate the dependence of the final average phonon numbers

nf
1 and nf

2 on the linearized optomechanical-coupling strengths G1 and G2. In Fig. S2, we plot the final average

phonon numbers nf
1 and nf

2 as functions of the ratio G2/G1 when the phonon-exchange coupling parameters η and
θ take various values: (a) η/ωm = 0, (b-f) η/ωm = 0.05 and θ = π/2, 0.9π, π, 1.1π, and 3π/2. When the phonon-
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2 versus either (a,b) the coupling strength η
at θ = π/2 or (c,d) the phase θ at η = 0.05ωm when the cavity-field decay rate takes various values: κ/ωm = 0.2, 1, and 1.5.
Here we choose ∆ = ω1 = ω2 = ωm, G1/ωm = G2/ωm = 0.1, γ1/ωm = γ2/ωm = 10−5, and n̄1 = n̄2 = 103.

exchange coupling is absent, i.e., η = 0 [Fig. S2(a)], the final average phonon number in the first (second) mechanical
resonator increases (decreases) with the increase of G2/G1. However, we point out that, due to the dark-mode effect,
the ground-state cooling of the two mechanical resonators are unfeasible for finite values of the ratio G2/G1. When
G2/G1 < 1, the bright mechanical mode is dominated by mode b1. When G2/G1 > 1, the bright mechanical mode is
dominated by mode b2. As a result, the cooling efficiency of the first mechanical resonator is better (worse) than that
of the second one in the parameter range G2/G1 < 1 (G2/G1 > 1). The cooling performance of the two resonators
is exchanged when the value of the ratio G2/G1 changes across the point G2/G1 = 1. In the symmetric-coupling

case G2/G1 = 1, the same cooling performance is achieved for the two mechanical resonators (nf
1 = nf

2 ≈ 500). The
physical reason is that the optomechanical-cooling channels for the two mechanical resonators take the same role
when G1 = G2. At this point, the superposition amplitudes of the two mechanical modes b1 and b2 in the bright and
dark modes are the same, as shown in Eq. (S7b). In the presence of the phonon-exchange coupling, the ground-state
cooling can be realized in a wide parameter range of the ansymmetric couplings G2 ̸= G1 when θ ̸= nπ for integer
n. In addition, we can see a similar intersection phenomenon for the cooling performance of the two resonators with
the increase of the ratio G2/G1. However, the location of the intersection point moves to the right (left) from the
point G2/G1 = 1 when the phase θ takes the value in the range 0 < θ < π (π < θ < 2π). This shift is caused by the
phase-dependent phonon-exchange coupling between the two mechanical resonators. When 0 < θ < π, the phonon-

exchange coupling assists the cooling of the first mechanical resonator (i.e., decreasing nf
1 and increasing nf

2 ). Hence
the phonon-exchange coupling pushes the intersection point moving right. When π < θ < 2π, the phonon-exchange

coupling assists the cooling of the second mechanical resonator (i.e., decreasing nf
2 and increasing nf

1 ). As a result,
the phonon-exchange coupling pushes the intersection point moving left. At θ = π [panel (d)], the dark mode appears
in this system when G1 = G2, then the two mechanical modes cannot be cooled. In this case, the dark-mode effect
can be broken by choosing different values of the coupling strengths G1 ̸= G2, i.e., simultaneous ground-state cooling
of the two mechanical resonators can only be realized when G2/G1 ≤ 0.5.
The phase-dependent phonon-exchange interaction plays a critical role in the ground-state cooling of the multiple

mechanical resonators. Below we investigate the dependence of the cooling performance on the coupling parameters
η and θ of the phase-dependent phonon-exchange interaction between the two mechanical resonators. In Figs. S3(a)
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FIG. S4: (Color online) The final average phonon numbers nf
1 (blue solid curves) and nf

2 (red dashed curves) versus the phase θ
and the phonon-exchange coupling strength η in the nondegenerate two-resonator cases (a,b) ω2 = 0.8ω1 and (c,d) ω2 = 1.2ω1.
Here we choose ∆ = ω1, G1/ω1 = G2/ω1 = 0.1, κ/ω1 = 0.2, γ1/ω1 = γ2/ω1 = 10−5, and n̄1 = n̄2 = 103.

and S3(b), we plot the final average phonon numbers nf
1 and nf

2 as functions of the coupling strength η and phase
θ when the cavity-field decay rate takes various values: κ/ωm = 0.2, 1, and 1.5. Here, we can see that the two
mechanical resonators can be cooled efficiently (from the initial phonon number 1000 to the final phonon number
below 10) when η/ωm > 0.02. In addition, the cooling performance becomes worse for a larger value of the cavity-
field decay rate κ. The ground-state cooling can only be realized in the resolved-sideband regime κ/ωm < 1. We

also show the dependence of the final average phonon numbers nf
1 and nf

2 on the phase θ for several values of κ/ωm,
as shown in Figs. S3(c) and S3(d). The plots show that the cooling performance depends on the phase θ. The final

average phonon numbers nf
1 and nf

2 can be largely decreased when 0 < θ < π and π < θ < 2π. When θ = nπ for
an integer n, the two mechanical resonators cannot be cooled due to the dark-mode effect. The cooling performance

becomes worse with the increase of the cavity-field decay rate. In addition, the results show that nf
1 < nf

2 (nf
1 > nf

2 )
in the parameter range 0 < θ < π (π < θ < 2π), which can be explained based on the nonreciprocal phonon transfer
induced by quantum interference in the loop-coupled system.

In Fig. S3, we have investigated the dependence of the final average phonon numbers nf
1 and nf

2 on the phonon-
exchange coupling parameters η and θ in the degenerate two-mechanical-resonator case, i.e., ω1 = ω2. In the following
we also consider a nondegenerate mechanical-resonator case. In Fig. S4 we plot the final average phonon numbers

nf
1 and nf

2 versus the parameters η and θ in the nondegenerate two-resonator cases, i.e., ω2 = 0.8ω1 or ω2 = 1.2ω1.
The plots show that the simultaneous ground-state cooling of the two mechanical resonators can be realized in the

nondegenerate mechanical-resonator case. In both the cases ω2 = 0.8ω1 and ω2 = 1.2ω1, the dependence of nf
1 and

nf
2 on the phase θ has an inverse tendency, as shown in Figs. S4(a) and S4(c). In addition, the dependence of nf

l=1,2

on the phase θ in the case ω2 = 0.8ω1 is inverse to that in the case of ω2 = 1.2ω1. In Figs. S4(b) and S4(d), we can

see nf
1 < nf

2 and the dependence of nf
l=1,2 on the coupling strength η has a similar tendency for the cases ω2 = 0.8ω1

and ω2 = 1.2ω1. In the nondegenerate-resonator case, the cooling performance can be controlled by choosing proper

phonon-exchange coupling parameters η and θ. The same value of the final phonon numbers nf
1 and nf

2 can be
obtained by choosing the intersection points in Figs. S4(a) and S4(c).
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FIG. S5: (Color online) The final average phonon numbers nf
1 and nf

2 as functions of (a,c) γ1 and (b,d) γ2 when the phase θ
takes different values: (a,b) θ = π/2 and (c,d) θ = 3π/2. In panels (a,c) and (b,d), we choose γ2/ω1 = 10−5 and γ1/ω1 = 10−5,
respectively. Other used parameters are ∆ = ω1 = ω2 = ωm, G1/ωm = G2/ωm = 0.1, η/ωm = 0.05, κ/ωm = 0.2, and
n̄1 = n̄2 = 103.

In quantum cooling of the mechanical resonators, the optomechanical cavity and its vacuum bath provide the
cooling channel to extract the excitation energy in the mechanical resonators. Here, the mechanical resonators are
thermalized by their thermal baths through the mechanical dissipation channels. As a result, the final average phonon

numbers nf
1 and nf

2 in the two mechanical resonators depend on the mechanical decay rates γ1 and γ2. In Fig. S5,

we show the final average phonon numbers nf
1 and nf

2 as functions of the decay rates γ1 and γ2. We can see that nf
1

and nf
2 increase with the increase of the mechanical decay rates. This is because the energy exchange rates between

the mechanical resonators and their heat baths are faster for larger values of the decay rates, and then the thermal
excitation in the heat baths will raise the total phonon numbers in the mechanical resonators. In Figs. S5(a) and

S5(b), we have nf
1 < nf

2 because the phase angle θ = π/2 is taken, then the cooling performance of the first resonator
is better than that of the second resonator. However, an opposite cooling effect compared with the case of θ = π/2
emerges when θ = 3π/2, as shown in Figs. S5(c) and S5(d). These interesting cooling phenomena can be explained
according to the phonon scattering process between the two mechanical resonators, which will be studied in the next
section.

III. PHONON SCATTERING PROBABILITY AND NONRECIPROCAL PHONON TRANSFER

In this section, we study the scattering probabilities of the phonon transport between the two mechanical resonators
coupled by a phase-dependent phonon-exchange interaction. We calculate the transmission spectrum of the phonon
transport based on the Langevin equation (S18). To this end, we rewrite the matrix N(t) defined in Eq. (S20) as

N(t) = Γuin(t), (S29)

where the damping matrix Γ is defined as

Γ = diag[
√
2κ,
√
2γ1,

√
2γ2,

√
2κ,
√
2γ1,

√
2γ2], (S30)
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with diag[x] giving a matrix with the elements of the list x on the leading diagonal, and 0 elsewhere. The input noise
vector uin(t) in Eq. (S29) is given by

uin(t) = [ain(t), b1,in(t), b2,in(t), a
†
in(t), b

†
1,in(t), b

†
2,in(t)]

T . (S31)

Making use of the Fourier transformation for operator r ∈ {δa, δb1, δb2, δain, δb1,in, δb2,in} and its conjugate r†,

r̃(ω) =
1

2π

∫ ∞

−∞
eiωtr(t)dt, (S32a)

r̃†(ω) =
1

2π

∫ ∞

−∞
eiωtr†(t)dt, (S32b)

the solutions to the linearized quantum Langevin equation (S18) in the frequency domain can be obtained as

ũ(ω) = (−iωI−A)
−1

Γũin(ω), (S33)

where ũ(ω) and ũin(ω) are, respectively, the Fourier transformation of the operator vectors u(t) defined in Eq. (S19)
and uin(t) defined in Eq. (S31). The matrix I in Eq. (S33) is an identity matrix. Using the input-output relation

oin + oout =
√
2γoδo (S34)

for o ∈ {a, b1, b2} and γo ∈ {κ, γ1, γ2}, we obtain the output field in the frequency domain as

ũout(ω) = U(ω)ũin(ω), (S35)

where the transformation matrix is given by

U(ω) = Γ(−iωI−A)−1Γ− I, (S36)

and

ũout(ω) = [ãout(ω), b̃1,out(ω), b̃2,out(ω), ã
†
out(ω), b̃

†
1,out(ω), b̃

†
2,out(ω)]

T (S37)

denotes the Fourier transformation of uout(t).
To analyze the excitation energy transfer in this system, we introduce the spectra for the input and output signals

as

Sin(ω) =[sa,in(ω), sb1,in(ω), sb2,in(ω)]
T , (S38a)

Sout(ω) =[sa,out(ω), sb1,out(ω), sb2,out(ω)]
T , (S38b)

where the elements are defined by

⟨õ†out(ω
′
)õout(ω)⟩ =so,outδ(ω + ω

′
), (S39a)

⟨õ†in(ω
′
)õin(ω)⟩ =so,inδ(ω + ω

′
), (S39b)

⟨õin(ω
′
)õ†in(ω)⟩ =(1 + so,in)δ(ω + ω

′
). (S39c)

We also define the spectrum for the input vacuum noise as

Svac(ω) = [sa,vac(ω), sb1,vac(ω), sb2,vac(ω)]
T , (S40)

with

sa,vac(ω) =|U14(ω)|2 + |U15(ω)|2 + |U16(ω)|2, (S41a)

sb1,vac(ω) =|U24(ω)|2 + |U25(ω)|2 + |U26(ω)|2, (S41b)

sb2,vac(ω) =|U34(ω)|2 + |U35(ω)|2 + |U36(ω)|2. (S41c)

Then the relation between these spectra can be obtained as

Sout(ω) = T(ω)Sin(ω) + Svac(ω), (S42)
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where the transmission matrix T(ω) is defined by

T(ω) =

 Taa(ω) Tab1(ω) Tab2(ω)
Tb1a(ω) Tb1b1(ω) Tb1b2(ω)
Tb2a(ω) Tb2b1(ω) Tb2b2(ω)

 , (S43)

with these matrix elements

Taa(ω) = |U11(ω)|2 + |U14(ω)|2,
Tab1(ω) = |U12(ω)|2 + |U15(ω)|2,
Tab2(ω) = |U13(ω)|2 + |U16(ω)|2,
Tb1a(ω) = |U21(ω)|2 + |U24(ω)|2,
Tb1b1(ω) = |U22(ω)|2 + |U25(ω)|2,
Tb1b2(ω) = |U23(ω)|2 + |U26(ω)|2,
Tb2a(ω) = |U31(ω)|2 + |U34(ω)|2,
Tb2b1(ω) = |U32(ω)|2 + |U35(ω)|2,
Tb2b2(ω) = |U33(ω)|2 + |U36(ω)|2. (S44)

The element Tvw(ω) (v, w ∈ {a, b1, b2}) denotes the transmittance from the input mode w to the output mode v. To
explore the phonon-transfer nonreciprocity between the two mechanical modes, we only focus on the transmittance
Tb1b2(ω) and Tb2b1(ω) between the two mechanical modes. Then, we numerically evaluate the transmittance between
the two mechanical modes to show the nonreciprocal phonon transfer. Physically, the transmittance Tb1b2(ω) and
Tb2b1(ω) can be used to analyze the thermal excitations extracted from one mechanical mode to the other one.
The above results concerning the phonon transmission are exact. Below we derive some approximate analytical

results under the RWA and the resonance condition ∆ = ω1 = ω2 = ωm. Note that under the RWA, we have the
approximate relations Tb1b2(ω) ≈ |U23(ω)|2 and Tb2b1(ω) ≈ |U32(ω)|2. In particular, we focus on the resonant phonon
transmission at the mechanical frequency ωm, then an analytical transmittance between the two mechanical modes
can be obtained as

Tb1b2 ≈|U23|2 =
4γ1γ2[(G1G2)

2 + (κη)2 − 2G1G2κη sin θ]

(G2
2γ1 +G2

1γ2 + κγ1γ2 + κη2)2 + 4(G1G2η cos θ)2

=
4(C1C2 + C3 − 2

√
C1C2C3 sin θ)

(C1 + C2 + C3 + 1)2 + 4C1C2C3 cos2 θ
, (S45a)

Tb2b1 ≈|U32|2 =
4γ1γ2[(G1G2)

2 + (κη)2 + 2G1G2κη sin θ]

(G2
2γ1 +G2

1γ2 + κγ1γ2 + κη2)2 + 4(G1G2η cos θ)2

=
4(C1C2 + C3 + 2

√
C1C2C3 sin θ)

(C1 + C2 + C3 + 1)2 + 4C1C2C3 cos2 θ
, (S45b)

where we introduce the cooperativities between any two subsystems in this two-mechanical-mode optomechanical
system as

C1 =
G2

1

γ1κ
, (S46a)

C2 =
G2

2

γ2κ
, (S46b)

C3 =
η2

γ1γ2
. (S46c)

According to Eqs. (S45a) and (S45b), the maximum transmittance for either θ = π/2 or θ = 3π/2 can be obtained as

(Tb2b1)max = (Tb1b2)max =
4(
√
C1C2 +

√
C3)2

(C1 + C2 + C3 + 1)2
. (S47)

By introducing a relative phonon-scattering rate from the mechanical modes w to v as

Λvw =
Tvw − Twv

(Tvw)max
, (S48)
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FIG. S6: (Color online) (a,b) The relative phonon-scattering rate Λb2b1 (blue curves) and Λb1b2 (red curves) as functions of
ω when the phase θ takes different values: (a) θ = π/2 and (b) θ = 3π/2. In panels (a,b), we choose the phonon-exchange
coupling η/ωm = 0.05. (c,d) The exact (solid/dashed lines) and approximate (symbols) relative resonant-phonon-scattering
rates Λb2b1 and Λb1b2 vs (c) the phonon-exchange coupling η when θ = π/2 and (d) the phase θ when η/ωm = 0.05 under the
parameter ω = ωm. Here we take ∆ = ω1 = ω2 = ωm, G1/ωm = G2/ωm = 0.1, κ/ωm = 0.2, γ1/ωm = γ2/ωm = 10−5, and
n̄1 = n̄2 = 103.

we can then obtain the rates between the two mechanical modes b1 and b2 as

Λb2b1 =
Tb2b1 − Tb1b2

(Tb2b1)max
=

4
√
C1C2C3 sin θ

(
√
C1C2 +

√
C3)2

(
1 + 4C1C2C3 cos2 θ

(C1+C2+C3+1)2

) , (S49a)

Λb1b2 =
Tb1b2 − Tb2b1

(Tb1b2)max
= −Λb2b1 . (S49b)

In Figs. S6(a) and S6(b), the relative phonon-scattering rates Λb2b1 (blue curves) and Λb1b2 (red curves) are plotted
as functions of the scaled frequency ω/ωm when the phase θ takes different values: (a) θ = π/2 and (b) θ = 3π/2.
It is obviously shown that the reciprocity of the phonon transfer between the two mechanical resonators is broken
(Λb2b1 ̸= 0) in a wide range of ω and the phonon transfer exhibits a perfect nonreciprocal response when θ = π/2 and
θ = 3π/2. When θ = π/2 (θ = 3π/2), we have Tb2b1 > 0 and Tb1b2 < 0 (Tb2b1 < 0 and Tb1b2 > 0). In particular, when
ω = ωm and θ = π/2, we have Λb2b1 = 1, i.e., Tb1b2 = 0. This means that the unidirectional flow of the phonons from
b1 to b2 is achieved. When ω = ωm and θ = 3π/2, we have Λb1b2 = 1, i.e., Tb2b1 = 0. This means the phonons can
only be transferred from b2 to b1. Based on the above results, we can see that the phase-dependent phonon-exchange
coupling plays an effective role on the relative phonon scattering between the two mechanical resonators. In Figs. S6(c)
and S6(d), we show the dependence of the relative resonant-phonon-scattering rates on the phonon-exchange coupling
parameters η and θ. The results indicate that a perfect nonreciprocal phonon transfer requires both η ≈ 0.05ωm and
θ = π/2 or 3π/2. Moreover, the exact calculations and the approximate analytical results match well with each other.
Here, the solid (Λb2b1) and dashed lines (Λb1b2) are plotted using the exact solutions, while the symbols are based on
the analytical calculations given in Eqs. (S49a) and (S49b). In Fig. S6(d), when 0 < θ < π, it shows Λb2b1 > 0, i.e.,
Tb2b1 > Tb1b2 . In the region π < θ < 2π, it exhibits Λb1b2 > 0, i.e., Tb1b2 > Tb2b1 . Meanwhile, the phonon transmission
satisfies the reciprocity [Λb2b1 = Λb1b2 = 0, i.e., Tb1b2 = Tb2b1 ] at θ = nπ. Moreover, the transmittance is optimal for
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(c) Λb2b1 and (d) Λb1b2 versus the ratio of the optomechanical cooperativities Π when θ = π/2 and θ = 3π/2. Here we take
∆ = ω1 = ω2 = ωm, G1/ωm = G2/ωm = 0.1, κ/ωm = 0.2, γ1/ωm = γ2/ωm = 10−5, and n̄1 = n̄2 = 103.

the process from b1 (b2) to b2 (b1) and is zero for the opposite process when θ = π/2 (θ = 3π/2), namely, Tb1b2 = 0
and Tb2b1 = 0 at θ = π/2 and θ = 3π/2, respectively.
In order to analyze the optomechanical cooperativities among the two subsystems in this three-mode optome-

chanical system, we introduce a new parameter defined by Π = C3/(C1C2), which is the ratio of the optomechanical
cooperativities. Thus, the analytical solutions given in Eqs. (S49a) and (S49b) become

Λb2b1 =
4
√
Πsin θ

(1 +
√
Π)2

[
1 + 4Π cos2 θ(

C1+C2+1
C1C2

+Π
)2

] , (S50a)

Λb1b2 =− Λb2b1 . (S50b)

It can be seen from Eqs. (S50a) and (S50b) that the relative nonreciprocal phonon transfer Λb2b1 = 1 (Λb1b2 = 1)
is obtained at Π = 1 and θ = π/2 (3π/2). In Figs. S7(a) and S7(b), we plot the relative phonon-scattering rates
Λb2b1 and Λb1b2 as functions of the phase θ when Π takes various values: Π = 0.1, 0.5, and 1. The results show
that the optimal nonreciprocity appears at Π = 1 and either θ = π/2 or 3π/2. When Π ̸= 1, the absolute value of
the relative phonon-scattering rate will be decreased at a given phase θ. We also plot the relative phonon-scattering
rates Λb2b1 and Λb1b2 versus the ratio Π when the phase takes θ = π/2 (solid lines) and θ = 3π/2 (dashed lines), as
shown in Figs. S7(c) and S7(d). In the region 0 < Π < 1, the nonreciprocal phonon-transfer rate Λb2b1 increases with
the increase of Π. In the region Π > 1, the relative nonreciprocal phonon-transfer rate is suppressed. The optimal
nonreciprocity emerges at Π = 1, which indicates directional flow of phonons between the two mechanical resonators.
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IV. THE COOLING LIMITS OF THE TWO MECHANICAL RESONATORS

In this section, we present a detailed derivation of the cooling limits of the two mechanical resonators, which are
obtained by adiabatically eliminating the cavity-field mode in the large cavity-field decay regime. In this case, the
system is reduced to a two-coupled mechanical resonator system. The derivation of the cooling limits is based on
the Langevin equations (S4) for the quantum fluctuations of the system operators. To obtain the cooling limits, we
consider the case where the linearized optomechanical coupling strengths G1,2 are real and the system works in the
parameter regime:

ω1,2 ≫ κ ≫ G1,2 ≫ γ1,2. (S51)

In this case, the cavity field can be eliminated adiabatically, and then the solution of the cavity-field fluctuation
operator δa(t) at the time scale t ≫ 1/κ can be obtained as

δa(t) ≈ − iG1

κ+ i(∆ + ω1)
δb†1(t)−

iG1

κ+ i(∆− ω1)
δb1(t)−

iG2

κ+ i(∆ + ω2)
δb†2(t)−

iG2

κ+ i(∆− ω2)
δb2(t) + Fa,in(t),

(S52)

where we introduce the new noise operator

Fa,in(t) =
√
2κe−(κ+i∆)t

∫ t

0

ain(s)e
(κ+i∆)sds. (S53)

Substitution of Eq. (S52) into Eqs. (S4b) and (S4c) leads to the equations of motion

δḃ1(t) =

(
G2

1

κ− i(∆− ω1)
− G2

1

κ+ i(∆ + ω1)

)
δb†1(t) +

(
G2

1

κ− i(∆ + ω1)
− G2

1

κ+ i(∆− ω1)
− (γ1 + iω1)

)
δb1(t)

+

(
G1G2

κ− i(∆− ω2)
− G1G2

κ+ i(∆ + ω2)

)
δb†2(t) +

(
G1G2

κ− i(∆ + ω2)
− G1G2

κ+ i(∆− ω2)
− iηeiθ

)
δb2(t)

− iG1Fa,in(t)− iG1F
†
a,in(t) +

√
2γ1b1,in(t), (S54a)

δḃ2(t) =

(
G1G2

κ− i(∆− ω1)
− G1G2

κ+ i(∆ + ω1)

)
δb†1(t) +

(
G1G2

κ− i(∆ + ω1)
− G1G2

κ+ i(∆− ω1)
− iηe−iθ

)
δb1(t)

+

(
G2

2

κ− i(∆− ω2)
− G2

2

κ+ i(∆ + ω2)

)
δb†2(t) +

(
−(γ2 + iω2) +

G2
2

κ− i(∆ + ω2)
− G2

2

κ+ i(∆− ω2)

)
δb2(t)

− iG2Fa,in(t)− iG2F
†
a,in(t) +

√
2γ2b2,in(t). (S54b)

By making the RWA in Eqs. (S54a) and (S54b), we have

δḃ1(t) =− (Γ1 + iΩ1)δb1(t) + ξ1δb2(t)− iG1Fa,in(t)− iG1F
†
a,in(t) +

√
2γ1b1,in(t), (S55a)

δḃ2(t) =ξ2δb1(t)− (Γ2 + iΩ2)δb2(t)− iG2Fa,in(t)− iG2F
†
a,in(t) +

√
2γ2b2,in(t), (S55b)

where we introduce the effective resonance frequency Ωl and decay rate Γl for the lth mechanical resonator

Ωl =ωl − ωl,opt, (S56a)

Γl =γl + γl,opt, (S56b)

with

ωl,opt =
G2

l (∆ + ωl)

κ2 + (∆+ ωl)2
+

G2
l (∆− ωl)

κ2 + (∆− ωl)2
, (S57a)

γl,opt =
G2

l κ

κ2 + (∆− ωl)2
− G2

l κ

κ2 + (∆+ ωl)2
, l = 1, 2. (S57b)

Here, ωl,opt and γl,opt denote the resonance frequency shift and the additional energy decay rate induced by the
optomechanical couplings, respectively. We also introduce the effective coupling strengths between the two mechanical
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modes b1 and b2 after adiabatically eliminating the cavity mode as

ξ1 =
G1G2[κ+ i(∆ + ω2)]

κ2 + (∆+ ω2)2
− G1G2[κ− i(∆− ω2)]

κ2 + (∆− ω2)2
− iηeiθ, (S58a)

ξ2 =
G1G2[κ+ i(∆ + ω1)]

κ2 + (∆+ ω1)2
− G1G2[κ− i(∆− ω1)]

κ2 + (∆− ω1)2
− iηe−iθ. (S58b)

Under the parameter condition ω1,2 ≫ κ ≫ G1,2 and at resonance ∆ = ω1 = ω2, we have

ξ1 ≈−
[
G1G2

κ
+ i

(
ηeiθ − G1G2

2ω2

)]
, (S59a)

ξ2 ≈−
[
G1G2

κ
+ i

(
ηe−iθ − G1G2

2ω1

)]
, (S59b)

and

γl,opt ≈
G2

l

κ
, (S60a)

ωl,opt ≈
G2

l

2ωl
, l = 1, 2. (S60b)

The final average phonon numbers (namely the steady-state values of the phonon numbers) can be obtained by solving
Eq. (S55). To be concise, we reexpress Eq. (S55) as

v̇(t) = −Mv(t) +N(t), (S61)

where v(t) = (δb1(t), δb2(t))
T , M is defined by

M =

(
Γ1 + iΩ1 −ξ1

−ξ2 Γ2 + iΩ2

)
, (S62)

and N(t) reads

N(t) =

(
−iG1Fa,in(t)− iG1F

†
a,in(t) +

√
2γ1bin,1(t)

−iG2Fa,in(t)− iG2F
†
a,in(t) +

√
2γ2bin,2(t)

)
. (S63)

The formal solution of Eq. (S61) can be expressed as

v(t) = e−Mtv(0) + e−Mt

∫ t

0

eMsN(s)ds. (S64)

The final average phonon numbers can be obtained by calculating the elements of the variance matrix. By a lengthy
calculation, we obtain the approximate analytical expressions for the final average phonon numbers as

nf
1 =

γ1n̄1

2|u|2

[
|[u− Γ1 + Γ2 − i(Ω1 − Ω2)]|2

λ∗
1 + λ1

+ 2Re
[ [u∗ − Γ1 + Γ2 + i(Ω1 − Ω2)][u+ Γ1 − Γ2 + i(Ω1 − Ω2)]

λ∗
1 + λ2

]
+
|[u+ Γ1 − Γ2 + i(Ω1 − Ω2)]|2

λ∗
2 + λ2

]
+

G2
1

4|u|2

[
|[u− Γ1 + Γ2 − i(Ω1 − Ω2)]|2

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
+2Re

[ [u∗ − Γ1 + Γ2 + i(Ω1 − Ω2)][u+ Γ1 − Γ2 + i(Ω1 − Ω2)]

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+
|[u+ Γ1 − Γ2 + i(Ω1 − Ω2)]|2

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+
|ξ1|2

|u|2

[
G2

2

[
1

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
− 2Re

[ 1

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+

1

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+ 2γ2n̄2

(
1

λ∗
1 + λ1

− 1

λ∗
1 + λ2

− 1

λ∗
2 + λ1

+
1

λ∗
2 + λ2

)]
, (S65)
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and

nf
2 =

γ2n̄2

2|u|2

[
|u+ Γ1 − Γ2 + i(Ω1 − Ω2)|2

λ∗
1 + λ1

+ 2Re
[ [u∗ + Γ1 − Γ2 − i(Ω1 − Ω2)][u− Γ1 + Γ2 − i(Ω1 − Ω2)]

λ∗
1 + λ2

]
+
|u− Γ1 + Γ2 − i(Ω1 − Ω2)|2

λ∗
2 + λ2

]
+

G2
2

4|u|2

[
|u+ Γ1 − Γ2 + i(Ω1 − Ω2)|2

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
+2Re

[ [u− Γ1 + Γ2 − i(Ω1 − Ω2)][u
∗ + Γ1 − Γ2 − i(Ω1 − Ω2)]

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+
|u− Γ1 + Γ2 − i(Ω1 − Ω2)|2

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+
|ξ2|2

|u|2

[
G2

1

[
1

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
− 2Re

[ 1

λ2 + λ∗
1

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+

1

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+ 2γ1n̄1

( 1

λ∗
1 + λ1

− 1

λ∗
1 + λ2

− 1

λ∗
2 + λ1

+
1

λ∗
2 + λ2

)]
, (S66)

where λ1 and λ2 (λ∗
1 and λ∗

2 being complex conjugate) are the eigenvalues of the coefficient matrix M,

λ1 =
1

2
[Γ1 + Γ2 + i(Ω1 +Ω2)− u], (S67a)

λ2 =
1

2
[Γ1 + Γ2 + i(Ω1 +Ω2) + u] (S67b)

where

u =
√
4ξ1ξ2 + [Γ1 − Γ2 + i(Ω1 − Ω2)]2. (S68)

For the case ω1 ≈ ω2 and Γ1 ≈ Γ2, the approximate analytical expressions of the final average phonon numbers can
be reduced as

nf
1 ≈ γ1n̄1

2

(
1

λ∗
1 + λ1

+ 2Re
[ 1

λ∗
1 + λ2

]
+

1

λ∗
2 + λ2

)
+

G2
1

4

[
1

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
+2Re

[ 1

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+

1

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+

|ξ1|
4|ξ2|

[
G2

2

[
1

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
− 2Re

[ 1

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+

1

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+ 2γ2n̄2

(
1

λ∗
1 + λ1

− 2Re
[ 1

λ∗
1 + λ2

]
+

1

λ∗
2 + λ2

)]
, (S69)

and

nf
2 ≈ γ2n̄2

2

(
1

λ∗
1 + λ1

+ 2Re
[ 1

λ∗
1 + λ2

]
+

1

λ∗
2 + λ2

)
+

G2
2

4

[
1

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
+2Re

[ 1

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+

1

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+

|ξ2|
4|ξ1|

[
G2

1

[
1

λ∗
1 + λ1

( 1

κ+ λ1 + i∆
+

1

κ+ λ∗
1 − i∆

)
− 2Re

[ 1

λ∗
1 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
1 − i∆

)]
+

1

λ∗
2 + λ2

( 1

κ+ λ2 + i∆
+

1

κ+ λ∗
2 − i∆

)]
+ 2γ1n̄1

( 1

λ∗
1 + λ1

− 2Re
[ 1

λ∗
1 + λ2

]
+

1

λ∗
2 + λ2

)]
. (S70)

By substituting Eq. (S67) into Eqs. (S69) and (S70) and considering the parameters relations ω1,2 ≫ κ ≫ G1,2 ≫
{γ1,opt ≈ γ2,opt} ≫ γ1,2, the final average phonon numbers can be simplified as

nf
l=1,2 ≈ γln̄l + γl,optnopt

Γl + χ+
+

(−1)l−1√χl(
√
χ1nχ1 −

√
χ2nχ2)

Γl + χ−
, (S71)
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FIG. S8: (Color online) The final average phonon numbers nf
1 and nf

2 are plotted as functions of κ/ωm when the phase θ takes
the values: (a) θ = π/2 and (b) θ = 3π/2. The exact results are given by Eq. (S28) (solid curves) and the approximate results
obtained by the adiabatic elimination method are given by Eq. (S71) (symbols). Here, the used parameters are ∆ = ω1 = ω2 =
ωm, G1/ωm = G2/ωm = 0.08, η/ωm = 0.05, γ1/ωm = γ2/ωm = 10−5, and n̄1 = n̄2 = 1000.

where we introduce the following variables

nopt =
4κ2

(ω1 + ω2 + 2∆)2
, (S72a)

nχ1(2)
=
2(γ2(1)n̄2(1) + γ2(1)optnopt)

Γ1 + Γ2 + 2χ+
, (S72b)

χ± =∓√
χ1χ2 − Re

[
ξ1ξ2

Γ1 + Γ2

]
, (S72c)

χl=1,2 =
|ξl|2

Γ1 + Γ2
. (S72d)

Here, nopt stands for the effective phonon number in the optomechanical cooling bath, and χ1 and χ2 are the effective
phonon-transfer rates from b2 to b1 and from b1 to b2, respectively. The corresponding cooling limits (nlim

1 , nlim
2 ) are

obtained by taking the optimal driving detuning ∆ = ωl in Eq. (S71). In particular, the first term in Eq. (S71) is
contributed by the thermal bath and the effective optical bath connected by the lth mechanical resonator, while the
phonon extraction contribution induced by the phonon-exchange channel is presented by the last term. Physically,
the nonreciprocity of the phonon transfer is decided by the phonon-exchange rate χl which depends on the phase θ.
In the case n̄1 ≈ n̄2 and γ1 ≈ γ2, we have nχ1 ≈ nχ2 = nχ and thus (

√
χ1nχ1 −

√
χ2nχ2) ≈ (

√
χ1 −

√
χ2)nχ. In the

region 0 < θ < π (π < θ < 2π), we obtain
√
χ1 <

√
χ2 (

√
χ1 >

√
χ2). This means that the phonon-transfer rate from

b1 (b2) to b2 (b1) is larger than that for the opposite case. According to Eq. (S71), we then have the relation nf
1 < nf

2

(nf
1 > nf

2 ) in the region 0 < θ < π (π < θ < 2π). When θ = π/2 (3π/2) and
√
C1C2 =

√
C3, the unidirectional flow of

the phonons between the two mechanical resonators is achieved [χ1 ≈ 0 (χ2 ≈ 0)]. For θ = nπ, the phonon transfer
between the two mechanical resonators is reciprocal (

√
χ1 =

√
χ2), due to the emergence of the dark mode. Once

the phonon-transfer channel is turned off (η = 0), the ground-state cooling is unfeasible owing to the invalid effective
cooling channel (Γl+χ+ → γl). In the absence of the optomechanical cooling channels (G1,2 = 0), Eq. (S71) becomes

nf
l=1,2 ≈ n̄l + (−1)l−1(nχ1 − nχ2)/2, which indicates quantum thermalization in this coupled mechanical system.

Moreover, both the exact and approximate final average phonon numbers nf
1 and nf

2 are plotted in Fig. S8 as
functions of the cavity-field decay rate κ at the optimal driving detuning ∆ = ωm when the modulation phase θ takes

various values: (a) θ = π/2 and (b) θ = 3π/2. Here, the blue solid curves (nf
1 ) and the red dashed curves (nf

2 ) are
plotted using the exact solutions given in Eq. (S28), while the symbols are based on the analytical calculations given
in Eq. (S71). We can see from Fig. S8 that the analytical cooling limits and the exact results match well with each
other when κ/ωm < 0.4, and the difference between the numerical simulation and approximate results increases when
κ/ωm > 0.4. This means that the cooling performances of the two mechanical resonators are excellent in the resolved-
sideband regime (κ ≪ ωm). This result is consistent with the sideband cooling results in the typical optomechanical
systems. We also see from Fig. S8(a) that the cooling performance of the first resonator is better than that of the

second resonator (nf
1 < nf

2 ) when θ = π/2. However, when θ = 3π/2, the opposite cooling performance (nf
1 > nf

2 )
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has been displayed in comparison with the case of θ = π/2, as shown in Fig. S8(b). Physically, the nonreciprocal
phonon-transfer mechanism is more helpful to cool the first (second) resonator when 0 < θ < π (π < θ < 2π).
In particular, the optimal cooling performances of the two mechanical resonators require that the working value of
cavity-field decay rate is around κ/ωm = 0.1 ∼ 0.2, as shown in Fig. S8. This is a result of the competition between the
efficiency of extraction of the thermal excitations and the phonon-sideband resolution condition. When κ/ωm < 0.1,
the cooling performances of the two mechanical resonators become worse. Physically, the vacuum bath of the cavity
field extracts the thermal excitations in the two mechanical resonators through a manner of nonequilibrium dynamics,
and then the total system reaches a steady state. When the cavity-field decay rate κ is equal to 0, the vacuum bath
cannot extract the thermal phonons in these two mechanical resonators, and then this system will be thermalized to
a thermal equilibrium state.

V. THE DARK-MODE EFFECT AND ITS BREAKING IN A
MULTIPLE-MECHANICAL-RESONATOR OPTOMECHANICAL SYSTEM

In this section, we study the dark-mode effect in a multiple-mechanical-resonator optomechanical system, which
consists of one cavity mode and N (N ≥ 3) mechanical resonators [see Figs. S9(a) and S9(b)]. The Hamiltonian of
this system can be written in a frame rotating at the driving frequency ωL as

HI = ∆ca
†a+

N∑
j=1

ωjb
†
jbj +

N∑
j=1

gja
†a(bj + b†j) + (Ωa+Ω∗a†) +

N−1∑
j=1

ηj(e
iθj b†jbj+1 +H.c.), (S73)

where ∆c = ωc−ωL is the detuning of the cavity-field resonance frequency ωc with respect to the driving frequency ωL.

The operators a (a†) and bj (b
†
j) are, respectively, the annihilation (creation) operators of the cavity-field mode and the

jth mechanical resonator (with the resonance frequency ωj). The optomechanical interactions between the cavity mode
and the jth mechanical resonator are described by the gj terms (with gj being the single-photon optomechanical-
coupling strength). The cavity-field driving is denoted by the Ω term (with Ω being the driving amplitude). To
manipulate the energy exchange between the neighboring mechanical resonators, we introduce a phase-dependent
phonon-exchange interaction between the neighboring mechanical resonators, with the coupling strength ηj and the
phase θj . By phenomenologically adding the damping and noise terms into the Heisenberg equations obtained based
on the Hamiltonian in Eq. (S73), the quantum Langevin equations for the operators of the optical and mechanical
modes can be obtained as

ȧ = −ia[∆c + g1(b1 + b†1) + g2(b2 + b†2) + · · ·+ gN (bN + b†N )]− iΩ− κa+
√
2κain,

ḃ1 = −(γ1 + iω1)b1 − ig1a
†a− iη1e

iθ1b2 +
√

2γ1b1,in,

ḃ2 = −(γ2 + iω2)b2 − ig2a
†a− iη1e

−iθ1b1 − iη2e
iθ2b3 +

√
2γ2b2,in,

ḃ3 = −(γ3 + iω3)b3 − ig3a
†a− iη2e

−iθ2b2 − iη3e
iθ3b4 +

√
2γ3b3,in,

ḃ4 = −(γ4 + iω4)b4 − ig4a
†a− iη3e

−iθ3b3 − iη4e
iθ4b5 +

√
2γ4b4,in,

...

ḃN−1 = −(γN−1 + iωN−1)bN−1 − igN−1a
†a− iηN−2e

−iθN−2bN−2 − iηN−1e
iθN−1bN +

√
2γN−1bN−1,in,

ḃN = −(γN + iωN )bN − igNa†a− iηN−1e
−iθN−1bN−1 +

√
2γNbN,in. (S74)

To cool the mechanical resonators, we consider the strong-driving regime of the cavity field such that the average
photon number in the cavity is sufficiently large and then the linearization procedure can be used to simplify the
physical model. To this end, we express the operators in Eq. (S74) as the sum of their steady-state mean values and

quantum fluctuations, namely o = ⟨o⟩ss + δo for operators a, a†, bj=1−N , and b†j . By separating the classical motion
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and the quantum fluctuation, the linearized equations of motion for the quantum fluctuations can be written as

d

dt
δa = −(κ+ i∆)δa− iα[g1(δb1 + δb†1) + g2(δb2 + δb†2) + · · ·+ gN−1(δbN−1 + δb†N−1)

+gN (δbN + δb†N )] +
√
2κain,

d

dt
δb1 = −(γ1 + iω1)δb1 − ig1α

∗δa− ig1αδa
† − iη1e

iθ1δb2 +
√
2γ1b1,in,

d

dt
δb2 = −(γ2 + iω2)δb2 − ig2α

∗δa− ig2αδa
† − iη1e

−iθ1δb1 − iη2e
iθ2δb3 +

√
2γ2b2,in,

d

dt
δb3 = −(γ3 + iω3)δb3 − ig3α

∗δa− ig3αδa
† − iη2e

−iθ2δb2 − iη3e
iθ3δb4 +

√
2γ3b3,in,

d

dt
δb4 = −(γ4 + iω4)δb4 − ig4α

∗δa− ig4αδa
† − iη3e

−iθ3δb3 − iη4e
iθ4δb5 +

√
2γ4b4,in

...
d

dt
δbN−1 = −(γN−1 + iωN−1)δbN−1 − igN−1α

∗δa− igN−1αδa
† − iηN−2e

−iθN−2δbN−2

−iηN−1e
iθN−1δbN +

√
2γN−1bN−1,in,

d

dt
δbN = −(γN + iωN )δbN − igNα∗δa− igNαδa† − iηN−1e

−iθN−1δbN−1 +
√
2γNbN,in. (S75)

Based on Eqs. (S75), we adopt the same procedure as that used in the two-mechanical-resonator case to infer a lin-
earized optomechanical Hamiltonian governing the evolution of quantum fluctuations. For studying quantum cooling
of these mechanical resonators, we focus on the beam-splitting-type interactions (i.e., the rotating-wave interaction
term) between these bosonic modes because these terms dominate the linearized couplings in this system, and hence
we can simplify the Hamiltonian of the system by making the RWA. The linearized optomechanical Hamiltonian under
the RWA is given by

HI = ∆δa†δa+ ωj

∑N
j=1 δb

†
jδbj +

∑N
j=1 Gj(δa

†δbj + δb†jδa) +Hmrc, (S76)

where ∆ = ∆c +
∑N

j=1 gj(βj + β∗
j ) is the normalized driving detuning after the linearization, and Gj = gj |α| is the

linearized optomechanical coupling strength between the jth mechanical resonator and the cavity-field mode. The
interaction Hamiltonians between the neighboring mechanical resonators are given by

Hmrc =
∑N−1

j=1 Hj , (S77)

with

Hj = ηj(e
−iθjδbjδb

†
j+1 + eiθjδbj+1δb

†
j), (S78)

which describes the phonon-exchange interaction between the jth resonator and the (j + 1)th resonator.
In order to investigate the dark-mode effect in the N -mechanical-resonator optomechanical system, we firstly

consider the case where the phonon-exchange interaction between the neighbouring mechanical resonators is absent,
i.e., Hmrc = 0, as shown in Fig. S9(a). For convenience, we assume that all the mechanical resonators have the same
resonance frequencies (ωj = ωm) and optomechanical coupling strengths (Gj = G). In this system, there exists a

bright mode B+ =
∑N

j=1 δbj/
√
N and (N−1) dark modes which decouple from the cavity-field mode. As a result, the

phonons stored in these dark modes cannot be extracted though the optomechanical cooling channel, and then these
mechanical resonators cannot be cooled to their quantum ground states. Here, we can obtain the cooling limits of the
N mechanical resonators, which are given by n̄(N − 1)/N . The result shows that in the presence of the dark-mode
effect, the final average phonon numbers in these mechanical resonators depend on the number of the mechanical
resonators. In this case, the ground-state cooling cannot be realized in these mechanical resonators. In particular,
the final average phonon numbers in these mechanical resonators are approximately equal to the thermal excitations
in their heat baths when N ≫ 1 and hence n̄(N − 1)/N ≈ n̄.
To break the dark-mode effect and realize the simultaneous ground-state cooling in the N -mechanical-resonator

optomechanical system, the phase-dependent phonon-exchange interaction Hmrc should be introduced, as shown in
Fig. S9(b). Without loss of generality, we assume that all the coupling strengths of the phonon-exchange interactions
are same ηj = η. Thus, we can diagonalize the Hamiltonian of these coupled mechanical resonators as

Hmrt = ωm

N∑
j=1

δb†jδbj + η
N−1∑
j=1

(e−iθjδbjδb
†
j+1 + eiθjδbj+1δb

†
j) =

N∑
k=1

ΩkB
†
kBk, (S79)
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FIG. S9: (Color online) (a) The N -mechanical-resonator optomechanical system: a cavity-field mode simultaneously couples
to N mechanical resonators through the optomechanical interactions. (b) The phonon-exchange interactions between two
neighboring mechanical resonators are introduced into the N -mechanical-resonator optomechanical system described by panel
(a). Note that there is no direct coupling between the first resonator and the Nth resonator.

where Bk is the kth mechanical normal mode with the resonance frequency Ωk given by

Ωk = ωm + 2η cos

(
kπ

N + 1

)
, k = 1, 2, 3, ..., N. (S80)

The relationship between the mechanical modes δbj and the normal modes Bk is given by

δbj =

{ 1
A

∑N
k=1 sin

(
kπ

N+1

)
Bk, j = 1,

1
Ae−i

∑j−1
ν=1 θν

∑N
k=1 sin

(
jkπ
N+1

)
Bk, j ≥ 2,

(S81)

where we introduce the variable

A =

√
N + 1

2
. (S82)

The Hamiltonian in Eq. (S76) can be rewritten with these mechanical normal modes as

HI = ∆δa†δa+
∑N

k=1 ΩkB
†
kBk +Hom, (S83)

where the optomechanical Hamiltonian Hom reads

Hom =
G

A

N∑
k=1

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

) aB†
k +H.c.. (S84)

It can be seen from Eq. (S84) that the function of these phases in the optomechanical interactions is determined by

the term
∑j−1

ν=1 θν . Hence, we can apply a single phase to realize the dark-mode-breaking task. For simplicity, we
assume θj = 0 for j = 2-(N − 1) in the following discussions.
As a special case, we first analyze the case of N = 2. In this case, the multiple-mechanical-resonator optomechanical

system is reduced to the two-mechanical-resonator optomechanical system, which has been analyzed before. When
N = 2, the optomechanical interaction reads

Hom =

√
2G

2
(1 + eiθ1)aB†

1 +

√
2G

2
(1− eiθ1)aB†

2 +H.c.. (S85)

It is obvious that when θ = nπ for an integer n, the cavity field is decoupled from one of the two hybrid mechanical
modes: either B1 or B2. This hybrid mechanical mode decoupled from the cavity mode is the dark mode. However,
in a general case θ ̸= nπ, the dark-mode effect is broken, and then the ground-state cooling becomes accessible under
proper parameter conditions.
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For the case of N ≥ 3, the effective coupling coefficient between the cavity-field mode a and the kth normal mode
Bk in Eq. (S84) can be expressed as

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

)
=

G

A

[
sin

(
kπ

N + 1

)
+ eiθ1 sin

(
2kπ

N + 1

)
+ ei(θ1+θ2) sin

(
3kπ

N + 1

)
+ · · ·

+ei
∑N−3

ν=1 θν sin

(
N − 2

N + 1
kπ

)
+ ei

∑N−2
ν=1 θν sin

(
N − 1

N + 1
kπ

)
+ ei

∑N−1
ν=1 θν sin

(
Nkπ

N + 1

)]
=

G

A

{[
sin

(
1

N + 1
kπ

)
+ ei

∑N−1
ν=1 θν sin

(
N

N + 1
kπ

)]
+
[
eiθ1 sin

(
2

N + 1
kπ

)
+ ei

∑N−2
ν=1 θν sin

(
N − 1

N + 1
kπ

)]
+
[
ei(θ1+θ2) sin

(
3

N + 1
kπ

)
+ ei

∑N−3
ν=1 θν sin

(
N − 2

N + 1
kπ

)]
+ · · ·

}
. (S86)

Below, we consider two cases corresponding to odd and even numbers N , respectively.
(i) For an odd number N and θj = 0 (for j = 2-(N − 1)), the coefficient becomes

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

)
=

G

A

{[
sin

(
kπ

N + 1

)
+ eiθ1 sin

(
Nkπ

N + 1

)]
+ eiθ1

[
sin

(
2kπ

N + 1

)
+ sin

(
N − 1

N + 1
kπ

)]
+eiθ1

[
sin

(
3kπ

N + 1

)
+ sin

(
N − 2

N + 1
kπ

)]
+ · · ·+ eiθ1 sin

(
kπ

2

)}
. (S87)

On one hand, if k is an odd number, we have

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

)
=

G

A

[
(1 + eiθ1) sin

(
kπ

N + 1

)
+ 2eiθ1 sin

(
2kπ

N + 1

)
+ 2eiθ1 sin

(
3kπ

N + 1

)
+ · · ·+ eiθ1 sin

(
kπ

2

)]
; (S88)

On the other hand, if k is an even number, we have

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

) =
G

A

(
1− eiθ1

)
sin

(
kπ

N + 1

)
. (S89)

(ii) For an even number N and θj = 0 (for j = 2-(N − 1)), the coefficient can be simplified as

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

)
=

G

A

{[
sin

(
kπ

N + 1

)
+ eiθ1 sin

(
N

N + 1
kπ

)]
+ eiθ1

[
sin

(
2kπ

N + 1

)
+ sin

(
N − 1

N + 1
kπ

)]
+eiθ1

[
sin

(
3kπ

N + 1

)
+ sin

(
N − 2

N + 1
kπ

)]
+ · · ·

}
. (S90)

In this case, when k is an odd number, we have

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

)
=

G

A

[
(1 + eiθ1) sin

(
kπ

N + 1

)
+ 2eiθ1 sin

(
2kπ

N + 1

)
+ 2eiθ1 sin

(
3kπ

N + 1

)
+ · · ·

]
; (S91)
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In addition, when k is an even number, we have

G

A

sin( kπ

N + 1

)
+

N∑
j=2

ei
∑j−1

ν=1 θν sin

(
jkπ

N + 1

) =
G

A

(
1− eiθ1

)
sin

(
kπ

N + 1

)
. (S92)

According to Eqs. (S87-S92), we can see that for odd numbers k, the coupling strength between the cavity-field
mode and the kth normal mode Bk is nonzero. However, for even numbers k, the coupling strength between the
cavity-field mode and the kth normal mode Bk can be expressed as

Hck =
G

A

[(
1− eiθ1

)
sin

(
kπ

N + 1

)]
aB†

k +H.c., k = even number. (S93)

Obviously, when θ1 = 2nπ, the coupling strength between the kth mechanical normal mode (Bk=even) and the cavity
mode (a) is equal to zero. In this case, all the even normal modes are decoupled from the cavity field. Then ground-
state cooling cannot be realized in this system due to the dark-mode effect. Nevertheless, we can cool these mechanical
resonators by choosing proper parameters to break the dark-mode effect (θ1 ̸= 2nπ).

VI. GROUND-STATE COOLING OF THE MULTIPLE MECHANICAL RESONATORS

In this section, we study the simultaneous cooling of multiple mechanical resonators in the N -mechanical-resonator
optomechanical system. To evaluate the cooling performance of the multiple mechanical resonators, we calculate the
final average phonon numbers in these mechanical resonators. To this end, we re-express the linearized quantum
Langevin equations (S75) as

u̇(t) = Au(t) +N(t), (S94)

where we introduce the vectors of the system operators

u(t) = [δa(t), δb1(t), δb2(t), · · · , δbN (t), δa†(t), δb†1(t), δb
†
2(t), · · · , δb

†
N (t)]T , (S95)

the vector of the noise operators

N(t) =
√
2[
√
κain(t),

√
γ1b1,in(t),

√
γ2b2,in(t), · · · ,

√
γNbN,in(t),

√
κa†in(t),

√
γ1b

†
1,in(t),

√
γ2b

†
2,in(t), · · · ,

√
γNb†N,in(t)]

T ,

(S96)

and the coefficient matrix

A =



−(κ+ i∆) −iG1 −iG2 · · · −iGN 0 −iG1 −iG2 · · · −iGN

−iG∗
1 −(γ1 + iω1) −iη1e

iθ1 · · · −iηN−1e
−iθN−1 −iG1 0 0 · · · 0

−iG∗
2 −iη1e

−iθ1 −(γ2 + iω2) · · · 0 −iG2 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
−iG∗

N −iηN−1e
iθN−1 0 · · · −(γN + iωN ) −iG4 0 0 · · · 0

0 iG∗
1 iG∗

2 · · · iG∗
N −(κ− i∆) iG∗

1 iG∗
2 · · · iG∗

N

iG∗
1 0 0 · · · 0 iG1 −(γ1 − iω1) iη1e

−iθ1 · · · iηN−1e
iθN−1

iG∗
2 0 0 · · · 0 iG2 iη1e

iθ1 −(γ2 − iω2) · · · 0
...

...
...

...
...

...
...

...
. . .

...
iG∗

N 0 0 · · · 0 iGN iηN−1e
−iθN−1 0 · · · −(γN − iωN )



.

(S97)

The formal solution of the linearized quantum Langevin equations Eq. (S94) can be obtained as

u(t) = M(t)u(0) +

∫ t

0

M(t− s)N(s)ds, (S98)

where the matrix M(t) is given by M(t) = exp(At), and hence the stability conditions derived from the Routh-
Hurwitz criterion have satisfied. Note that in our simulations the real part of the eigenvalues of the coefficient matrix
A is negative.
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FIG. S10: (Color online) The final average phonon numbers nf
j in these mechanical resonators as functions of the effective

driving detuning ∆ in the dark-mode-unbreaking case (ηj = η = 0) and the dark-mode-breaking case (ηj/ωm = η/ωm = 0.1,
θ1 = π/2, and θj ̸=1 = 0) for N = 3 and N = 4. Here we take Gj/ωm = G/ωm = 0.1, κ/ωm = 0.2, γj/ωm = 10−5, and n̄j = 103.

For studying the quantum cooling of these mechanical resonators, we calculate the steady-state average phonon
numbers in these mechanical resonators. This can be realized by calculating the steady-state values of the covariance
matrix V, which is defined by the matrix elements

Vij =
1

2
[⟨ui(∞)uj(∞)⟩+ ⟨uj(∞)ui(∞)⟩]. (S99)

In the linearized optomechanical system, the covariance matrix V satisfies the Lyapunov equation

AV +VAT = −Q, (S100)

where

Q =
1

2
(C+CT ). (S101)

Here C is the noise correlation matrix which is defined by the elements

⟨Nk(s)Nl(s
′)⟩ = Ck,lδ(s− s′). (S102)

For the Markovian baths as considered in this work, we have C(s, s′) = Cδ(s − s′), where the constant matrix C is
given by

C =



0 0 0 · · · 0 2κ 0 0 · · · 0
0 0 0 · · · 0 0 2γ1 (n̄1 + 1) 0 · · · 0
0 0 0 · · · 0 0 0 2γ2 (n̄2 + 1) · · · 0
...

...
...

...
...

...
...

...
. . . 0

0 0 0 · · · 0 0 0 0 · · · 2γN (n̄N + 1)
0 0 0 · · · 0 0 0 0 · · · 0
0 2γ1n̄1 0 · · · 0 0 0 0 · · · 0
0 0 2γ2n̄2 · · · 0 0 0 0 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...
0 0 0 · · · 2γN n̄N 0 0 0 · · · 0


. (S103)

Based on the covariance matrix V, the final average phonon number in the jth mechanical resonator can be obtained
as

⟨δb†jδbj⟩ = VN+j+2,j+1 −
1

2
, (S104)

where VN+j+2,j+1 can be obtained by solving the Lyapunov equation.
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FIG. S11: (Color online) The final average phonon numbers nf
j in these mechanical resonators are plotted in the dark-mode-

unbreaking [ηj = 0 (orange bars)] and -breaking [ηj = 0.1ωm and θ1 = π/2 (blue bars)] cases for (a) N = 3 and (b) N = 4.
Here ∆ = ωm, and other used parameters are the same as those given in Fig. S10.

Below we simulate the cooling performance of the mechanical resonators for the cases of N = 3 and 4. For
convenience, we assume that all the mechanical resonators have the same resonance frequencies (ωj = ωm for j = 1-
N), optomechanical coupling strengths (Gj = G for j = 1-N), and phonon-exchange coupling strengths [ηj = η for
j = 1-(N − 1)]. Moreover, we consider the case of θ1 = π/2 and θj>2 = 0. In Fig. S10, we plot the final average

phonon numbers nf
j in these mechanical resonators as functions of the scaled driving detuning ∆/ωm in both the

dark-mode-breaking (ηj = 0.1ωm and θ1 = π/2) and -unbreaking (ηj = η = 0) cases. The results show that the
ground-state cooling is unfeasible for these mechanical resonators when the phonon-exchange interactions are absent
(ηj = η = 0) [the upper curves in Figs. S10(a) and S10(b)]. This is because the phonon excitation energy stored in
the dark modes cannot be extracted through the optomechanical cooling channel. When the couplings among these
mechanical resonators are introduced, the dark modes are broken and then the ground-state cooling can be realized,
as shown in Figs. S10(a) and S10(b). In particular, the optimal driving detuning is located at ∆ ≈ ωm, in consistent
with the resolved-sideband cooling case.
To see the cooling performance more clearly, we compare the cooling results of these mechanical resonators in

the presence of mechanical couplings with the results corresponding to the absence of the mechanical couplings. In
Fig. S11, we plot the final average phonon numbers of these mechanical resonators in the two cases. Here we can see
that final average phonon numbers could be smaller than 1 when the mechanical couplings are introduced into the
system, which means that the simultaneous ground-state cooling of these mechanical resonators can be achieved by
breaking the dark-mode effect.
We also investigate the dependence of the cooling performance on the mechanical coupling parameters η and θ. In

Fig. S12, we plot the final average phonon numbers nf
j in these mechanical resonators as functions of the phase θ and
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FIG. S12: (Color online) The final average phonon numbers nf
j in the mechanical resonators as functions of (a) the phase θ1

when η/ωm = 0.1 and (b) the phonon-exchange coupling η when θ1 = π/2 for N = 4. Here Gj/ωm = G/ωm = 0.1. Other used
parameters are the same as those given in Fig. S10.
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FIG. S13: (Color online) The final average phonon numbers nf
1 and nf

2 versus (a) the cavity-field decay rate κ when η = 0.05ωm

and (b) the phonon-phonon coupling strength η when κ = 0.2ωm. Here the symbols and the solid curves correspond to the
Hamiltonian under the RWA and the full Hamiltonian, respectively. Other parameters used are given by ω2 = ω1 = ωm,
∆ = ωm, θ = π/2, G1 = G2 = 0.1ωm, γ1 = γ2 = 10−5ωm, and n̄1 = n̄2 = 103.

the scaled phonon-exchange coupling strength η/ωm. The results show that ground-state cooling can be realized for
proper values of the phase θ1 ̸= 2nπ when η = 0.1ωm [Fig. S12(a)]. In addition, the cooling efficiency of the multiple
mechanical resonators can be controlled by tuning the phonon-exchange interaction strength η when the phase is fixed
at θ1 = π/2 [Fig. S12(b)]. Under these parameters, the dark-mode effect is broken and then the thermal occupations
can be extracted through the optomechanical-cooling channels.

VII. DISCUSSIONS ON THE JUSTIFICATION OF PERFORMING THE RWA

In our model, we consider an excitation-number-conservation-type phonon-phonon interaction η(eiθb†1b2+e−iθb†2b1),
which is obtained by making the rotating-wave approximation (RWA) in the full phonon-exchange interaction Hamil-

tonian η(eiθb†1 + e−iθb1)(b
†
2 + b2). To evaluate the validity of the RWA, we compare the results obtained based on the

approximate Hamiltonian and the full Hamiltonian including the counterrotating term. In Figs. S13(a) and S13(b),

we show the final average phonon numbers nf
1 and nf

2 as functions of the cavity-field decay rate κ and the mechanical
coupling strength η. Here, the symbols and the solid curves correspond to the Hamiltonian under the RWA and the
full Hamiltonian, respectively. Figure S13(a) shows an excellent agreement between the results obtained with the
approximate Hamiltonian and the full Hamiltonian in both the resolved- and unresolved-sideband regimes. We can
also see from Fig. S13(b) that the approximate results match well with the exact results when η < 0.2ωm. Physically,
the optomechanical cooling and heating are governed by the rotating-wave and the CR terms, respectively. In the
weak-coupling regime (η ≪ ωm) and under the near-resonance condition (ω2 around ω1), the CR term in the phonon-
phonon interaction can be safely omitted by applying the RWA. The difference between these two treatments becomes
non-negligible when η > 0.2ωm. The reason is that the CR term, which simultaneously creates phonon excitations
in the two mechanical resonators, becomes important for a large phonon-phonon coupling strength η. These features
indicate that the RWA performed in the phonon-phonon interaction is justified in our simulations, and that the CR
interaction can be omitted safely under the condition η ≪ ωm.

VIII. SIMULTANEOUS COOLING OF THE MECHANICAL SUPERMODES

In this section, we discuss the simultaneous cooling of the mechanical supermodes in cavity optomechanical systems.
Note that the notations used in this section are independent of the those used in other sections. We consider the case
where the two mechanical resonators are coupled to each other by a phonon-hopping coupling. Then, two mechanical
supermodes are formed and the cavity field is coupled to the two supermodes. In the presence of the phonon-hopping
coupling between the two mechanical resonators, the Hamiltonian of this coupled mechanical system reads (~ = 1)

Hc = ωmc†1c1 + ωmc†2c2 + λ(c†1c2 + c†2c1), (S105)

where the operators cl=1,2 (c†l ) are the annihilation (creation) operators of the lth mechanical resonator, with the
corresponding resonance frequencies ωm, and the parameter λ is a coupling constant of the mechanical interaction
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between the two mechanical resonators. In the weak-coupling regime (λ ≪ ωm), the counter-rotating term in the
phonon-phonon interaction can be safely omitted by making the rotating-wave approximation. Below, we diagonalize
this coupled mechanical system by introducing two mechanical supermodes C±, given by

C+ =
1√
2
(c1 + c2), (S106a)

C− =
1√
2
(−c1 + c2), (S106b)

where these new operators satisfy the bosonic commutation relations [C+, C
†
+] = 1 and [C−, C

†
−] = 1. Thus, Hamil-

tonian (S105) becomes

Hc = ωC,+C
†
+C+ + ωC,−C

†
−C−, (S107)

where we introduce the resonance frequencies of these supermodes as

ωC,± = ωm ± λ. (S108)

To cool the two mechanical supermodes, we couple the two mechanical supermodes to a common optical cavity-
field mode by the optomechanical interactions [S1]. In the strong-driving regime, the linearized optomechanical
Hamiltonian in the RWA takes the form as

HRWA = ∆δa†δa+ ωC,+δC
†
+δC+ + ωC,−δC

†
−δC− +G+(δaδC

†
+ + δa†δC+) +G−(δaδC

†
− + δa†δC−), (S109)

where ∆ is the normalized driving detuning of the cavity field, and the parameters G± are the optomechanical
couplings between the cavity-field mode and the two mechanical supermodes. It can be seen from Eq. (S109) that
the couplings between the cavity field and the two supermodes are the same as the three-mode optomechanical model
considered in the main text. Therefore, all the analyses in the three-mode optomechanical system are suitable to
the coupled cavity-supermode case. Based on the fact that the mechanical coupling between the two mechanical
resonators is much smaller than the resonant frequencies of the two resonators (λ ≪ ωm), the frequencies ωC,± of
the two mechanical supermodes are close to each other. We proceed to analyze the cooling performance of the two
mechanical supermodes. Concretely, we consider two special cases.
(i) When the frequency difference between the two mechanical supermodes is larger than the effective mechanical

linewidth (∆ω = |ωC,+ − ωC,−| > Γl=+,−), the simultaneous ground-state cooling of the two mechanical supermodes
is accessible under proper parameter conditions. Physically, when the two mechanical supermodes are well separated
in frequency, there is no dark mode, then the ground-state cooling can be realized when this system works in the
resolved-sideband regime and under a proper driving (red-sideband resonance). This cooling situation is similar to
the case shown in Fig. 2(b) and Fig. S1(e) [see blank area].
(ii) When the frequency difference between the two mechanical supermodes is smaller than the effective mechanical

linewidth (∆ω = |ωC,+ − ωC,−| ≤ Γl=+,−), the cooling of the two mechanical supermodes is suppressed. This
is because, though the dark mode exists theoretically only in the degenerate-resonator case, the dark-mode effect
actually works for a wider detuning range in the near-degenerate-resonator case. The suppression region of the
ground-state for the mechanical supermodes is characterized by the effective mechanical linewidth. The cooling of
the individual mechanical supermodes is suppressed in this region, i.e., the individual mechanical supermodes have
significant spectral overlap and become effectively degenerate. This cooling situation is similar to the case shown in
Fig. 2(b) and Fig. S1(e) [see shadow area].
In the case (ii), for achieving quantum ground-state cooling of the two mechanical supermodes, we need to in-

troduce a phase-dependent phonon-hopping coupling between the two mechanical supermodes. Thus, the linearized
optomechanical Hamiltonian including a phase-dependent coupling between the two supermodes takes the following
form

HRWA = ∆δa†δa+ ωC,+δC
†
+δC+ + ωC,−δC

†
−δC− +G+(δaδC

†
+ + δa†δC+) +G−(δaδC

†
− + δa†δC−)

+λ̃(eiϕδC†
+δC− + e−iϕδC†

−δC+). (S110)

By introducing two new bosonic modes C̃+ and C̃− defined by

C̃+ =f̃ ′C+ − eiϕh̃′C−, (S111a)

C̃− =e−iϕh̃′C+ + f̃ ′C−, (S111b)
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FIG. S14: Schematic diagram of the three-level system with these states |g⟩, |f⟩, and |e⟩ (with the corresponding energies
Eg, Ef , and Ee). A Lambda-type coupling configuration is formed by the transition processes |g⟩ → |e⟩ and |f⟩ → |e⟩ with
the coupling strengthes Ω1 and Ω2, and the detunings ∆1 and ∆2. A phase-dependent resonant coupling (with the coupling
strength Ωbe

iθ) between the two lower states |g⟩ and |f⟩ is introduced to break the dark-state effect existing in the Lambda-type
three-level system working in the two-photon resonance regime ∆1 = ∆2 = ∆.

Hamiltonian (S110) becomes

HRWA = ∆δa†δa+ ω̃C,+C̃
†
+C̃+ + ω̃C,−C̃

†
−C̃− + G̃+(δaC̃

†
+ + δa†C̃+) + G̃−(δaC̃

†
− + δa†C̃−), (S112)

where we introduce the resonance frequencies ω̃C,±, the coupling strengths G̃±, and the coefficients f̃ ′ and h̃′ as

ω̃C,+ =
1

2

(
ωC,+ + ωC,− +

√
(ωC,+ − ωC,−)

2
+ 4λ̃2

)
, (S113a)

ω̃C,− =
1

2

(
ωC,+ + ωC,− −

√
(ωC,+ − ωC,−)

2
+ 4λ̃2

)
, (S113b)

G̃+ =(f̃ ′G+ − e−iϕh̃′G−), (S113c)

G̃− =(eiϕh̃′G+ + f̃ ′G−), (S113d)

with

f̃ ′ =
|ω̃C,− − ωC,+|√

(ω̃C,− − ωC,+)
2
+ λ̃2

, (S114a)

h̃′ =
λ̃

(ω̃C,− − ωC,+)
f̃ ′. (S114b)

We note that the cooling of the two mechanical supermodes can also be explained by the physical mechanism pro-
posed in this manuscript. By combining this phase-dependent phonon-exchange interaction with the optomechanical
couplings, the interference effect works and the dark-mode effect is broken, which can lead to the ground-state cooling
of the two mechanical supermodes.

IX. PHYSICAL MECHANISM FOR BREAKING THE DARK-STATE EFFECT IN A LAMBDA-TYPE
THREE-LEVEL SYSTEM

In this section, we show the physical mechanism for breaking the dark-state effect in a Lambda-type three-level
system by introducing a phase-dependent transition between the two lower levels (as shown in Fig. S14). It is well
known that there exists a dark state in the Lambda-type three-level system in the two-photon resonance regime. For
the dark state, the superposition coefficient of the excited state is zero. Below, we show that this dark state will be
broken by introducing a phase-dependent transition coupling between the two lower states. Note that in a typical
natural atom, the direct transition between the two lower states of a Lambda three-level atom is forbidden due to
the transition selection rule. However, this transition is accessible either in artificial cycle three-level systems [S2] or
induced by indirect transition. The Hamiltonian of the system reads

H = Ee|e⟩⟨e|+ Ef |f⟩⟨f |+ Eg|g⟩⟨g|+Ω1(|e⟩⟨g|e−iω1t + |g⟩⟨e|eiω1t) + Ω2(|e⟩⟨f |e−iω2t + |f⟩⟨e|eiω2t)

+Ωb(|f⟩⟨g|eiθe−iωbt + |g⟩⟨f |e−iθeiωbt), (S115)
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where Ee, Ef , and Eg are, respectively, the energies of these three energy levels |e⟩, |f⟩, and |g⟩. Two monochromatic
fields with frequencies ω1 and ω2 are coupled to the atomic transitions |g⟩ → |e⟩ and |f⟩ → |e⟩ (forming a Lambda
configuration of couplings), respectively, with Ω1 and Ω2 being the corresponding real transition amplitudes. In this
system, corresponding to these two transitions |g⟩ → |e⟩ and |f⟩ → |e⟩, we introduce the transition detunings as
∆1 = Ee − Eg − ω1 and ∆2 = Ee − Ef − ω2. We know that the Labmda-type couplings support a dark state in this
system when the transitions satisfy the two-photon resonance condition [∆1 = ∆2 in Fig. S14]. Below, we will focus
on the two-photon resonant transition case, ∆1 = ∆2 = ∆. To exhibit our dark-state-breaking idea, we introduce a
field to resonantly couple the two lower states |f⟩ and |g⟩. In particular, this coupling has a phase-dependent coupling
strength, which is the critical factor for this dark-state-breaking approach. In a rotating frame with respect to

H0 = (Eg + ω1)|e⟩⟨e|+ Ef |f⟩⟨f |+ Eg|g⟩⟨g|, (S116)

the Hamiltonian of the system becomes

VI = ∆|e⟩⟨e|+Ω1(|e⟩⟨g|+ |g⟩⟨e|) + Ω2(|e⟩⟨f |+ |f⟩⟨e|) + Ωb(|f⟩⟨g|eiθ + |g⟩⟨f |e−iθ). (S117)

By defining these three basis states with the following vectors

|e⟩ = (1, 0, 0)T , |f⟩ = (0, 1, 0)T , |g⟩ = (0, 0, 1)T , (S118)

where “T” denotes the matrix transpose, the interaction Hamiltonian VI can be expressed as

VI =

 ∆ Ω2 Ω1

Ω2 0 Ωbe
iθ

Ω1 Ωbe
−iθ 0

 . (S119)

For the sake of simplicity and without loss of generality, we consider the symmetric coupling case Ω1 = Ω2 = Ω and
the single- and two-photon resonance case ∆1 = ∆2 = ∆ = 0, then the Hamiltonian (S119) becomes

VI = Ω

 0 1 1
1 0 ηeiθ

1 ηe−iθ 0

 , (S120)

where we introduce the ratio η = Ωb/Ω.
The dark-state effect can be analyzed by investigating the eigensystem of the matrix VI in Eq. (S120). The eigen-

equation can be expressed as

1

Ω
VI |λs⟩ = λs|λs⟩, s = 1, 2, 3, (S121)

where λs are the eigenvalues, which are determined by the secular (cubic) equation

λ3 − (2 + η2)λ− 2η cos θ = 0. (S122)

Using the Cardano formula, the solutions of the cubic equation (S122) can be obtained as

λ1 = s1 + s2, λ2 = −1

2
(s1 + s2) +

i
√
3

2
(s1 − s2) , λ3 = −1

2
(s1 + s2)−

i
√
3

2
(s1 − s2) , (S123)

where

s1 =
(
r +

√
q3 + r2

) 1
3

, s2 =
(
r −

√
q3 + r2

) 1
3

, (S124)

with q = −(2 + η2)/3 and r = η cos θ.
In general, the form of these eigenstates defined in Eq. (S121) can be expressed as

|λs⟩ = c[s]g |g⟩+ c
[s]
f |f⟩+ c[s]e |e⟩, s = 1, 2, 3. (S125)

The dark state can be checked by calculating the probability of the excited state |e⟩ in these eigenstates as follows

P [s]
e = |⟨e|λs⟩|2 = |c[s]e |2, s = 1, 2, 3. (S126)
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FIG. S15: The probability P
[s]
e of the excited state |e⟩ in these eigenstates |λs⟩ as a function of θ when (a) η = Ωb/Ω = 0.1, (b)

0.3, (c) 0.5, (d) 0.8, (e) 1.2, and (f) 1.5. Here, we can see that one of these three eigenstates has no excited state probability
at θ = nπ, which means that there is a dark state at θ = nπ and hence the dark-state effect is broken when θ ̸= nπ.

The case P
[s]
e = 0 implies a dark state of this system. In Fig. S15, we plot the probability P

[s]
e of the excited state

|e⟩ in these three eigenstates |λs⟩ as a function of θ when the ratio η = Ωb/Ω takes various values. Here we can see
that when θ = nπ for an integer n, one of the eigenstates becomes a dark state. In other cases, there are no dark
states. Therefore, the phase-dependent resonant transition |g⟩ ↔ |f⟩ can be used to break the dark-state effect in
this Lambda-type three-level system.
The analytical expressions of these eigenstates can be obtained as

|λs⟩ = Λs

[
|g⟩+ λsηe

iθ + 1

λ2
s − 1

|f⟩+ ηeiθ + λs

λ2
s − 1

|e⟩
]
, s = 1, 2, 3, (S127)

where the corresponding eigenvalue λs is given by Eq. (S123), and the normalization constant is

Λs =

∣∣∣∣∣
(
1− λ2

s

)√
λ4
s + η2 − λ2

s + 4λsη cos θ + λ2
sη

2 + 2

∣∣∣∣∣ , s = 1, 2, 3. (S128)

When one of these eigenstates is a dark state, then the probability amplitude of the excited state |e⟩ in this eigen-
state (S127) is zero, and we have the relation

λ = −ηeiθ. (S129)

By substituting the above relation into the secular equation Eq. (S122), we have

η3
(
−ei3θ + eiθ

)
+ i2η sin θ = 0, (S130)

which leads to these two equations

[cos θ − cos (3θ)] η3 = 0, η3 [sin θ − sin (3θ)] + 2η sin θ = 0. (S131)

For a nonzero η, the solutions of these two equations are

θ = nπ, n = 0,±1,±2, · · · . (S132)
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FIG. S16: (a) The circuit electromechanical system consists of a microwave cavity represented by an inductance L and three
capacitances: C and Cj=1,2(xj). Here, the two capacitances Cj=1,2(xj) depend on the two micromechanical resonators bj=1,2.
The displacement xj=1,2 of each mechanical resonator modulates the total capacitance and hence the cavity frequency ωc. A

phase-dependent phonon-hopping interaction η(eiθb†1b2 + e−iθb†2b1) between the two micromechanical resonators is generated
via a superconducting quantum circuit given in panel (b). (b) Schematic diagram of the superconducting quantum circuit:
A Josephson junction with the Josephson energy EJ and the capacitance CJ is connected to three gate voltages Vj=1,2,3(t)
through the corresponding gate capacitances Cj=1,2(xj) and C3. Two mechanical resonators are coupled to the superconducting
charge qubit through the gate capacitances Cj=1,2(xj). The gate voltages are properly designed such that a phase-dependent
phonon-hopping interaction between the two mechanical resonators can be induced. The phase drops across these capacitor
Cj=1,2,3 and the Josephson junction are marked as ϕj and ϕ, respectively.

When θ = nπ, we have eiθ = e−iθ = (−1)n, then the eigenvalues of the matrix (S120) are given by

λ1 = (−1)n+1η, λ2 =
1

2

[
(−1)nη −

√
8 + η2

]
, λ3 =

1

2

[
(−1)nη +

√
8 + η2

]
. (S133)

The corresponding eigenstates are given by

|λ1⟩ =
1√
2
(−|f⟩+ |g⟩),

|λ2⟩ = Λ2

{
1

2

[
(−1)n+1η −

√
8 + η2

]
|e⟩+ |f⟩+ |g⟩

}
,

|λ3⟩ = Λ3

{
1

2

[
(−1)n+1η +

√
8 + η2

]
|e⟩+ |f⟩+ |g⟩

}
, (S134)

where Λ2,3 = [ 14 (
√

8 + η2 ± (−1)nη)2 + 2]−1/2 are normalization constants. In this case, the eigenstate |λ1⟩ is a dark
state.

X. A POSSIBLE EXPERIMENTAL REALIZATION AND DERIVATION OF A PHASE-DEPENDENT
PHONON-HOPPING INTERACTION BETWEEN TWO MECHANICAL RESONATORS

A. A possible experimental realization

In this section, we propose a possible experimental implementation of our scheme based on the circuit electrome-
chanical system, as shown in Fig. S16(a). The circuit electromechanical system [S3, S4] consists of a microwave cavity
described by the equivalent inductance L and capacitance C and two micromechanical resonators bj=1,2. The elec-
tromechanical coupling arises when the displacement xj=1,2 of each mechanical resonator independently modulates
the total capacitance through Cj=1,2(xj), and therefore the resonance frequency of the cavity ωc. This electromechan-
ical coupling can be described by gj = (ωc/2C)∂Cj/∂xj . Meanwhile, an effective phase-dependent phonon-hopping
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interaction between the two mechanical resonators is introduced by coupling them to a superconducting charge qubit,
as shown in Fig. S16(b). The detailed derivation of the phase-dependent phonon-exchange interaction is presented in
the next subsection.

B. Derivation of a phase-dependent phonon-hopping interaction between two mechanical resonators

In this section, we present a detailed derivation of an effective phase-dependent phonon-hopping interaction between
two mechanical resonators. Here the two mechanical resonators are coupled to a superconducting charge qubit, which
is described by the circuit given in Fig. S16(b). In this circuit, a Josephson junction with the Josephson energy EJ

and the capacitance CJ is connected to three gate voltages Vj=1,2,3(t) through the corresponding gate capacitances
Cj=1,2(xj) and C3. Here the two gate capacitors with capacitances Cj=1,2(xj) are formed by one fixed plate and
one mechanical resonator. The third capacitor has a constant capacitance. We denote the phase drops across these
capacitor Cj=1,2,3 and the Josephson junction as ϕj and ϕ, respectively. In this circuit, the energy stored in these
capacitors is the total kinetic energy [S5], which can be written as

T =
1

2
C1(x1)Φ̇

2
1 +

1

2
C2(x2)Φ̇

2
2 +

1

2
C3Φ̇

2
3 +

1

2
CJ Φ̇

2, (S135)

where Φj=1,2,3 and Φ are the generalized magnetic fluxes associated with the phase drops ϕj and ϕ across the
capacitances Cj and the Josephson junction. The relation between the generalized magnetic flux and the phase drop
is defined by ϕj=1,2,3 = 2πΦj/Φ0, where Φ0 is the magnetic flux quanta. The Josephson energy is identified as the
potential energy, which takes the form as [S5]

U = −EJ cos

(
2π

Φ0
Φ

)
, (S136)

where EJ is the Josephson energy of this junction.
Based on these voltages relations in these loops, we have the relations

Vj(t) + Φ̇j + Φ̇ = 0, j = 1, 2, 3, (S137)

then the Lagrangian of this system can be expressed as

L = T − U

=
1

2
C1 (x1)V

2
1 (t) +

1

2
C2 (x2)V

2
2 (t) +

1

2
C3V

2
3 (t) +

1

2
(C1 (x1) + C2 (x2) + C3 + CJ) Φ̇

2

+ [C1 (x1)V1 (t) + C2 (x2)V2 (t) + C3V3 (t)] Φ̇ + EJ cos

(
2π

Φ0
Φ

)
. (S138)

We introduce the momentum canonically conjugate to Φ as

P =
∂L

∂Φ̇
= [C1 (x1)V1 (t) + C2 (x2)V2 (t) + C3V3 (t)] + [C1 (x1) + C2 (x2) + C3 + CJ ] Φ̇. (S139)

Then the Hamiltonian of this circuit can be derived as [S5]

H =
1

2

4e2

CΣ (x1, x2)
[n̂− ng (x1, x2, t)]

2 − EJ cos

(
2π

Φ0
Φ

)
−1

2

[
C1 (x1)V

2
1 (t) + C2 (x2)V

2
2 (t) + C3V

2
3 (t)

]
, (S140)

where we introduce the Cooper-pair number n, the gate capacitance CΣ (x1, x1), and the gate Cooper-pair number
ng, which are defined by

P = 2en, CΣ (x1, x2) = C1 (x1) + C2 (x2) + C3 + CJ , (S141)

and

ng (x1, x2, t) =
1

2e
[C1 (x1)V1 (t) + C2 (x2)V2 (t) + C3V3 (t)] . (S142)
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The quantization of this circuit can be performed by introducing the commutative relation between the number

operator n̂ and the phase operator ϕ̂ as [ϕ̂, n̂] = i. Then we can express the Hamiltonian in the eigen-representation
of the number operator as

H =
1

2

4e2

CΣ (x1, x2)

∑
n∈Z

[n− ng (x1, x2, t)]
2 |n⟩ ⟨n| − EJ

2

∑
n∈Z

(|n⟩ ⟨n+ 1|+ |n+ 1⟩ ⟨n|)

−1

2

[
C1 (x1)V

2
1 (t) + C2 (x2)V

2
2 (t) + C3V

2
3 (t)

]
. (S143)

In this work, we consider the case where this circuit works in the charge qubit regime EC ≫ EJ , with EC = 4e2/CΣ

being the Coulomb energy. In particular, we choose the gate charge in the vicinity of 1/2, so that the states |0⟩ and
|1⟩ have almost degenerate energies. In this case, other states have higher energies and can be ignored in the our
discussions. Then the Hamiltonian becomes

H ≈ 1

2

4e2

CΣ (x1, x2)

[
ng (x1, x2, t)

2 |0⟩ ⟨0|+ [1− ng (x1, x2, t)]
2 |1⟩ ⟨1|

]
− EJ

2
(|0⟩ ⟨1|+ |1⟩ ⟨0|)

−1

2

[
C1 (x1)V

2
1 (t) + C2 (x2)V

2
2 (t) + C3V

2
3 (t)

]
. (S144)

By introducing the Pauli operators |0⟩ ⟨0| − |1⟩ ⟨1| = σz and |0⟩ ⟨0|+ |1⟩ ⟨1| = I, we can express the Hamiltonian as

H =
1

2

4e2

CΣ (x1, x2)

[
ng (x1, x2, t)−

1

2

]
σz −

EJ

2
σx +M, (S145)

where the term M stands for the ac voltage driving term on these two mechanical resonators

M =
1

4

4e2

CΣ (x1, x2)

[
1− 2ng (x1, x2, t) + 2n2

g (x1, x2, t)
]
− 1

2

[
C1 (x1)V

2
1 (t) + C2 (x2)V

2
2 (t) + C3V

2
3 (t)

]
. (S146)

We consider the case in which the voltage drivings are far-off-resonance to these two mechanical resonators (namely
the driving frequencies of the two voltages are much smaller than the resonance frequencies of the two mechanical
resonators) and then the term M will be discarded in our following discussions. When the vibration amplitudes of the
mechanical resonators are much smaller than the distances between the fixed plate and the rest mechanical resonator
of the capacitors, we can approximate the capacitances as

C1 (x1) ≈ C10

(
1− x1

l1

)
, C2 (x2) ≈ C20

(
1− x2

l2

)
, (S147)

where Cj0 (for j = 1, 2) are the capacitances of the gate capacitors when the mechanical resonators are rest, and lj=1,2

are the rest distances between the fixed plate and the mechanical resonators in these gate capacitors. In addition, we
choose the following gate voltages for our purpose,

V1 (t) = V10 cos (ω1t+ φ1) , V2 (t) = V20 cos (ω2t+ φ2) , V3 (t) =
e− C10V1(t)− C20V2(t)

C3
. (S148)

In this case, we can obtain the relation

ng (x1, x2, t)−
1

2
= −

[
C10V10

2e

x1

l1
cos (ω1t+ φ1) +

C20V20

2e

x2

l2
cos (ω2t+ φ2)

]
. (S149)

By making the rotation for the qubit −σx → τz and σz → τx, we can express the Hamiltonian upto the first order of
the mechanical displacements x1 and x2 as

HI ≈ EJ

2
τz −

EC

2

[
C10V10

2e

x1

l1
cos (ω1t+ φ1) +

C20V20

2e

x2

l2
cos (ω2t+ φ2)

]
τx, (S150)

where EC = 4e2/CΣ0 under the approximation CΣ (x1, x2) ≈ (C10 + C20 + CJ) ≡ CΣ0. We should point out that the
mechanical displacement terms in CΣ (x1, x2) only introduce the second-order terms of xj=1,2/lj , which have been
neglected in our considerations.
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FIG. S17: Schematic diagram of the energy levels and these involved resonance frequencies of this coupled qubit-resonator
system. Two mechanical resonators with resonance frequency ωm are phase-dependently coupled to the superconducting
charge qubit with the energy separation ω0. The ac gate voltages with frequency ωd are applied to the Josephson junction
through the gate capacitors.

By including the free Hamiltonian of the two mechanical resonators and using the relations xj=1,2 =√
~/(2mωm)(bj + b†j) and pj=1,2 = −i

√
~mωm/2(bj − b†j), the total Hamiltonian of this circuit system becomes

HI ≈ ωmb†1b1 + ωmb†2b2 +
ω0

2
τz

−
[
g1

(
b1 + b†1

)(
ei(ωdt+φ1) + e−i(ωdt+φ1)

)
+ g2

(
b2 + b†2

)(
ei(ωdt+φ2) + e−i(ωdt+φ2)

)]
(τ+ + τ−) , (S151)

where we consider the case ω1 = ω2 = ωd and introduce these parameters

g1 =
EC

4

C10V10

2e

x10

l1
, g2 =

EC

4

C20V20

2e

x20

l2
, ω0 = EJ , (S152)

with xj0 =
√
~/(2mωm) being the zero-point fluctuation of these mechanical resonators.

To analyze the physical processes in this system, we now work in the rotating frame with respect to

H0 = ωmb†1b1 + ωmb†2b2 +
ω0

2
τz, (S153)

then the Hamiltonian becomes

VI(t) = −g1(τ+b
†
1e

i(ω0+ωm+ωd)teiφ1 + b1τ−e
−i(ω0+ωm+ωd)te−iφ1)

−g2(τ+b
†
2e

i(ω0+ωm+ωd)teiφ2 + b2τ−e
−i(ω0+ωm+ωd)te−iφ2)

−g1(τ+b
†
1e

i(ω0+ωm−ωd)te−iφ1 + b1τ−e
−i(ω0+ωm−ωd)teiφ1)

−g2(τ+b
†
2e

i(ω0+ωm−ωd)te−iφ2 + b2τ−e
−i(ω0+ωm−ωd)teiφ2)

−g1(τ+b1e
i(ω0−ωm+ωd)teiφ1 + b†1τ−e

−i(ω0−ωm+ωd)te−iφ1)

−g2(τ+b2e
i(ω0−ωm+ωd)teiφ2 + b†2τ−e

−i(ω0−ωm+ωd)te−iφ2)

−g1(τ+b1e
i(ω0−ωm−ωd)te−iφ1 + b†1τ−e

−i(ω0−ωm−ωd)teiφ1)

−g2(τ+b2e
i(ω0−ωm−ωd)te−iφ2 + b†2τ−e

−i(ω0−ωm−ωd)teiφ2). (S154)

Here we can see that in this system there are eight physical processes, which are determined by the four detunings
ω0+ωm±ωd and ω0−ωm±ωd. From the viewpoint of the qubit and the resonators, the terms including ω0+ωm±ωd

and ω0 − ωm ± ωd are the counterrotating terms and the corotating terms, respectively. In this work, the motivation
for introducing the ac voltages V1(t) and V2(t) is to pick up the phase-sensitive interactions between the mechanical
resonators and the charge qubit. For this purpose, we choose the ac voltages with the frequency ωd to pick up the
terms with ω0 − ωm − ωd. Namely, we choose the parameters to satisfy the following parameter conditions

ω0 + ωm ± ωd ≫ ω0 − ωm + ωd ≫ ω0 − ωm − ωd. (S155)

The terms with ω0 + ωm ± ωd and ω0 − ωm + ωd are the far-off-resonance terms and the terms with ω0 − ωm − ωd

are the target terms which work in the large-detuning regime. The energy levels and these involved resonance
frequencies of this coupled qubit-resonator system are shown in Fig. S17. In this case, the qubit-resonator interactions
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work in the large-detuning regime: ∆ ≫ gj=1,2
√
nj , where nj is the maximal excitation number involved in the

jth mechanical resonator, and then we can obtain a phase-dependent photon-hopping interaction between the two
mechanical resonators. Here the phase is the difference between the two phases φ1 and φ2 associated with the
qubit-resonator couplings.
Based on the above analyses, we can obtain the approximate Hamiltonian as

VI (t) ≈ −
[
τ+
(
g1b1e

−iφ1 + g2b2e
−iφ2

)
ei∆t +

(
g1b

†
1e

iφ1 + g2b
†
2e

iφ2

)
τ−e

−i∆t
]
, (S156)

where we introduce the detuning ∆ = ω0 − ωm − ωd. The time factor can be eliminated by going back to the
Schrödinger representation, in which the Hamiltonian of the system can be written as

Heff = ωmb†1b1 + ωmb†2b2 +
ω0 − ωd

2
τz − τ+

(
g1b1e

−iφ1 + g2b2e
−iφ2

)
−
(
g1b

†
1e

iφ1 + g2b
†
2e

iφ2

)
τ−. (S157)

In this work, we consider the physical process associated with the detuning ∆ working in the large detuning case. Then
we can adiabatically eliminate the qubit coherence in the physical processes and an effective phonon-phonon interaction
between the two mechanical modes can be induced by the second-order perturbation. In this case, we can derive an
effective Hamiltonian to describe the interactions using the method of the Frohlich-Nakajima transformation [S6, S7].
To this end, we express the effective Hamiltonian Heff as two parts

H0 = ωmb†1b1 + ωmb†2b2 +
ω0 − ωd

2
τz,

HI = −τ+
(
g1b1e

−iφ1 + g2b2e
−iφ2

)
− τ−

(
g1b

†
1e

iφ1 + g2b
†
2e

iφ2

)
. (S158)

We also introduce the operator

S =
1

∆
τ+
(
g1b1e

−iφ1 + g2b2e
−iφ2

)
− 1

∆

(
g1b

†
1e

iφ1 + g2b
†
2e

iφ2

)
τ−, (S159)

which is determined by the equation

HI + [H0, S] = 0. (S160)

This equation means that the first-order physical process is eliminated. An effective Hamiltonian describing the
second-order physical interaction can then be obtained as

H ′
eff = H0 +

1

2
[HI , S]

= ωmb†1b1 + ωmb†2b2 +
ω0 − ωd

2
τz +

g21
∆

τzb
†
1b1 +

g22
∆

τzb
†
2b2 +

(
g21 + g22

)
∆

τ+τ−

+
g1g2
∆

τz

(
b†1b2e

i(φ1−φ2) + b†2b1e
−i(φ1−φ2)

)
. (S161)

The above Hamiltonian shows that there is no transition in the qubit states, and that a conditional phase-dependent
interaction between the two mechanical resonators is introduced. We assume that the qubit is initial in its ground
state |g⟩ (τz|g⟩ = −|g⟩), then a phase-dependent phonon-hopping interaction is obtained.
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