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Spin squeezing by one-photon–two-atom excitation processes in atomic ensembles
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It has been shown elsewhere that two spatially separated atoms can jointly absorb one photon, whose frequency
is equal to the sum of the transition frequencies of the two atoms. We describe this process in the presence of an
ensemble of many two-level atoms and show that it can be used to generate spin squeezing and entanglement.
This resonant collective process allows us to create a sizable squeezing already at the single-photon limit. It
represents a way to generate many-body spin-spin interactions, yielding a two-axis twisting-like interaction
among the spins, which is very efficient for the generation of spin squeezing. We perform explicit calculations
for ensembles of magnetic molecules coupled to a superconducting coplanar cavities. This system represents an
attractive on-chip architecture for the realization of improved sensing.
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I. INTRODUCTION

Recently, it has been shown how a large number of
nonlinear optics processes can be realized with individual
two-level atoms coupled to one or more resonator modes
in the ultrastrong coupling regime (USC) [1], where the
coupling strength starts to become comparable to the res-
onance frequencies of the bare system components. In this
regime, counter-rotating terms in the light-matter interaction
Hamiltonian start to play a role and enable novel higher -
order processes [2,3]. These vacuum-boosted nonlinear-optics
implementations, in contrast to conventional realizations of
various multiwave mixing processes in nonlinear optics, can
reach perfect efficiency, need only a minimal number of
photons, and require only two atomic levels.

Many of these processes can be described in terms of
higher order perturbation theory, in which the system passes
from an initial state |i〉 to the final state | f 〉 (with the same
energy), via a number of virtual transitions to intermediate
states. When the light-matter coupling strength increases, the
vacuum fluctuations of the electromagnetic field become able
to induce efficiently such virtual transitions, replacing the role
of the intense applied fields in conventional nonlinear optics.
In this way, higher order processes involving counter-rotating
terms can create an effective coupling between two states of
the system (|i〉 and | f 〉), which can have different numbers
of excitations. The strength of the resulting effective cou-
pling scales approximately as geff ∼ g(g/ω)n, where g is the
light-matter coupling strength, ω describes a bare resonance
frequency of the light or matter component, and n is the
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number of involved virtual transitions. However, the required
light-matter coupling strength to observe these deterministic
nonlinear optics effects with the minimum amount of photons
can only be reached, at least presently, only with super-
conducting artificial atoms. Recently, simulations of these
nonlinear optics effects with strong-coupling systems (with
g/ω � 1) dressed by classical drives have been proposed
[4–8].

Here, we propose a different route, already widely explored
to observe linear optical processes in the USC regime: the
light-matter coupling strength can be enhanced by increasing
the number N of emitters interacting with the resonator. The
resulting collective coupling strength scales as g

√
N . In this

way, the USC regime can be reached in a wider range of
systems (see, e.g., Refs. [9–21]).

One of the most interesting nonlinear optical effects pre-
dicted in the USC regime consists of the simultaneously
excitation of two or more spatially separated atoms by a single
photon [22–24]. This process is reversible, so that the atoms
can return to a lower-energy state by collectively emitting one
photon. This is a two-atom resonant process occurring when
the atom transition is half of the cavity frequency. Here, we
generalize this process to many two-level atoms, which can be
described as an ensemble of N pseudospins. This opens the
way to investigate cases in which several photons can excite
different atomic pairs, producing an effective, controllable
interaction among spins. As we will show, the simultaneous
excitation of spin pairs in a large ensemble can give rise to
multiatom entanglement and to strong spin squeezing, which
could be useful for application in quantum technologies.

Quantum sensors beat the shot-noise limit of precision
by using entangled states. Pseudospin-1/2 ensembles, serv-
ing as probes for measuring a magnetic field, represent a
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paradigmatic example [25]. If they are prepared in a con-
venient squeezed-entangled state, the minimized quadrature
reduces the precession angle uncertainty and thus the error in
the field estimation [26]. The Heisenberg principle imposes
the ultimate scaling error as 1/N , with N the number of spins.
Therefore, preparing a macroscopic spin state in a highly
squeezed state is a key resource for quantum metrology.

Squeezed states in atomic ensembles are prepared by
inducing interactions among the spins. Different schemes,
including atom-atom interactions in traps, feedback, and pro-
jective measurements, have shown up to −18 dB quadrature
reduction [27–33].

An interesting alternative is the deterministic produc-
tion within one-axis twisting interactions generated inside
a cavity [34,35]. So far, the reported results are limited to
−8 dB. Thus, it is desirable to find improved but determin-
istic protocols, as the preparation of initial coherent states
superpositions [36].

Another alternative involves considering two-axis twisting
Hamiltonians that are known to be optimal for generating
squeezing [37,38]. However, it remains to show their advan-
tage in the presence of noise and decoherence [39]. It has
been shown that collective decoherence can be suppressed
via continuous dynamical decoupling [40]. This approach can
make spin squeezing more robust to noise and closer to the
Heisenberg limit (optimal squeezing, scaling a ξ 2 ∼ 1/N).

In this work, we show that the one-photon-two-atom exci-
tations process can determine approximate two-axis twisting
interactions in spin ensembles coupled to a cavity mode,
which are known to generate optimally squeezed states.

Our protocol is different from previous approaches in
several ways. Although the light-matter system is in the
dispersive regime, it is a resonant mechanism involving real
photons. This is complementary to the case where the field
can be integrated out, so that the spin-spin interactions are
mediated by virtual photons [39,41,42]. The approach pro-
posed here is a third-order nonlinear optical process boosted
by virtual photons [1]. Therefore, for obtaining a significant
rate for the excitation of atom pairs, even for weak input fields,
the light-atom coupling rate should reach a significant fraction
of the atomic transition frequency.

However, in this work, the relevant coupling strength is not
the single-spin coupling, g, but the effective collective inter-
action between the N spins and the single-cavity mode, which
yields the scaling ∼ g3N . This widely broadens the number of
platforms where this process could be implemented.

Moreover, it is also required that the atomic or molecular
potential does not display inversion symmetry. In this case, the
system can be described by an extended Dicke model, with
atoms displaying both longitudinal and transverse coupling
with the cavity mode (see, e.g., Refs. [22,43,44]).

Finally, real photons must be injected inside the cavity. The
drive could be even a coherent resonant field. Unexpectedly,
we find that even a single-cavity photon is able to generate a
significant amount of squeezing. A final advantage of using
resonant real photons is that the interaction can be controlled
by acting either on the driving or on the atom-cavity detuning.

Our results could be implemented using several kinds of
qubits as, e.g., cold atoms, chiral molecules, or supercon-
ducting flux qubits. One interesting architecture consists of

FIG. 1. Lowest energy levels of the system Hamiltonian obtained
for N = 20 qubits as function of the ratio between the cavity fre-
quency ωc and that of identical qubits ωq. We used g = 2.5 × 10−4 ωq

and θ = π/6. The inset compares the analytical (blue dots) and
numerical (red dots) results for the effective coupling between the
states |0, j, − j + 2〉 and |1, j, − j〉 vs the number of qubits.

hybrid spin-superconductor systems [45], where the spins can
be one of numerous point defects in diamond (NV centers)
[46–51] or more general spins [52,53] that are coupled to a
superconducting microwave resonator.

II. RESONANT EXCITATION OF ATOMIC PAIRS:
EFFECTIVE HAMILTONIAN AND SQUEEZING

PARAMETER

We consider an ensemble of N identical two-level systems
equally coupled to a single-mode cavity. The Hamiltonian can
be written as

Ĥ = �Ĵz + εĴx + ωc â†â + 2g(â + â†)Ĵx , (1)

where â and â† are the usual operators for cavity photons,
while 2Ĵα = ∑

i σ̂
i
α (α = x, y, z) are the collective angular

momentum operators. As a consequence of the latter expres-
sion, lowering and raising spin operators are defined as Ĵ± =∑

i σ̂
i
±. Parity symmetry breaking is described by the second

term in Eq. (1). For ε = 0, the celebrated Dicke model is
recovered [54–57]. When ε �= 0, Ĥ can couple states differing
by an odd number of excitations. For example, an avoided
level crossing, originating from the coupling of the states
â†|0, j,− j〉 ↔ Ĵ2

+|0, j,− j〉, is expected when the resonance
frequency of the cavity ωc � 2ωq = √

�2 + ε2. We label the
states as |n, j, m〉, where the quantum number n describes
the Fock states of the cavity, j = N/2 is the total angular
momentum, and m = − j + Nexc is the Ĵz eigenstate, where
Nexc describes the number of excited atoms. Such a coupling
has been described for the two-qubit case (N = 2) only in
Ref. [22]. Figure 1 confirms that it also occurs for any N � 2.
The analysis of those processes nonconserving the number
of excitations can be simplified, deriving an effective Hamil-
tonian by using perturbation theory [58]. For frequencies
close to the resonance condition ωc � 2ωq, from Eq. (1),
as shown in Appendix A, the following effective interaction

053818-2



SPIN SQUEEZING BY ONE-PHOTON–TWO-ATOM … PHYSICAL REVIEW A 101, 053818 (2020)

Hamiltonian can be obtained:

Ĥeff = geff (âĴ2
+ + â†Ĵ2

−), (2)

where

geff = −4g3 cos2 θ sin θ

3ω2
q

, (3)

with sin θ = ε/
√

�2 + ε2. This procedure also gives rise to
a renormalization of the atomic frequencies, which can be
reabsorbed into ωq.

The effective Hamiltonian Eq. (2) yields a series of nonzero
transition matrix elements 〈n − 1, j, m + 2|Ĥeff |n, j, m〉, de-
termining a ladder of avoided level crossings at ωc = 2ωq,
with energy splittings which are twice these matrix elements.
The lowest energy splitting is

�E = 2geff

√
2N (N − 1). (4)

It is worth noticing that, for large N , this splitting scales as
∼g3N . The comparison between �E/2 and the corresponding
half-splitting energy obtained from the exact numerical diago-
nalization of the Hamiltonian in Eq. (1) is shown in the inset in
Fig. 1. We note the very good agreement. Figure 1 displays the
lowest excited energy levels of the effective Hamiltonian (the
ground-state energy is zero) as a function of ωc/ωq, obtained
for N = 20 qubits. Avoided level crossings are clearly visible
at ωc � 2ωq. In Appendix B, we also compare the higher
energy avoided level crossings obtained by using the full
Eq. (1) and the effective Eq. (2) models. The results still show
a quite good agreement for ωc � 2ωq.

To characterize the squeezing, we use the spin-squeezing
parameter ξ 2, proposed by Wineland et al. [26,59,60],

ξ 2 = N
〈(Ĵ · n⊥)2〉 − 〈Ĵ · n⊥〉2

〈Ĵ〉2
, (5)

where the unit vector n⊥ is chosen to minimize the numerator.
This is the ratio between the fluctuations of a general state
versus the coherent spin state (CSS), for the determination
of the resonance frequency in Ramsey spectroscopy. The
CSS here acts as a noise-reference state. For ξ < 1, a gain
in interferometric precision is possible compared to using a
coherent spin state [26,60].

A. Single-photon squeezing

The simplest and, at the same time, weirdest illustration of
the role of real cavity photons in spin squeezing generation
can be obtained by looking at the squeezing generated by a
single photon. Let us consider as initial state a superposition
of zero and one photons, with all the atoms in their ground
state: |ψ (0)〉 = cos ϕ|0, j,− j〉 + sin ϕ|1, j,− j〉. Using the
effective Hamiltonian in Eq. (2) and neglecting the losses, the
time evolution can be analytically calculated:

|ψ (t )〉 = cos ϕ|0, j,− j〉 + sin ϕ cos(gefft )|1, j,− j〉
− i sin ϕ sin(gefft )|0, j,− j + 2〉 (6)

from which the spin squeezing parameter in Eq. (5) can be
obtained. We chose n⊥ = (cos φ, sin φ, 0) (orthogonal to the
z axis). In Fig. 2(a), we plot the time evolution of ξ 2. We also
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FIG. 2. System dynamics for ωc = 2ωq (a) single-photon dy-
namics, (b) subject to a π -pulse (magenta solid curve) drive of the
cavity mode, and (c) under continuous-wave drive of the cavity
mode. The blue dashed curve describes the mean photon number
〈â†â〉, while the black solid curve describes the mean collective spin
excitation j + 〈Ĵz〉. The squeezing parameter ξ 2 is also plotted as a
red dot-dashed curve with values given on the y axis on the right. All
numerical parameters are given in the text.

show the mean photon number

〈â†â〉 = sin2ϕ cos2(gefft ) (7)

and the mean number of excited atoms

Nexc = j + 〈Ĵz〉 = 2 sin2 ϕ sin2(gefft ). (8)

We considered a system of N = 20 spins with parameters
g = 0.115 ωq, θ = π/6 (i.e., geff = 0.01), and ϕ = 0.45π .
We also used the phase φ = π/4, providing the maximum
squeezing (corresponding to the minimum value of ξ 2). When
the cavity excitation is completely transferred to the ensemble
of two-level systems, the squeezing reaches its maximum.
This is because the system is in a quantum superposition
of the states | j,− j〉 and | j,− j + 2〉. They are the two first
components of an even superposition of coherent states, i.e.,
an entangled cat state. Let us emphasize the maximum amount
of quantum-noise reduction obtained, ξ 2 � 0.55, already with
a single photon. Very similar results can be obtained us-
ing the full original Hamiltonian Eq. (1), as reported in
Appendix B.

Notice that the considered coupling strength g between the
resonator and each qubit can be realized experimentally with
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circuit-QED systems in the USC regime (see, e.g., Ref. [61].
However, since the effective coupling scales linearly with N ,
increasing the number of superconducting qubits, even lower
individual coupling strength can become sufficient. Notice
that the coherent coupling of superconducting resonators with
very large ensembles of flux qubits have been demonstrated
[62]. Moreover, these systems can display decay rates much
lower than the resulting effective coupling ∼geff N . When the
loss rates are equal or larger than five times ∼geff N , they do
not affect the dynamics shown in Fig. 2(a).

B. Dissipation and drivings beyond one-photon

We now move to the scenario where both the spins and the
cavity are affected by dissipation. Assuming that each atom
has a γ decay channel and applying the typical second-order
Born and Markov approximations, we end up with the master
equation for the density matrix of the cavity plus spins system
[see, e.g., Ref. [63] and Appendix C]:

˙̂� = −i[Ĥ, �̂] + κD[â] + γ

N
D[Ĵ−] , (9)

where D[Ô] = Ô�̂Ô† − 1/2{Ô†Ô, �̂} are the dissipators in
Lindblad form, and κ and γ are the loss rates for the cavity
and the spins, respectively. Also, we discuss other kinds of
drivings beyond the single-photon example of the preceding
section.

Assuming that the system starts in its ground state, we
first consider a resonant optical pulse feeding the cavity, in-
cluding an additional time-dependent Hamiltonian term V̂d =
F (t )(â + â†), where F = AG(t ) cos (ωd t ), with G(t ) being
a normalized Gaussian function. We consider pulses with
their central frequency resonant with the cavity (ωd = ωc).
Figure 2(b) displays the system dynamics after the pulse
arrival, for a system consisting of a cavity mode and N = 10
spins.

The parameters used are g = 0.115 ωq, γ = 10−4ωq, κ =
γ /2, A/ωq = 3π/4, and θ = π/6. Figure 2(b) shows that
the mean photon number 〈â†â〉, as expected, is anticorrelated
to the mean collective spin excitation j + 〈Ĵz〉. Here, the
even-spin states’ superposition involves higher spin states of
the type | j − j + 2n〉, which allows us to generate a higher
degree of spin squeezing. Notice that the obtained maximum
spin squeezing (corresponding to the lowest value of the spin
parameter ξ 2) is quite high, despite the cavity being fed with
a weak coherent pulse producing a peak mean intracavity
photon number slightly less than one.

We also investigate the case of weak continuous driving:
F = A cos (ωd t ) with A = 2.5 γ . The other parameters used
are g = 0.115 ωq, γ = 10−3ωq, and κ = γ . In Fig. 2(c), we
see that squeezing starts to build up when the spin population
grows, as expected. In this case, because of the continuous
character of the driving, both the cavity and the spins populate
to reach a stationary value. The squeezing achieved in this full
quantum simulation is quite low, owing to the losses and the
low-excitation amplitude.

C. Macroscopic spin ensemble

The full quantum numerical simulations are limited to few
tens of qubits. However, for most practical purposes N � 1

is needed. When N is sufficiently large, the collective spin
operators can be replaced by a bosonic mode (Ĵ+ → √

N b̂),
so that the squeezing parameter defined in Eq. (5) tends to the
bosonic squeezing measure [26,64],

ξ 2
N→∞ = 1 + 2(〈b̂†b̂〉 − |〈b̂2〉|). (10)

In this limit, the effective Hamiltonian [Cf. Eq. (2)] becomes

Ĥeff = geff N (âb̂†2 + â†b̂2), (11)

while the Lindbladians are replaced consistently: 1
N D[Ĵ−] →

D[b̂] [see Eq. (9)]. The Hamiltonian in Eq. (11), resulting
from the bosonization of the effective Hamiltonian in Eq. (2),
corresponds to the model Hamiltonian used to describe,
in quantum optics, degenerate parametric processes, like
second-harmonic generation and parametric down-conversion
[65,66]. Specifically, the term âb̂†2 can describe the fission
of a photon of a mode at frequency ωa into a photon pair
at frequency ωb such that ωa = 2ωb, while the term â†b̂2 de-
scribes the opposite process, where two photons at frequency
ωb convert into a photon of the mode at frequency ωa = 2ωb.
Notice that the Hamiltonian in Eq. (11) also applies to the
description of parametric processes in completely different
systems (see, e.g., Ref. [67]).

We observe that the resulting coupling in Eq. (11) scales
as g3N . Such bosonic approximation is expected to work fine
in the limit g → 0 and N → ∞, such that g3N → constant.
However, we point out that this approximation can work
well even in the more physical case of a finite number of
atoms, when the number of excitations in the system are
significantly smaller than the number N of atoms in the
ensemble. Notice that such a limit is different from the usually
considered thermodynamic limit of the Dicke model (see, e.g.,
Ref. [68]), where g

√
N → constant is assumed. If the latter

would have been assumed, the resulting coupling strength
geff N in Eq. (11) would go to zero. This is not a surprise, since
it is known that in the limit g → 0 and N → ∞, and g

√
N →

constant, optical nonlinearities in the Dicke model disappear.
We also observe that the Dicke model in the dispersive

regime gives rise to energy shifts of both the atomic and
cavity resonances scaling as g2N , which we limit to take into
account phenomenologically, just adjusting the bare energy
levels. Hence, increasing the number of atoms, while keeping
constant the resulting coupling strength geffN , determines
relevant energy shifts which have to be taken into account.

In order to maximize squeezing, a strong driving is re-
quired. In this case, a direct simulation, using the full quantum
models in Eqs. (1), (2), or (11) becomes not feasible. Hence,
we start from the dynamics induced by the Hamiltonian in
Eq. (11) and apply the mean-field approximation in order to
describe the cavity-spin dynamics [66].

In experiments, it is possible to freeze the squeezed state
at the time when the maximum squeezing is reached, by
detuning the spin transition frequency. Then, the squeezing
is preserved for a time determined by the spin decay rate γ . In
order to better analyze the squeezing dynamics, we derived
the equation of motion for the squeezing parameter, in the
mean-field approximation

dξ 2

dt
= −(i4geffN〈â〉 + γ )ξ 2 + γ , (12)
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FIG. 3. Sketch for the proposed architecture. An ensemble of
magnetic molecules (red in the figure) are deposited on top of a
superconducting coplanar waveguide resonator. The spin-cavity cou-
pling is mediated by the magnetic field generated by the stationary
currents in the circuit, denoted in the figure as B̂cavity. The spins
transition frequency can be tuned by means of external control fields,
B̂ext.

focusing on its short-time behavior. In Appendix D, both
the bosonic replacement and the mean-field approximation
have been tested, and the long-time squeezing dynamics is
also described. This squeezing evolution is akin to the one
arising from the two-axis twisting Hamiltonian, which has
been shown to be optimal [26], so that it determines ξ 2 ∼ 1/N
(in absence of decoherence).

Moreover, it squeezes exponentially in time [37,38]. In
previous approaches, based on adiabatic field elimination
in the bad-cavity limit, the resulting collective spin decay
(induced by the cavity) reduces the degree of squeezing. As
a consequence, the resulting spin squeezing scales as ξ 2 ∼
1/

√
N [26,28,39,42,69]. In our proposal, the time evolution

of the cavity field is taken into account since real photons
are involved, and the cavity field, in Eq. (12), may add extra
dissipation. However, its effect is negligible if the spins are
able to reach the maximum squeezing faster than the cavity
dissipation timescale κ−1.

We propose a two-step protocol. Owing to the resonant
nature of the squeezing mechanism studied here, we start
setting the spins out of resonance (ωc �= 2

√
�2 + ε2) and in

their ground state. Then, we drive the cavity by a resonant
coherent field, until it reaches |〈â〉| = √

nph, where nph is the
steady-state mean photon number in the coherently driven
cavity. Once the cavity is fed, the second step starts: The
qubit frequency is tuned nonadiabatically into resonance with
the cavity. Numerically, taking as initial condition, the spins
in their ground state and the cavity in a coherent state with
|〈â〉| = √

nph, we compute the squeezing dynamics within the
bosonic replacement, as well as the dynamics of the coherent
cavity field. Further details are given in Appendix D. In Fig. 4,
we plot our results. They show that the maximum squeezing
is obtained in a timescale

(4geff N
√

nph )−1 ≡ (χN )−1. (13)

Notice that the nonadiabatic tuning of the qubits at the begin-
ning of the second step has to occur within a time much lower
than the timescale in Eq. (13).

The time at which ξ 2 is built up (which marks the short
timescale compared to κ and γ within our parameter regime)
can be approximately calculated setting |〈â〉| = √

nph (i.e.,
constant) in Eq. (12). Then, the dynamics can be solved

FIG. 4. (a) Absolute value of the cavity field coherence |〈â〉| vs
time, and (b) evolution in dB for the squeezing parameter ξ 2. Three
different values of the drive intensity have been considered: 2A =
κ, 10κ, 100κ (reported in the legend). The rest of the parameters are
Ngeff = κ = γ = 1. The timescale, (χN )−1 is given by Eq. (13). The
solid gray curves describe the results obtained using the analytical
result in Eq. (14). The base of logarithm is 10.

analytically, yielding the squeezing

ξ 2 = χN exp[−(χN + γ )t] + γ

χN + γ
. (14)

In Fig. 4(b), we show that this simple formula explains the
attainable squeezing (gray solid curves). Figure 4(a) displays
the time evolution of the absolute value of the mean cavity
amplitude |〈â〉| after the second step of the protocol. At
time t = 0, the cavity field starts from its steady state and
the qubit frequency is tuned nonadiabatically into resonance
with the cavity (second step). As time goes on, the cavity
starts to transfer its excitation to the spin ensemble and, as
a consequence, |〈â(t )〉| decreases.

This approximation works well if χN � κ [see also
Fig. 4(a) and Appendix D]. Moreover, the maximum squeez-
ing is obtained if χN � γ is also satisfied. These inequal-
ities are largely satisfied for κ ∼ γ ∼ Ngeff . Consequently,
Eq. (14) shows that ξ 2 is reached exponentially and scales
as 1/N (optimal spin squeezing). However, this result has
been obtained after a number of approximations. Although
it provides indications that in the high excitation regime a
significant amount of spin squeezing can be obtained, it has
to be taken with care. Specifically, starting from Eq. (1), we
derived the effective interaction in Eq. (2). Then, we applied to
the latter the bosonic approximation. Finally, we employed the
mean-field approximation. In addition, we assumed that the
atomic dissipation occurs only through collective interaction
with the environment (see Appendixes C and D). Further
studies, including large-scale numerical calculations based on
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the full quantum model in Eq. (1), are desirable to confirm the
results shown in Fig. 4.

III. IMPLEMENTATION

Equation (14) establishes that ξ 2 decays exponentially to
γ /(χN ). This term can be rewritten in terms of both single
qubit-cavity coupling and average number of photons in a
driven cavity (nph) such that

γ

χN
∼ γ

gN
√

nph(g/ωq)2
. (15)

Notice that
√

nph = 2A/κ ,where A is the drive amplitude.
As said, an advantage is the N−1 dependence, together with
the enhancement due to the initial driving. However, a dis-
advantage is that we have the ratio (g/ωq)2. This tradeoff
is better understood by comparing our protocol with similar
ones. We consider a recent and optimized protocol [36], which
is limited by spin dissipation as

ξ̃ 2 ∼
√

κγ /N

g
, (16)

so that our scaling in terms of the latter will be

ξ 2 ∼
(

ωq

g

)2√
γ

κNnph
ξ̃ 2. (17)

Hence, we need to search for architectures where (i) it is
possible to couple a large number of effective spins to a single-
mode cavity, (ii) together with a non-negligible single-spin
normalized coupling strength (g/ωq), and (iii) strong cavity
pumping is feasible.

Several cavity-QED architectures can satisfy the above cri-
teria. Here, we discuss the coupling between single molecular
magnets and coplanar waveguide cavities [Cf. Fig 3 for an
sketch of the hybrid architecture]. Using nano-constrictions
together with magnetic molecules, single spin-cavity coupling
strengths of the order of g/ωq ∼ (10−4–10−3) can be achieved
both for S = 1/2 and higher spin molecules having decoher-
ence times up to ms [52,53]. Moreover, since the molecules
are nanosized objects, a macroscopic number of them can
be coupled to the coplanar waveguide cavity. In addition, the
adiabatic turn on/off of the spins resonance makes faster the
typical timescale of the protocol. Following Ref. [53], in our
simulations we consider realistic numbers g/ωq ∼ 10−4 and
γ ∼ κ ∼ 10−5. Then, placing N ∼ 109 of those spins we get
the parameters used in Fig. 4. Finally, we must consider the
maximum power admitted in the nanoconstrictions. Experi-
ments [70] showed that Pin = −40 dB (which corresponds
to a number of photons nph = 1012) can be safely used.
Setting these realistic parameters, we can get geffN = γ = κ ,
obtaining ξ 2 = −30 dB as shown in Fig. 4. These numbers
are obtained within our effective theory, which has also been
verified for tens of qubits, although further studies including
large-scale numerical calculations based on the full quantum
are needed.

IV. CONCLUSIONS

In this paper, we have generalized the one-photon–two-
atom process in cavity-QED to many atoms. In doing so,

we have introduced a way to generate many-body spin-spin
interactions. This yields a two-axis twisting-like interaction
among the spins. Note that the mechanism is a resonant
process involving real photons which facilitates the control of
the effective interaction. We have shown that, already at the
single-photon limit, a sizable squeezing is produced.

Moreover, we showed that by strongly driving the cavity,
the squeezing scales as ∼1/N , corresponding to the Heisen-
berg limit. We calculated that reaching −30 dB is already
possible with the spin-cavity and decoherence rates reported
for magnetic molecules coupled to superconducting circuit
resonators. However, this result is obtained after a number
of approximations and thus requires confirmation by further
analysis.

Our results could be implemented in various platforms, in-
cluding several cavity-QED systems; although the on-chip de-
vice analyzed here can be particularly advantageous for prac-
tical applications. Here, we focused on generating squeezing;
however, the novel spin-spin interaction found here can ex-
pand the possibilities for exploring many-body and nonlinear
quantum physics [71].
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN: TWO-LEVEL ATOMS CASE

In order to derive the effective Hamiltonian in Eq. (2) (see
the main text), we start from Eq. (1). We first rewrite it in
the basis where the qubits Hamiltonian (in the presence of
interaction) is diagonal. We obtain

Ĥ = ωqĴz + ωcâ†â + 2g(â + â†)(cos θ Ĵx + sin θ Ĵz ), (A1)

where 2Ĵα = ∑
i σ̂

i
α (α = x, y, z). Notice that the flux off-

set is now encoded in the angle θ = arctan(ε/�). System
Hamiltonian Eq. (A1) can reads as sum of two elements: a
noninteracting part Ĥ0 = ωqĴz + ωcâ†â which describes the
bare energy of the system and the light-matter interaction
potential part ĤI = 2g(â + â†)(cos θ Ĵx + sin θ Ĵz ).

We now apply the generalized James’ effective Hamilto-
nian method [58] which at the third order, neglecting the
time-dependent terms (RWA), gives the effective interaction
Hamiltonian [Eq. (15) of Ref. [58]]:
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Ĥeff = −[ĥ1ĥ†
2ĥ1 + ĥ†

1 ĥ2ĥ†
1] + 1

2 [ĥ1ĥ1ĥ†
2 + ĥ†

1 ĥ†
1 ĥ2 + ĥ†

2 ĥ1ĥ1 + ĥ2ĥ†
1ĥ†

1] − 1
2 [ĥ1ĥ†

3ĥ2 + ĥ2ĥ†
3 ĥ1 + ĥ†

2 ĥ3ĥ†
1 + ĥ†

1 ĥ3ĥ†
2]

+ 1
3 [ĥ1ĥ2ĥ†

3 + ĥ†
1 ĥ†

2 ĥ3 + ĥ†
3 ĥ2ĥ1 + ĥ3ĥ†

2ĥ†
1] + 1

6 [ĥ2ĥ1ĥ†
3 + ĥ†

2 ĥ†
1ĥ3 + ĥ†

3 ĥ1ĥ2 + ĥ3ĥ†
1ĥ†

2], (A2)

where ĥ1 = gcos θ â† ∑
i σ̂

i
−, ĥ2 = g sin θ â† ∑

i σ̂
j

z , and ĥ3 = gcos θ â† ∑
i σ̂

i
+.

Replacing ĥi into Eq. (A2), adopting normal ordering for the photonic operators, and neglecting higher order terms involving
two destruction or creation photon operators, we obtain

Ĥeff = −2g3 cos2 θ sin θ

ω2
q

⎡
⎣â

∑
jk

σ̂
j

+σ̂ k
+ + â†

∑
jk

σ̂
j

−σ̂ k
−

⎤
⎦

− g3 cos2 θ sin θ

2ω2
q

⎡
⎣2â

∑
i jk

σ̂
j

+σ̂ k
+σ̂ i

z + 4â
∑

jk

σ̂
j

+σ̂ k
+ + 2â

∑
i jk

σ̂
j

−σ̂ k
−σ̂ i

z − 4â
∑

jk

σ̂
j

−σ̂ k
−

⎤
⎦

+ 2g3 cos2 θ sin θ

3ω2
q

⎡
⎣â

∑
i jk

σ̂
j

+σ̂ k
+σ̂ i

z + 2â
∑

jk

σ̂
j

+σ̂ k
+ + â

∑
i jk

σ̂
j

−σ̂ k
−σ̂ i

z − 2â
∑

jk

σ̂
j

−σ̂ k
−

⎤
⎦

+ g3 cos2 θ sin θ

3ω2
q

⎡
⎣â

∑
i jk

σ̂
j

+σ̂ k
+σ̂ i

z + 4â
∑

jk

σ̂
j

+σ̂ k
+ + â

∑
i jk

σ̂
j

−σ̂ k
−σ̂ i

z

⎤
⎦. (A3)

Given Eq. (A3), after some algebra, we obtain the effective
interaction Hamiltonian in terms of the collective lowering
and raising spin operators Ĵ± = ∑

i σ̂
i
±

Ĥeff = −4g3 cos2 θ sin θ

3ω2
q

(âĴ2
+ + â†Ĵ2

−). (A4)

We note that the the resulting effective interaction Hamil-
tonian Eq. (A4) does not depend on the Pauli operators Ĵz.
Equation (A4) displays the effective interaction Hamiltonian,
describing the simultaneous generation of two excitations in
an ensemble constituted by an arbitrary number N of identical
atoms, by one-photon absorption. The effective interaction
Hamiltonian Eq. (A4) is responsible for the coupling between
the eigenvectors |0, ggg..e..e..ggg..〉 and |1, ggg..g..g..ggg..〉. In
terms of the angular momentum notation, they can be written
as |0, j,− j + 2〉 and |1, j,− j〉, respectively. More generally,
this Hamiltonian couples states differing by two-qubit exci-
tations: | j, m〉 ↔ | j, m + 2〉. The effective resonant coupling
between these eigenstates, for m = − j is

〈0, j,− j + 2|Heff |1, j,− j〉 = 4g3 cos2 θ sin θ

3ω2
q

√
2N (N − 1).

(A5)

Derivation of the effective Hamiltonian: �-like three-level
atoms case

It has been shown [23] that it is possible to simultaneously
excite two atoms by using a cavity-assisted Raman process in
combination with a cavity-photon-mediated interaction. We
generalize this analysis to a system of many atoms. Specif-
ically, we consider a system of N �-like three-level atoms
interacting with a single-mode optical resonator [23,72]. The

total Hamiltonian is Ĥ� = Ĥc + Ĥ0 + ĤI , being

Ĥc = ωcâ†â, (A6)

the energy of the cavity,

Ĥ0 =
∑

i

(
ωgσ̂

(i)
gg + ωeσ̂

(i)
ee + ωsσ̂

(i)
ss

)
, (A7)

the energy of an ensemble of identical three-level (g, e, s)
atoms (here, σ̂ i

mn = |m〉i i〈n|, where |m〉i is a generic eigenstate
of the three-level atom with m, n = g, e, s), and finally,

ĤI = â
N∑

i=1

(
ggeσ̂

(i)
eg + ggsσ̂

(i)
sg + gesσ̂

(i)
se

) + H.c. (A8)

is the interaction Hamiltonian part. The term σ̂ (i)
mn = |m〉〈n| is a

transition operator for the ith three-level atom, while gmn is the
corresponding transition matrix elements. Assuming that the
system operates in the dispersive regime, |�mn| � gnm, where
�mn = ωmn − ωc and ωmn = ωm − ωn denote the transition
frequencies, it is possible to derive the effective Hamiltonian
applying a unitary transformation able to eliminate the direct
atom-cavity coupling

Ĥeff = e−X̂ Ĥ� eX̂ , (A9)

where

X̂ =
N∑

i=1

(
gge

�eg
σ̂ (i)

eg + ges

�se
σ̂ (i)

se + ggs

�sg
σ̂ (i)

sg − H.c.

)
. (A10)

Keeping terms up to the third order in the interaction
Hamiltonian, assuming that no atom is initially in the |s〉 state,
assuming ωc � 2ωeg, and including only the time-independent
terms (in the Heisenberg picture), we obtain the effective
Hamiltonian

Ĥeff = geff (âĴ2
+ + â†Ĵ2

−), (A11)

053818-7



MACRÌ, NORI, SAVASTA, AND ZUECO PHYSICAL REVIEW A 101, 053818 (2020)

1.6 1.8 2.0 2.2 2.4

0

2

4

6

8

1.92 1.94 1.96 1.98

1.93
1.94
1.95
1.96
1.97
1.98
1.99

1.92 1.94 1.96 1.98

7.85
7.86
7.87
7.88
7.89
7.90
7.91

1.91 1.92 1.93 1.94 1.95 1.96 1.97

7.82

7.84

7.86

7.88

1.91 1.92 1.93 1.94 1.95 1.96 1.97
5.85
5.86
5.87
5.88
5.89
5.90
5.91

1.91 1.92 1.93 1.94 1.95 1.96 1.97
3.90

3.91

3.92

3.93

3.94

1.91 1.92 1.93 1.94 1.95 1.96 1.97
1.94

1.95

1.96

1.97

1.98

1.92 1.94 1.96 1.98

6.86
6.87
6.88
6.89
6.90
6.91
6.92

1.92 1.94 1.96 1.98
3.90
3.91
3.92
3.93
3.94
3.95
3.96
3.97

0

0

0

0

0

0

0

0

0

0

0

0

0 0 0

0 0 0

000

0 0 0

(f)

(g)

(h)

(i)

FIG. 5. (a) Lowest energy levels of the full (blue solid curves) and the effective Hamiltonian (gray dashed curves) as a function of ωc/ωq,
obtained for N = 40 qubits and individual coupling strength g/ωq = 0.03. Panels (b)–(e) display an enlarged view of the first four avoided
level crossings [indicated by colored circles in panel (a)]. Panels (f)–(i) report the same first four avoided level crossings, obtained for N = 80
qubits, decreasing the individual coupling strength (g/ωq = 0.02355) in order to keep constant the energy splittings.

with the resulting effective coupling strength

geff = ggeggsgse

3�ig�ie�eg
(3�ig − ωeg). (A12)

Notice that in Eq. (A11) Ĵ+ = ∑
i σ̂

(i)
eg .

APPENDIX B: COMPARISON OF ENERGY LEVELS AND
SYSTEM DYNAMICS OBTAINED USING THE EFFECTIVE

AND THE FULL MODELS.

Here we start comparing the lowest energy levels (see
Fig. 2), obtained by using the effective Hamiltonian in Eq. (2),
with the ones calculated by using the full system Hamiltonian
in Eq. (A1) [which is equivalent to Eq. (1)].

Figure 5(a) shows the lowest energy levels of the full
Hamiltonian (blue solid curves) and those obtained diago-
nalizing the effective Hamiltonian (gray dashed curves) as a
function of ωc/ωq, calculated for N = 40 qubits and using an
individual coupling strength g/ωq = 0.03. Since the consid-
ered effective model does not include the renormalization of
the bare energy levels induced by the light-matter interaction
in the dispersive regime, the bare transition energy of the
spin has been used as the only fitting parameter. A ladder of
well-aligned avoided level crossings at ωc � 2ωq (highlighted
with color circles) are clearly visible. Figures 5(b)– 5(e) show
an enlarged view of the first four avoided level crossings,
indicated by circles in Fig. 5(a).

We observe a number of interesting features: (i) The four
avoided level crossings in the figure [see also the enlarged
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FIG. 6. Free time evolution of the interacting light-matter sys-
tem, considering N = 10 effective spins for ωc = 2ωq. The initial
state is a superposition of the system ground state and a one-photon
state with all the spins in their ground state (see the main paper). The
continuous curves describe the mean number of cavity photons (blue)
as well as the mean excitation number for the spin system (black),
and the squeezing parameter (red) obtained using Eq. (1) (numerical
calculation). The dashed curves correspond to the analytical results
displayed in Fig. 2(a) for the effective Hamiltonian Eq. (2).

views in Figs. 5(b)–5(e)] are well aligned [see the vertical
dashed red line in Fig. 5(a)], all at the same value of ωc/ωq.
This vertical alignment in Fig. 5(a) is also preserved for (not
shown) the higher energy avoided crossings for values ω/ωq

well below N . (ii) The agreement between the displayed levels
obtained using the full and the effective models is good for
values of ωc/ωq � 2 around the minima of the avoided level
crossings (resonance condition). (iii) The agreement is less
good moving away from the resonance condition. This is
simply due to the dependence (not taken into account) of
the energy shifts on the bare cavity frequency. In Figs. 5(f)–
5(i), we plot the same first four avoided level crossings for
N = 80 qubits, decreasing the individual coupling strength
g/ωq = 0.02355 in order to keep constant the energy split-
tings. Clearly, both the full and effective models are still in
good agreement at ωc � 2ωq.

As a further check, we now analyze the free system evo-
lution considering, as initial condition, a superposition state
of the system ground state and a one-photon state with all the
spins in their ground state (see the main paper Sec. II A). All
the parameters used here coincide with those used to obtain
the results in Fig. 2(a). Figure 6 displays such a comparison.
Specifically, the continuous curves describe the mean number
of cavity photons (blue) as well as the mean excitation number
for the spin system (black), and the squeezing parameter (red)
obtained using Eq. (1) (the solid curves show the numerical
calculations). The dashed curves in Fig. 6 correspond to the
analytical calculations displayed in Fig. 2(a). The agreement
between the two sets of curves (dashed and continuous curves
in Fig. 6) is very good, showing that the effective Hamiltonian
is able to describe well this interacting system under the
resonant condition ωc � 2ωq, at least for a moderate light-
matter interaction strength.

APPENDIX C: DISSIPATION

The Linblad dissipators for a collection of two-level sys-
tems inside a cavity have been discussed in Ref. [63]. In
this Appendix, we develop a similar theory adapting it to our

case. We assume that the ensemble of spins occupies a small
volume, compared to the cavity-mode wavelength. This is the
case for the implementation discussed in the main text. With
this assumption, both the cavity and atomic decays can be cast
in the Lindblad form [63]

κD[â] = κ (2â�̂â† − {â†â, �̂}), (C1)

γD[σ̂ ] = γ
∑

i

σ̂ i
−�̂σ̂ i

+ − 1

2
{σ̂ i

+σ̂ i
+, �̂}. (C2)

Here, γ and κ are the atomic and cavity decay rates, respec-
tively. Taking the Fourier transform,

σ̂ k
+ = 1√

N

∑
j

eik j σ̂
j

k , (C3)

we notice that

σ̂ 0
± = 1√

N
Ĵ±. (C4)

Using Eq. (C3), the single-site dissipative terms becomes∑
i

σ̂ i
−�̂σ̂ i

+ − 1

2
{σ̂ i

+σ̂ i
+, �̂}

= 1

N

∑
k,k′

∑
j

ei(k−k′ ) j
(
σ̂ k

−�̂σ̂ k′
+ − 1

2
{σ̂ k′

+ σ̂ k
−, �̂}

)
. (C5)

It is convenient to separate the zero momentum contribution
which, using Eq. (C4), results in

γD[σ̂ ] = γ

N

(
Ĵ−�̂Ĵ+ − 1

2
{Ĵ+Ĵ−, �̂}

)

+ γ
∑
k �=0

σ̂ k
−�̂σ̂ k

+ − 1

2
{σ̂ k

+σ̂ k
+, �̂}. (C6)

Finally, we analyze how the terms in the Hamiltonian (1)
looks like in momentum space. For that, we realize that [Cf.
Eq. (C5)] ∑̂

i

σ̂ i
+σ̂ i

− =
∑̂

k

σ̂ k
+σ̂ k

−. (C7)

Morover, the atomic-light coupling becomes

g(â + â†)
∑

i

σ̂ i
x = g(â + â†)(Ĵ+ + Ĵ−). (C8)

As expected, the cavity only couples to the zero momentum
operator. Therefore, the full dynamics (unitary + dissipative)
do not mix different momenta, resulting in the QME used in
the main text.

APPENDIX D: BOSONIC MAP IN THE LARGE-N LIMIT

If N is sufficiently large and the number of spin excitations
satisfies the condition

∑
j〈σ̂+

j σ̂−
j 〉 � N , the collective spin

operator can be replaced [73] by a bosonic mode

Ĵ− ≡
∑

i

σ̂
(i)
− →

√
N b̂, (D1)

Ĵ+ ≡
∑

i

σ̂
(i)
+ →

√
N b̂†, (D2)
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where b̂ (b̂†) is the creation (destruction) operator in the
new bosonic rappresentation. Using Eqs. (D1) and (D2) and
including a continuum driving term 2A cos(ωd t )(â + â†) (in
the rotating-wave approximation), the system Hamiltonian in
the rotating frame becomes

Ĥ = (ωc − ωd )â†â + ωqb̂†b̂ + geffN (âb̂† 2

+ â†b̂2) + A(â + â†). (D3)

Notice that, since (b̂†)2|0〉 = √
2|2〉, the anticrossing scales as√

2 N which equals
√

2N (N − 1), in the N → ∞ limit [Cf.
Eq. (3) in the main text].

As regards the dissipators, they are global spin operators
(see Appendix C). Thus, after the replacement by a bosonic
mode, the master equation becomes

˙̂� = − i[Ĥbosonic, �̂]

+ κ (2â�̂â† − {â†â, �̂}) + γ
(
b̂�̂b̂† − 1

2 {b̂†b̂, �̂}). (D4)

Because of the nonlinearity of the system Hamiltonian,
Eq. (D4) is not exactly solvable. Applying the mean-field
approximation 〈âb̂†〉 → 〈â〉〈b̂†〉, with the purpose to describe
the cavity-spins interaction, we end up with a nonlinear and
closed set of coupled equations for the first and second
moments:

∂t 〈â〉 = −iNgeff〈b̂2〉 − iA − κ

2
〈â〉, (D5a)

∂t 〈b̂〉 = −iNgeff〈â〉〈b̂†〉 − γ

2
〈b̂〉, (D5b)

∂t 〈b̂2〉 = −i2Ngeff〈â〉(2〈b̂†b̂〉 + 1) − γ 〈b̂2〉, (D5c)

∂t 〈b̂†b̂〉 = −i2Ngeff (〈â〉〈b̂† 2〉 − c.c.) − γ 〈b̂†b̂〉. (D5d)

Here, we are interested in computing ξ 2, which in the
bosonic limit reads [64]

ξ 2
N→∞ = 1 + 2(〈b̂†b̂〉 − |〈b̂2〉|). (D6)

Besides, to find a closed equation of motion for ξ , we re-
alize that, at the steady state, in the regime where geff �
1, Eq. (D5a) yields that the mean value of the cavity field
coherence is a purely imaginary number, 〈â〉 = −i2A/κ . As
a consequence, using Eqs. (D5c) and (D5d), the mean value
of the quadratic bosonic operator 〈b̂2〉 is a real number. Thus,
we can replace |〈b̂2〉| → 〈b̂2〉 in Eq. (D6) and, taking the time
derivative of it, we get

dξ 2
N→∞
dt

= 4γ [〈b̂†b̂〉 + 〈b̂2〉]

− i4Ngeff〈â〉[1 + 2(〈b̂†b̂〉 + 〈b̂2〉)] (D7)

ending up to Eq. (12) (see the main text), namely

dξ 2

dt
= −(i4geff N〈â〉 + γ )ξ 2 + γ . (D8)

FIG. 7. Dynamics for ξ 2 using Eq. (D8). The parameters used are
A = 10 κ and Ngeff = κ = γ = 1.

In Fig. 7, we plot an example for the time dynamics of
ξ 2. Finally, in Fig. 8 we test the mean-field approximation
comparing the system dynamics solved by numerical and
analytical (using mean-field approximation) calculations. We
compare both the mean number 〈b̂†b̂〉 and ξ 2, finding a good
agreement.

Finally, for completeness, let us explore the squeezing
obtained in the limit t → ∞ (stationary squeezing) setting the
left-hand side of Eqs. (D5a), (D5c), and (D5d) to zero. First,
we introduce some dimensionless quantities, namely

Aκ := 2A/κ , Gγ := 2Ngeff/γ , Gκ := 2Ngeff/κ.

(D9)

From Eqs. (D5c) and (D5d), we solve for 〈b̂†b̂〉 in the station-
ary state, obtaining

〈b̂†b̂〉 = 2G2
γ |〈â〉|2

1 − 4G2
γ |〈â〉|2 , (D10)

FIG. 8. Comparison between the system dynamics solved by
numerical calculations and using the mean-field approximation. We
compare both the mean number 〈b̂†b̂〉 and ξ 2. The parameters used
are γ = 5 × 10−2 ωq, A = γ , κ = γ , and Ngeff = κ = γ = 1.
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while using Eqs. (D5a) and (D5c) we also get

〈â〉 = −iAκ + GκGγ 〈â〉(2〈b̂†b̂〉 + 1). (D11)

Combining Eq. (D10) with Eq. (D11), an equation for 〈â〉 is
obtained:

〈â〉 + GκGγ 〈â〉
1 − 4G2

γ |〈â〉|2 = −iAκ , (D12)

from which it follows that

ξ 2
N→∞ = 1 + 2(〈b̂†b̂〉 − |〈b̂2〉|) = 1

1 + 2Gγ |〈â〉| . (D13)

The minimum of stationary squeezing is min(ξ 2
N→∞) = 1/2.

This can be understood by looking to Eq. (D11). There, it is
easily checked that, when Aκ → ∞, then 1 − 4G2

γ |〈â〉|2 →
0, and thus ξ 2

N→∞ → 1/2. The latter result has been verified
numerically.
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