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Emission of photon pairs by mechanical stimulation of the squeezed vacuum
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To observe the dynamical Casimir effect (DCE) induced by a moving mirror is a long-standing challenge
because the mirror velocity needs to approach the speed of light. Here, we present an experimentally feasible
method for observing this mechanical DCE in an optomechanical system. It employs a detuned, parametric
driving to squeeze a cavity mode, so that the mechanical mode, with a typical resonance frequency, can
parametrically and resonantly couple to the squeezed cavity mode, thus leading to a resonantly amplified DCE
in the squeezed frame. The DCE process can be interpreted as mechanically induced two-photon hyper-Raman
scattering in the laboratory frame. Specifically, a photon pair of the parametric driving absorbs a single phonon
and then is scattered into an anti-Stokes sideband. We also find that the squeezing, which additionally induces
and amplifies the DCE, can be extremely small. Our method requires neither an ultrahigh mechanical-oscillation
frequency (i.e., a mirror moving at nearly the speed of light) nor an ultrastrong single-photon optomechanical
coupling and, thus, could be implemented in a wide range of physical systems.
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I. INTRODUCTION

One of the most astonishing phenomena of nature, pre-
dicted by quantum field theory, is that the quantum vacuum
is not empty but teems with virtual particles. Under certain
conditions, these vacuum fluctuations could be converted into
real particles by dynamical amplification mechanisms such as
the Schwinger process [1], Hawking radiation [2], and Unruh
effect [3]. The dynamical Casimir effect (DCE) describes
the creation of photons out of the quantum vacuum due
to a moving mirror [4,5]. The physics underlying the DCE
is that the electromagnetic field cannot adiabatically adapt
to the time-dependent boundary condition imposed by the
mechanical motion of the mirror, such that a mismatch of
vacuum modes in time occurs. This gives rise to the emission
of photon pairs from the vacuum and, at the same time,
to the equal-energy dissipation of the mechanical phonons.
Thus, according to energy conservation, the DCE can also be
understood as the energy conversion of the mechanical motion
to the electromagnetic field.

In order to detect the DCE, the mirror velocity is, how-
ever, required to be close to the speed of light [6,7]. This
requirement is the main obstacle in observing the DCE. This
problem led to many alternative proposals, which replaced
the mechanical motion with an effective motion provided by,
e.g., modulating dielectric properties of semiconductors or su-
perconductors [8–12], modulating the ultrastrong light-matter
coupling in cavity quantum electrodynamics (QED) [13–22],
or driving an optical parametric oscillator [23]. In particular,
two remarkable experimental verifications have recently been
implemented utilizing a superconducting quantum interfer-
ence device [7,24–28] and a Josephson metamaterial [29],

respectively, to produce the effective motion. Despite such
achievements, implementing the DCE with a massive me-
chanical mirror is still highly desirable for a more fundamental
understanding of the DCE physics. This is because the para-
metric conversion of mechanical energy to photons, which is
a key feature of the DCE predicted in its original proposals
[4–7], can be demonstrated in this case, contrary to proposals
based on the effective motion. However, owing to the serious
problem mentioned above (i.e., very fast oscillating mirror),
such a radiation has not yet been observed experimentally,
although the DCE has been predicted for almost fifty years.
Here, we propose an approach to this outstanding problem,
and we show that in a squeezed optomechanical system,
a mirror oscillating at a common frequency can induce an
observable DCE.

The DCE can, in principle, also be directly implemented
in cavity-optomechanical systems [30–39]. But it requires
a mechanical frequency ωm to be very close to the cavity
frequency ωc, or even a single-photon optomechanical cou-
pling g0 to reach the ultrastrong-coupling regime g0/ωm �0.1
[36,39]. For typical parameters, ωm ∼ MHz is much smaller
than ωc ∼ THz (∼GHz) for optical (microwave) cavities,
and at the same time, achieving the ultrastrong coupling is,
currently, also a very challenging task in optomechanical
experiments. However, as we describe in this paper, when
squeezing the cavity [40], the squeezed-cavity-mode (SCM)
frequency is tunable, such that the SCM can parametrically
and resonantly couple to a mechanical mode with a typically
available ωm. This enables an observable DCE in the squeezed
frame. Such a mechanical DCE corresponds to two-photon
hyper-Raman scattering in the laboratory frame. Compared
to one-photon Raman scattering typically demonstrated in
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FIG. 1. (a) Setup for observing the mechanical dynamical
Casimir effect. In this optomechanical system, a χ (2) nonlinear
crystal driven at a frequency ωL and amplitude � is used to squeeze
the cavity mode of frequency ωc, and the mechanical resonator is
driven by a force of frequency ωd and amplitude F . The DCE
occurs in the squeezed frame, and a large number of DCE photons,
emitted from the cavity, can be observed in the laboratory frame.
(b) Frequency-domain illustration of mechanically induced two-
photon hyper-Raman scattering. The left arrow is the two-photon
driving (ωL/2), and the right arrow is the squeezing-induced anti-
Stokes sideband (ωs + ωL/2). The horizontal axis corresponds to
the resonance frequency (ω) and the dashed double arrow to the
detuning (ωs). (c) Level diagram of the bare optomechanical system.
The solid (dashed) arrows indicate two-photon hyper Raman (one-
photon Raman) scattering processes induced by the optomechanical
coupling. The first number in the ket refers to the photon number and
the second to the phonon number k. We assume, for simplicity, that
� � �, such that the resonance condition is 2ωc ≈ ωL + ωm.

cavity optomechanics, this hyper-Raman scattering process
describes a photon pair scattered into a higher energy mode
by absorbing a mechanical phonon.

As opposed to previous mechanical-DCE proposals, our
approach requires neither an ultrahigh mechanical frequency
nor an ultrastrong coupling. In addition, the model discussed
here is a generic optomechanical setup. Hence, with current
technologies our proposal could be realized in various physi-
cal architectures, e.g., superconducting resonators [41,42] and
optical cavities [43]. Furthermore, our proposal also shows
mechanically induced two-photon hyper-Raman scattering.

II. MODEL

We consider an optomechanical system, as schematically
depicted in Fig. 1(a). The basic idea underlying our proposal is
to use a detuned two-photon driving, e.g., of frequency ωL and
amplitude �, to squeeze the cavity mode. The driving results
in parametric down conversion of mechanical phonons to
correlated cavity-photon pairs, which corresponds to the DCE.

Furthermore, the SCM frequency completely depends on the
detuning � = ωc − ωL/2 and the amplitude �. This can be
exploited to tune the parametric phonon-photon coupling into
resonance, determining a strong amplification of the DCE.
When the mechanical mode is driven, e.g., at frequency ωd

and amplitude F , a strong steady-state output-photon flux that
is induced by the DCE can be achieved.

To be specific, we consider the Hamiltonian

H = HOM + HCD + HMD. (1)

Here,

HOM = ωmb†b − g0a†a(b + b†) (2)

describes a standard optomechanical coupling,

HCD = �a†a + 1
2�(a2 + a†2) (3)

a detuned two-photon cavity driving, and

HMD = 1
2 F [exp(iωdt )b + exp(−iωdt )b†] (4)

a single-phonon mechanical driving. The bare cavity mode
a, when parametrically driven, is squeezed with a squeezing
parameter

r = 1

4
ln

(
� + �

� − �

)
(5)

and accordingly is transformed to a squeezed mode as, via the
Bogoliubov transformation [40]

as = cosh(r)a + sinh(r)a†. (6)

Similar methods have been used for enhancing light-matter
interactions in cavity optomechanics [44,45] and cavity
QED [46,47], but involving markedly different physical pro-
cesses. As a result, HCD is diagonalized to HCD = ωsa†

s as,
where ωs = √

�2 − �2 is a controllable SCM frequency.
The optomechanical-coupling Hamiltonian is transformed, in
terms of as, to

HOM = [−gOMa†
s as + gDCE

(
a2

s + a†2
s

)]
(b + b†), (7)

where gOM = g0 cosh (2r) is an effective single-photon op-
tomechanical coupling, and gDCE = g0 sinh (2r)/2 is a cou-
pling associated with the DCE. The dynamics under HOM

describes a mechanical modulation of the boundary condition
of the squeezed field [36,48,49]. Under the rotating-wave ap-
proximation, the coherent dynamics of the system is governed
by an effective Hamiltonian,

Heff = �sa
†
s as + �mb†b

+ gDCE
(
a2

s b† + H.c.
) + 1

2 F (b + b†), (8)

where �s = ωs − ωd/2 and �m = ωm − ωd . We find that
when ωm = 2ωs, the resonant DCE can be demonstrated, and
that the parametric energy conversion of the mechanical mo-
tion to the electromagnetic field, which was predicted in the
original DCE proposals, can therefore be observed. We also
find that the energy of emitted photons in the squeezed frame
completely originates from the mechanical motion. Thus,
parametrically driving the cavity without a moving mirror
[23], corresponding to F = 0, cannot excite the as mode and
cannot result in such a parametric energy conversion from
mechanics to light.
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III. MECHANICALLY INDUCED TWO-PHOTON
HYPER-RAMAN SCATTERING

More interestingly, the DCE in the squeezed frame can be
interpreted, in the laboratory frame, as mechanically induced
two-photon hyper-Raman scattering. This hyper-Raman scat-
tering is an anti-Stokes process, as illustrated in Fig. 1(b).
According to the Bogoliubov transformation, the squeezing
gives rise to an anti-Stokes sideband at frequency ωs + ωL/2
[right arrow in Fig. 1(b)]. The two-photon driving at frequency
ωL produces photon pairs at frequency ωL/2 [left arrow in
Fig. 1(b)]. When mechanical phonons at frequency ωm = 2ωs

are present, a driving photon pair is scattered into the anti-
Stokes sideband, while simultaneously absorbing a phonon in
the mechanical resonator. Because of their different frequency
from the driving photon pairs, the anti-Stokes scattered photon
pairs, which are referred to as the DCE photons, can be
spectrally filtered from the driving photons, which are referred
to as the noise photons.

In cavity optomechanics, most of the experimental and
theoretical studies are carried out under detuned one-photon
driving of a cavity, so that the cavity field can be split into
an average coherent amplitude and a fluctuating term. For a
red-detuned driving, a driving photon can be scattered into
the cavity resonance by absorbing a phonon. This process is
viewed as mechanically induced one-photon Raman scattering
[dashed arrows in Fig. 1(c)]. As described above, our pro-
posal instead exploits a red-detuned two-photon driving, and
the mechanical motion can induce two-photon hyper-Raman
scattering. In order to compare the two scattering processes
more explicitly, we consider the limit � � �. In this limit,
the as mode can be approximated by the a mode, i.e., as ≈ a,
and as a result, the anti-Stokes sideband becomes the cavity
resonance. Correspondingly, the effective Hamiltonian Heff

becomes

H̃eff = �sa
†a + ωmb†b

+ gDCE(a2b† + H.c.) + 1
2 F (b + b†). (9)

Under the resonant condition ωm = 2ωs (i.e., 2ωc ≈ ωL + ωm),
the dynamics described by H̃eff shows that a driving pho-
ton pair, rather than a single photon, is scattered into the
cavity resonance by absorbing a phonon [solid arrows in
Fig. 1(c)].

IV. HOW TO OBSERVE THE DYNAMICAL
CASIMIR EFFECT

In our approach, we squeeze the a mode to make the
effective cavity frequency very close to the mechanical fre-
quency. However, this squeezing also inputs thermal noise and
two-photon correlation noise into the cavity. Although these
undesired effects are negligible in the weak-squeezing case
(see below), they can be completely eliminated by coupling
a squeezed-vacuum bath, e.g., with a squeezing parameter
re and a reference phase θe, to the a mode [50–54]. We
assume that re = r and θe = ±nπ (n = 1, 3, 5, . . . ), so that
the as mode is equivalently coupled to a vacuum bath (see
Appendix A). The full dynamics is therefore determined by
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FIG. 2. (a), (b) Photon number 〈a†
s as〉ss and (c), (d) photon flux

�out versus detuning �s. The emergence of the resonance peaks
indicates the occurrence of the dynamical Casimir effect. We as-
sumed ωm = ωd in (a) and (c), and ωm = 2ωs in (b) and (d). Solid
curves correspond to κ = 500γm and dashed curves to κ = 1000γm.
In all plots, we assumed g0 = 10γm, F = 15γm, ωm = 104γm, and
sinh2 (r) = 0.5.

the standard master equation

ρ̇(t ) = i[ρ(t ), Heff ] − κ

2
L(as)ρ(t ) − γm

2
L(b)ρ(t ), (10)

where κ and γm are the cavity and mechanical loss rates,
respectively, and we have defined

L(o)ρ(t ) = o†oρ(t ) − 2oρ(t )o† + ρ(t )o†o. (11)

We have also assumed that the mechanical resonator is cou-
pled to a zero-temperature bath (see Appendix B for an ana-
lytical discussion at finite temperatures). The SCM excitation
spectrum 〈a†

s as〉ss(�s), where 〈o〉ss represents a steady-state
average value, is plotted in Figs. 2(a) and 2(b). Eliminating
the squeezing-induced noise ensures a zero background noise
for the excitation spectrum. If the mechanical resonator is
driven, then photons are excited from the vacuum, and accord-
ing to energy conservation, are emitted from the mechanical
resonator, together with a resonance peak in the excitation
spectrum.

We now return to the original laboratory frame and con-
sider the steady-state output-photon flux. Because of the
squeezing, the steady-state intracavity photon number 〈a†a〉ss
in the laboratory frame includes two physical contributions,
i.e.,

〈a†a〉ss = �BGN + �DCE, (12)

where �BGN = sinh2 (r) is the number of background-noise
photons contained in the squeezed vacuum, and

�DCE = 〈a†
s as〉ss cosh(2r) − Re

[〈a2
s 〉ss

]
sinh(2r) (13)
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is the number of DCE-induced photons. The output-photon
flux is then given by

�out = κ (�BGN + �DCE), (14)

according to the input-output relation. We plot the flux spec-
trum �out (�s) in Figs. 2(c) and 2(d). There exists a nonzero
background noise in the photon flux spectrum, as discussed
previously. Nevertheless, when driving the mechanical res-
onator, the DCE-induced photons are emitted from the cavity,
and a resolved resonance peak can be observed. We find that
the behavior of the flux spectrum directly reflects that of the
excitation spectrum. Hence, the emergence of the resonance
peak in the flux spectrum can be considered as an experimen-
tally observable signature of the DCE.

Owing to the existence of the background noise in the
flux �out, we now discuss the ability to resolve the DCE
signal �DCE from the background noise �BGN at resonance
ωm = ωd = 2ωs. In order to quantify this, we typically em-
ploy the signal-to-noise ratio, defined as

R = �DCE

�BGN
. (15)

The signal-resolved regime often requires R > 1, allowing for
a resolved DCE-signal detection. We find that, by increasing
the mechanical driving F , the signal �DCE becomes stronger,
but at the same time, the noise �BGN remains unchanged.
This enables an improvement in the signal-to-noise ratio with
the mechanical force. Consequently, the desired signal can
be directly driven from the unresolved to resolved regime, as
shown in Fig. 3(a). Assuming a realistic parameter g0 = 10γm,
we find that a mechanical driving of F = 15γm is able to keep
the ratio R above 1 for κ � 1000γm. With these parameters,
we can obtain 〈a†

s as〉ss ≈ 0.2, as given in Fig. 2. Therefore,
in the laboratory frame, a cavity having a typical linewidth of
κ/2π = 2.0 MHz could emit ≈1.4 × 107 photons per second,
which is larger than the background photon emission ≈6.3 ×
106 per second. The ratio R can be made �1 as long as the
driving F is further increased, so that the background noise
can be even neglected compared to the DCE signal. This is
demonstrated in Appendix C, where we make a semiclassical
approximation for investigating the DCE under a strong-F
drive. For

F � (gDCE + κγm/4gDCE), (16)

the system behaves classically [55,56], and quantum effects
are negligible. Thus in order to observe the DCE, such a
regime needs to be avoided. Note, however, that the signal
can still be resolved even for R < 1, if standard techniques of
Raman spectroscopy are used. This is because the background
noise is due to driving photons at frequency ωL/2, while the
DCE photons have a frequency ωs + ωL/2. The monotonic
increase of the flux �out at resonance with the driving F
can, therefore, be considered as another signature of the
mechanical DCE in experiments.

The DCE photons are emitted in pairs, and could ex-
hibit photon bunching [25,36,57]. The essential parameter
characterizing this property is the equal-time second-order
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FIG. 3. (a) Signal-to-noise ratio R and (b) equal-time correlation
g(2)

s (0) as a function of the mechanical driving F for κ = 500γm and
1000γm. Note that the signal can still be resolved even if R < 1
with standard spectroscopic techniques used, e.g., for Raman signals.
The g(2)

s (0) > 1 correlation implies that in the squeezed frame, the
photons are created in pairs from the quantum vacuum. For both
plots, we assumed that g0 = 10γm, ωm = ωd = 2ωs, and sinh2 (r) =
0.5.

correlation function,

g(2)
s (0) =

〈
a†2

s a2
s

〉
ss〈

a†
s as

〉2
ss

. (17)

We plot it as a function of the mechanical driving in Fig. 3(b).
We find that

g(2)
s (0) ≈ 1

2〈a†
s as〉ss

(18)

in the F → 0 limit, and ≈1 in the F → ∞ limit (see Ap-
pendixes B and C). Hence, for a weak-F drive, the very
small 〈a†

s as〉ss leads to g(2)
s (0) � 1. This corresponds to strong

photon bunching. In the special case of F = 0, the as mode
cannot be excited although the two-photon driving still ex-
ists, and as a consequence, the g(2)

s (0) correlation cannot be
observed. We also find that with increasing the driving F ,
the g(2)

s (0) correlation decreases and then, as suggested above,
approaches its lower bound equal to 1. These features confirm
that the photons are bunched, as required.

So far, we have assumed a model with a squeezed-vacuum
bath. To avoid using such a bath and simplify the model, we
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now consider the limit of � � �. In this limit, the effective
Hamiltonian is H̃eff , as given above. In the absence of the
squeezed-vacuum bath, the a mode is coupled to a vacuum
bath, and the master equation is the same as given in Eq. (10),
but with as �→ a. We find that the noise induced by squeez-
ing the cavity, which includes thermal noise ∝sinh2 (r) and
two-photon correlation noise ∝sinh (2r), becomes strongly
suppressed, even when there is no squeezed-vacuum bath. The
DCE dynamics of the simplified model is therefore similar
to what we have already demonstrated for the model that
includes a squeezed-vacuum bath. Such a similarity can be
made closer by decreasing the ratio �/�, but at the expense
of the DCE radiation strength. In the limit of � � �, the
background noise is ≈0, so that all the photons radiated from
the cavity can be thought of as the DCE photons. For realistic
parameters g0 = 10γm, F = 15γm, and �/� = 0.1, we could
obtain 〈a†a〉ss ≈ 1.8 × 10−3 at resonance (ωm = ωd = 2ωs).
This results in an output flux ≈2.0 × 104 photons per second
for κ/2π = 2 MHz. This radiation can be measured using
single-photon detectors.

V. POSSIBLE IMPLEMENTATIONS

As an example, we consider an LC superconducting cir-
cuit with a micromechanical membrane (see Appendix D
for details). In this device, the LC circuit is used to form a
single-mode microwave cavity. The mechanical motion of the
membrane modulates the capacitance of the LC circuit, and
thus the cavity frequency. In order to squeeze the cavity mode,
an additional tunable capacitor is embedded into the device.
Its cosine-wave modulation serves as a two-photon driving
for the cavity mode. The squeezed-vacuum reservoir can be
generated through an LC circuit with a tunable capacitor, or
through a Josephson parametric amplifier [50,58].

Alternatively, our proposal can be implemented in an
optical system such as a whispering-gallery-mode (WGM)
microresonator coupled to a mechanical breathing mode
[59–65]. The WGM microresonator made from nonlinear
crystals exhibits strong optical nonlinearities [66–68], which
is the essential requirement for squeezing. The squeezed-
vacuum reservoir for the optical cavity can be prepared
by pumping a nonlinear medium, e.g., periodically poled
KTiOPO4 (PPKTP) crystal, in a cavity [69–72].

VI. CONCLUSIONS

We have introduced a method for how to observe the
mechanical DCE in an optomechanical system. The method
eliminates the problematic need for an extremely high
mechanical-oscillation frequency and an ultrastrong single-
photon optomechanical coupling. Thus, it paves an experi-
mentally feasible path to observing quantum radiation from
a moving mirror. Our method can be interpreted in the labora-
tory frame as mechanically induced two-photon hyper-Raman
scattering, an anti-Stokes process of scattering a driving pho-
ton pair into a higher energy mode by absorbing a phonon. For
the absorbed phonon, its annihilation indicates the creation
of a real photon pair out of the quantum vacuum in the
squeezed frame. We have also showed a surprising result:

that the squeezing, which additionally induces and amplifies
the DCE, can be extremely weak. Note that in this case, the
unconventional DCE can be considered somehow similar to
an unconventional photon blockade (UPB) [73]. Indeed, an
UPB is induced by a nonlinearity, which can be extremely
small. Finally, we expect that the approach presented here
could find diverse applications in theoretical and experimental
studies of quantum vacuum radiation.
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APPENDIX A: OPTOMECHANICAL MASTER EQUATION,
EFFECTIVE HAMILTONIAN, AND OFF-RESONANT

SIGNAL-TO-NOISE RATIO

1. Optomechanical master equation

In order to evaluate the steady-state behavior of the system,
its interaction with the environment needs to be described
carefully. In our proposal for observing the DCE, we para-
metrically squeeze the cavity mode. Related methods have
been used to enhance the light-matter interaction in op-
tomechanical systems [44,45] and in cavity electrodynamics
systems [46,47]. This can make the squeezed-cavity-mode
(SCM) frequency comparable to the mechanical frequency,
so that the mechanically induced DCE can be observed in
a common optomechanical setup without the need for an
ultrahigh mechanical frequency and an ultrastrong single-
photon optomechanical coupling. However, the squeezing can
also introduce undesired noise, including thermal noise and
two-photon correlation, into the cavity. We can remove them
by coupling a squeezed-vacuum bath to the bare-cavity mode.
In this section, we give a detailed derivation of the master
equation when the bare-cavity mode is coupled to a squeezed-
vacuum bath and the mechanical mode is coupled to a thermal
bath. We show that the noise induced by squeezing the cavity
can be completely eliminated.

To begin with, we consider the Hamiltonian for the
interaction between the system and the baths, which is
given by

Hbath = H0
bath + Hc

bath + Hm
bath, (A1)

062501-5
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where

H0
bath =

∑
l

νl [t
†
c (νl )tc(νl ) + t†

m(νl )tm(νl )], (A2)

Hc
bath =

∑
l

λc(νl )[a
†tc(νl ) + t†

c (νl )a], (A3)

Hm
bath =

∑
l

λm(νl )[b
†tm(νl ) + t†

m(νl )b]. (A4)

Here, H0
bath is the free Hamiltonian of the baths, with tc/m(νl )

the annihilation operators for the cavity and mechanical bath
modes of frequency νl , and Hc/m

bath represent the couplings of
the cavity and the mechanical resonator to their baths, with
the coupling strengths λc/m(νl ) depending on the frequency νl .
To derive the master equation, we first switch into the frame
rotating at

H0 = ωLa†a/2 + H0
bath, (A5)

to introduce the SCM using the Bogoliubov transformation
as = cosh (r)a + sinh (r)a†. Then, we again switch into the
frame rotating at HCD = ωsa†

s as, with ωs = √
�2 − �2 being

the SCM frequency, where � = ωc − ωL/2 is the detuning
between the bare-cavity frequency ωc and the half frequency
ωL/2 of the two-photon driving, and � is the two-photon
driving amplitude. The couplings between the system and the
baths are, accordingly, transformed to

Hc
bath(t ) = a(t )T †

c (t ) + a†(t )Tc(t ), (A6)

Hm
bath(t ) = b(t )T †

m (t ) + b†(t )Tm(t ). (A7)

Here, we have defined

a(t ) = exp(−iωLt/2) exp(iHCDt )a exp(−iHCDt ), (A8)

b(t ) = exp(−iωmt )b, (A9)

Tc(t ) =
∑
νl

λc(νl )tc(νl ) exp(−iνl t ), (A10)

Tm(t ) =
∑
νl

λm(νl )tm(νl ) exp(−iνl t ). (A11)

Following the standard procedure in Ref. [40] and, then,
returning to the frame rotating at H0, we can obtain the
following master equation expressed, in terms of the as mode:

d

dt
ρ(t ) = i[ρ(t ), H]

− κ

2
(N + 1)L(as)ρ(t ) − κ

2
NL(a†

s )ρ(t )

+ κ

2
ML′(as)ρ(t ) + κ

2
M∗L′(a†

s )ρ(t )

− γm

2
(nth + 1)L(b)ρ(t ) − γm

2
nthL(b†)ρ(t ),

(A12)

where the Lindblad superoperators are defined by

L(o)ρ(t ) = o†oρ(t ) − 2oρ(t )o† + ρ(t )o†o, (A13)

L′(o)ρ(t ) = ooρ(t ) − 2oρ(t )o + ρ(t )oo, (A14)

and N , M are given, respectively, by

N = cosh2(r) sinh2(re) + sinh2(r) cosh2(re)

+ 1
2 sinh(2r) sinh(2re) cos(θe), (A15)

M = [sinh(r) cosh(re) + exp(−iθe) cosh(r) sinh(re)]

× [cosh(r) cosh(re) + exp(iθe) sinh(r) sinh(re)],
(A16)

corresponding to the thermal noise and two-photon correla-
tion, and where

κ = 2πdc(ωL/2)λ2
c (ωL/2), (A17)

γm = 2πdm(ωm)λ2
m(ωm), (A18)

represent, respectively, the cavity and mechanical decay rates,
with dc(ωL/2) being the density of states for the cavity bath
at frequency ωL/2, and dm(ωm) being the density of states
for the mechanical bath at frequency ωm. Moreover, nth =
[exp (ωm/kBT ) − 1]−1 is the equilibrium phonon occupation
at temperature T .

Note that, to derive the master equation in Eq. (A12), we
have assumed that the central frequency of the squeezed-
vacuum bath is equal to half the two-photon driving frequency.
In addition, we have made the following approximations:

dc(ωL/2 ± ωs) ≈ dc(ωL/2), (A19)

λc(ωL/2 ± ωs) ≈ λc(ωL/2). (A20)

This is because, in our case, the SCM frequency ωs is tuned
to be comparable to the mechanical frequency ωm (∼MHz).
Thus, it is much smaller than the two-photon driving fre-
quency ωL (of the order of GHz for microwave light or even
THz for optical light).

According to Eqs. (A15) and (A16), we can have N = M =
0 for re = r and θe = ±nπ (n = 1, 3, 5, . . . ), and thus, we
have

d

dt
ρ(t ) = i[ρ(t ), H] − κ

2
L(as)ρ(t )

− γm

2
(nth + 1)L(b)ρ(t ) − γm

2
nthL(b†)ρ(t ).

(A21)

We find from Eq. (A21) that the squeezing-induced noise is
completely eliminated, so that the as mode is equivalently
coupled to the thermal vacuum bath. As we demonstrate
below, eliminating this noise can ensure that the background
noise is zero for the SCM excitation spectrum in the squeezed
frame, and as a result, the background noise of the output-
photon flux spectrum in the original laboratory frame only
originates from photons contained in the squeezed vacuum.
This minimizes the background noise for the observation of
the DCE, and thus enables the DCE to be observed more
clearly in experiments.

When the conditions r = re and θe = ±nπ (n =
1, 3, 5, . . . ) are not perfectly satisfied, the squeezing-induced
noise cannot be eliminated completely (i.e., N �= 0 and
M �= 0). However, according to the master equation in
Eq. (A12), such imperfections do not affect the occurrence
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FIG. 4. Signal-to-noise ratio Rs versus (a) δre = re − r and
(b) δθe = θe − π for the driving strength F = 10γm, 15γm, and 20γm.
In (a), we set θe = 1.1π , and in (b) re = 1.1r. In both plots, we
set g0 = 10γm, nth = 0, ωm = ωd = 2ωs = 104γm, � = ωm, and κ =
500γm.

of the DCE. They only cause some noises. To quantify this
undesired effect, we use the signal-to-noise ratio defined as

Rs = 〈a†
s as〉F �=0

ss − 〈a†
s as〉F=0

ss

〈a†
s as〉F=0

ss

, (A22)

where 〈a†
s as〉F=0

ss (〈a†
s as〉F �=0

ss ) is the steady state 〈a†
s as〉 when

F = 0 (F �= 0), and the subscript “ss” stands for steady state.
We plot Rs in Fig. 4, according to the master equation given in
Eq. (A12) but replacing H �→ Heff . In this figure, we assume
that re = r + δre and θe = π + δθe. In the perfect case of N =
M = 0, Rs → ∞ because 〈a†

s as〉F=0
ss = 0. Thus, we find in

Fig. 4 that the noise induced by imperfect parameters reduces
the ratio Rs. However, we also find that with increasing the
driving F , the noise becomes smaller compared to the DCE
signal, such that it can even be neglected for sufficiently
strong F .

2. Effective Hamiltonian

The Hamiltonian in Eqs. (A12) and (A21) is expressed, in
terms of the as mode, as

H = ωsa
†
s as + ωmb†b − gOMa†

s as(b + b†)

+ gDCE
(
a2

s + a†2
s

)
(b + b†)

+ F

2
[exp(iωdt )b + exp(−iωdt )b†], (A23)

where gOM = g0 cosh (2r) and gDCE = g0 sinh (2r)/2, with
r = (1/4) ln [(� + �)/(� − �)] being the squeezing param-
eter of the cavity. In Fig. 5(a) we plot ωs as a function of �

and �, and find that the resonance condition ωm = 2ωs, for
a parametric coupling between SCM and mechanical mode,
can be achieved with experimentally modest parameters. The
Hamiltonian H essentially describes the optomechanical sys-
tem where the boundary condition of a squeezed field is
modulated by the mechanical motion of a driven mirror. In
the limit {ωs, ωm, ωd} � {gOM, gDCE, F }, we can apply the
rotating-wave approximation, such that the coherent dynamics
of the system is governed by the following effective Hamilto-
nian:

Heff = �sa
†
s as + �mb†b

+ gDCE
(
a2

s b† + a†2
s b

) + F

2
(b + b†), (A24)
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FIG. 5. (a) Squeezed-cavity-mode (SCM) frequency ωs as a
function of the parametric-driving detuning � and strength �. The
dashed curve represents the ωm = 2ωs case. Here, in order for the
system to be stable, we need to have � > �. (b) Parametric energy
conversion between the mechanical and squeezed cavity modes, ob-
tained from a numerical solution of the master equation in Eq. (A21).
Under the time evolution, a single phonon can simultaneously excite
two SCM photons. Here, the initial state is |0s, 1〉 and the desired
state is |2s, 0〉, where the first number in the ket refers to the SCM
photon number and the second to the mechanical phonon number.
Moreover, we set g0 = 80γm, nth = 0, ωm = 103g0, � = ωm, κ =
10γm, and F = 0.

where �s = ωs − ωd/2 and �m = ωm − ωd . The master
equation in Eq. (A21) is then reduced to

d

dt
ρ(t ) = i[ρ(t ), Heff ] − κ

2
L(as)ρ(t )

− γm

2
(nth + 1)L(b)ρ(t ) − γm

2
nthL(b†)ρ(t ).

(A25)

We find, according to Eq. (A24), that the coupling of the states
|0s, 1〉 and |2s, 0〉, where the first number in the ket refers to
the SCM photon number and the second one to the mechanical
phonon number, is given by

g|0s,1〉↔|2s,0〉 =
√

2gDCE. (A26)

In the squeezed frame, this means that under the time evo-
lution, one phonon can be converted into two photons, and
vice versa, at resonance ωm = 2ωs. To confirm such a state
conversion, we perform numerics, as shown in Fig. 5(b).
Specifically, we use the master equation in Eq. (A21) to calcu-
late the fidelity, F = 〈2s, 0|ρactual(t )|2s, 0〉, where ρactual(t ) is
the actual state. It is seen in Fig. 5(b) that we have the expected
state conversion between light and mechanics, and there is a
maximum conversion at resonance. Note that owing to the
presence of the cavity and mechanical losses, the maximum
conversion fidelity decreases with time.

To describe the dynamics of the DCE further, we plotted
the time evolution of 〈a†

s as〉 in the presence of the driving F
in Fig. 6. We find that 〈a†

s as〉 increases with time and then
gradually approaches its stationary value. For an experimental
parameter γm ≈ 200 Hz in Ref. [74], the stationary state is
reached within a time ≈5/γm ≈ 25 ms.

In Eq. (A24), we made the rotating-wave approximation
and neglected the high-frequency component,

Hhigh = −gOMa†
s as[exp(−iωdt )b + exp(iωdt )b†]

+ gDCE
[

exp(−i2ωdt )a2
s b + exp(i2ωdt )a†2

s b†].
(A27)
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0 2
0

0.2

0.4

FIG. 6. Time evolution of 〈a†
s as〉 for the driving strength F =

10γm, 15γm, and 20γm, calculated from the master equation in
Eq. (A25). Here, the initial state is assumed to be |0s, 0〉. Further-
more, we assume that g0 = 10γm, nth = 0, ωm = ωd = 2ωs = 104γm,
� = ωm, and κ = 500γm.

In typical situations, {gOM, gDCE} � ωd , which allows a time-
averaging treatment of Hhigh using the formalism of Ref. [75].
After a straightforward calculation, the behavior of Hhigh can
be approximated, at resonance ωm = ωd = 2ωs (i.e., �s =
�m = 0), as

Hhigh ≈ HTA = − g2
OM

ωm
(a†

s as)2 − g2
DCE

2ωm

[
a†2

s a2
s

+ 2(2a†
s as + 1)b†b + 2(2a†

s as + 1)
]
. (A28)

The Hamiltonian H is, accordingly, transformed to

H ≈ Heff + HTA. (A29)

For realistic parameters, the couplings gOM and gDCE are
three orders of magnitude lower than ωm. We can find from
Eq. (A28) that the high-frequency term Hhigh can be neglected,
compared to the low-frequency term Heff . To confirm this,
in Fig. 7 we numerically calculated 〈a†

s as〉ss using the low-
frequency term Heff and the full Hamiltonian H given in
Eq. (A29), respectively. By comparing these, we find an
excellent agreement, and the high-frequency term Hhigh can
be safely neglected, as expected.

3. Off-resonant signal-to-noise ratio

In the main text, the signal-to-noise ratio R is discussed
at resonance ωm = ωd = 2ωs (i.e., �s = �m = 0). We now
discuss the ratio R in the off-resonance case where �s �= 0
and �m �= 0. We plot the ratio R as a function of the detunings
�s and �m in Fig. 8. There, the results are obtained by
numerically integrating the master equation in Eq. (A25). We
find that the ratio R decreases with the detuning �s or �m,
but increases with the force F . Note that the DCE photons
are the scattered photon pairs via two-photon hyper-Raman
scattering. As a result, their frequency ωs + ωL/2 is different
from the noise-photon frequency ωL/2. This means that if
standard techniques of Raman spectroscopy are used, the
noise can then be filtered out. Therefore, the signal can still
be resolved even if R < 1.

0 5 10 15
0

0.1

0.2

FIG. 7. Effects of the high-frequency component Hhigh on the
photon number 〈a†

s as〉ss. The master equation used for curves is given
in Eq. (A25), and for symbols is given in Eq. (A21) but with H
in Eq. (A29). Here, we set g0 = 10γm, nth = 0, ωm = ωd = 2ωs =
104γm, and � = ωm.

APPENDIX B: DYNAMICAL CASIMIR EFFECT IN THE
MECHANICAL WEAK-DRIVING REGIME

In our main text, we have studied the steady-state behavior
associated with the DCE, by numerically integrating the mas-
ter equation in Eq. (A25) [76,77]. To study the DCE further, an
analytical understanding for the mechanical weak driving is
given in this Appendix. Here, we only focus on the resonance
situation where ωm = ωd = 2ωs.

Let us now derive the steady-state SCM photon num-
ber 〈a†

s as〉ss. To begin, we consider the master equation in
Eq. (A25). The involved equations of motion are given, re-
spectively, by

d

dt
〈a†

s as〉 = −4gDCE Im
[〈

a2
s b†

〉] − κ〈a†
s as〉, (B1)

d

dt

〈
a2

s

〉 = − i2gDCE(2〈a†
s asb〉 + 〈b〉) − κ

〈
a2

s

〉
, (B2)

d

dt
〈b〉 = − i

(
gDCE

〈
a2

s

〉 + F

2

)
− γm

2
〈b〉, (B3)

d

dt
〈b†b〉= 2gDCE Im

[〈
a2

s b†
〉] − F Im[〈b〉] − γm〈b†b〉 + γmnth,

(B4)
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4
(b)

FIG. 8. Signal-to-noise ratio R versus detunings (a) �s and
(b) �m for the driving strength F = 10γm, 15γm, and 20γm. The
master equation used here is given in Eq. (A25). In (a), we set
�m = 0.2γm and in (b) �s = 10γm. In both plots, we set g0 = 10γm,
nth = 0, κ = 500γm, and sinh2(r) = 0.5.
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FIG. 9. Photon number 〈a†
s as〉ss versus mechanical driving F for (a) nth = 0, (b) nth = 3, and (c) nth = 5. Curves are analytical results, while

symbols are numerical simulations of the master equation in Eq. (A25). Here, we set g0 = 10γm, ωm = ωd = 2ωs = 104γm, and � = ωm.

d

dt

〈
a2

s b†
〉 = i

(
gDCE

〈
a†2

s a2
s

〉 − 4gDCE〈a†
s asb†b〉

+ F

2

〈
a2

s

〉 − 2gDCE〈b†b〉
)

−
(
κ + γm

2

)〈
a2

s b†
〉
, (B5)

d

dt
〈a†

s asb〉 = igDCE
(
2
〈
a2

s b†b
〉 − 〈

a†
s a3

s

〉 − 2
〈
a†2

s b2
〉)

− i
F

2
〈a†

s as〉 −
(
κ + γm

2

)
〈a†

s asb〉. (B6)

Here, Im[z] represents the imaginary part of z. In fact, owing
to the parametric coupling, the Hamiltonian in Eq. (A24)
leads to an infinite set of differential equations, which may
not be analytically solved. Thus, in order to obtain an ana-
lytical result, we neglect the higher-order correlation terms,
that is 〈a†2

s a2
s 〉, 〈a†

s asb†b〉, 〈a2
s b†b〉, 〈a†

s a3
s 〉, and 〈a†2

s b2〉. This
approximation is valid for a weak driving F , as shown below.
In such an approximation, the coupled differential equations
(B1)–(B6) construct a closed set, so in the steady state we have

0 ≈ −4gDCE Im
[〈a2

s b†〉ss

] − κ〈a†
s as〉ss, (B7)

0 ≈ −i2gDCE(2〈a†
s as〉ss + 〈b〉ss) − κ

〈
a2

s

〉
ss, (B8)

0 ≈ −i

(
gDCE

〈
a2

s

〉
ss + F

2

)
− γm

2
〈b〉ss, (B9)

0 ≈ 2gDCE Im
[〈

a2
s b†

〉
ss

] − F Im[〈b〉ss] − γm〈b†b〉ss

+ γmn(ωm, T ), (B10)

0 ≈ i

(
F

2

〈
a2

s

〉 − 2gDCE〈b†b〉ss

)
−

(
κ + γm

2

)〈
a2

s b†
〉
ss, (B11)

0 ≈ −i
F

2
〈a†

s as〉ss −
(
κ + γm

2

)
〈a†

s asb〉ss. (B12)

By solving this closed set of equations, the steady-state SCM
photon number is found to be

〈a†
s as〉ss ≈ 4γmg2

DCE

κ
(
2g2

DCE + γ 2
0

)[
κF 2

2γm
(
2gDCE + γ 2

0

) + nth

]
, (B13)

where γ0 = √
κγm/2. Equation (B13) shows that 〈a†

s as〉ss
includes two physical contributions: one from the mechanical
driving and the other from the thermal noise. Furthermore, we
also find a quadratic increase in 〈a†

s as〉ss with the driving F .

To confirm this analytical expression, in Fig. 9 we compare
it with exact numerical simulations of the master equation
in Eq. (A25). It is seen that the analytical predictions are in
good agreement with the exact numerical results, especially
for weak F .

According to the Bogoliubov transformation, the steady-
state intracavity-photon number 〈a†a〉ss in the original labora-
tory frame is given in Eq. (12). Then, the steady-state output-
photon flux is given in Eq. (14). To obtain �out analytically,
the physical quantities 〈a†

s as〉ss and Re[〈a2
s 〉ss] are involved,

as shown in Eq. (13). The steady-state SCM photon number,
〈a†

s as〉ss, is given in Eq. (B13), and further is numerically
confirmed in Fig. 9. From the closed set of the steady-state
equations given in Eqs. (B7)–(B12), we can straightforwardly
find 〈

a2
s

〉
ss = − gDCE

2g2
DCE + γ 2

0

F. (B14)

It shows that |Re[〈a2
s 〉ss]| increases linearly with F but is inde-

pendent of the thermal mechanical noise. This behavior is also
numerically confirmed in Fig. 10, showing a good agreement
especially for the weak driving F . Note that the derivation of
the analytical results and their numerical confirmations orig-
inates from neglecting the higher-order correlation terms. In
order to exactly describe 〈a2

s 〉, such higher-order correlations
should be included. By combining Eqs. (B13) and (B14), the
steady-state output-photon flux can be analytically expressed
as

�out = ł
4γmg2

DCE

κ
(
2g2

DCE + γ 2
0

)[
κ

2γm
(
2gDCE + γ 2

0

)F 2 + nth

]

× cosh(2r) + gDCE

2g2
DCE + γ 2

0

sinh(2r)F + κ sinh2(r).

(B15)

We find from Eq. (B15) that, by increasing the mechani-
cal driving F , the DCE-induced photon flux �DCE becomes
stronger quadratically, but at the same time, the background-
noise photon flux �BGN remains unchanged. Therefore, the
increase in the total photon flux �out with F can be considered
as a signature of the mechanical-motion induced DCE.

In the DCE process, the photons are emitted in pairs, and
therefore, they could exhibit photon bunching [25,36,57]. The
essential parameter quantifying this property is the equal-
time second-order correlation function, defined in Eq. (17).
We now derive this second-order correlation function. The
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FIG. 10. Real part of the correlation function 〈a2
s 〉ss versus mechanical driving F for (a) nth = 0, (b) nth = 3, and (c) nth = 5. We assumed

the same curve correspondences and the same parameters as in Fig. 9.

equation of motion for 〈a†2
s a2

s 〉 is given by

d

dt

〈
a†2

s a2
s

〉 = − 4gDCE
{
2Im

[〈
a†

s a3
s b†

〉] + Im
[〈

a2
s b†

〉]}
− 2κ

〈
a†2

s a2
s

〉
. (B16)

We can neglect the term Im[〈a†
s a3

s b†〉] for the weak driving F .
Then, combining Eq. (B7) yields

g(2)
s (0) ≈ 1

2〈a†
s as〉ss

. (B17)

In Fig. 11, we plot the g(2)
s (0) correlation as a function of

the driving F . In this figure, we compare the analytical and
numerical results, and show an exact agreement. Owing to
a very small of 〈a†

s as〉ss for the mechanical weak driving,
g(2)

s (0) is very large as shown in Fig. 11, which corresponds to
large photon bunching. With increasing the driving F , we also
find that the g(2)

s (0) correlation decreases, and as demonstrated
more explicitly in Appendix C, it would approach a lower
bound equal to 1, thereby implying that the DCE radiation
field becomes a coherent state in the limit of the mechanical
strong driving, F → ∞.

APPENDIX C: SEMICLASSICAL TREATMENT FOR THE
DYNAMICAL CASIMIR EFFECT

In Appendix B we have analytically discussed the DCE
process when the mechanical driving F is weak. There,
the higher-order correlations that arise from the parametric
coupling are neglected, and the resulting expressions can
predict the system behavior well. For strong-F driving, all
high-order correlations should be included to exactly describe
the system; but in this case, finding solutions analytically or
even numerically becomes much more difficult. In order to

investigate the DCE in the strong-F regime, in this section
we employ a semiclassical treatment [56]. For simplicity, but
without loss of generality, here we assume that the mechanical
resonator is coupled to a zero-temperature bath. For finite
temperatures, the discussion below is still valid, as long as
the total number of phonons is much larger than the number
of thermal phonons.

1. Excitation spectrum and output-photon flux spectrum
in the steady state

We again begin with the master equation in Eq. (A25) and,
accordingly, obtain

d

dt
〈a†

s as〉 = −4gDCE Im
[〈

a2
s

〉〈b〉∗] − κ〈a†
s as〉, (C1)

d

dt

〈
a2

s

〉 = −i2�s
〈
a2

s

〉
− i2gDCE(2〈a†

s as〉 + 1)〈b〉 − κ
〈
a2

s

〉
, (C2)

d

dt
〈b〉 = −i

(
�m〈b〉 + gDCE

〈
a2

s

〉 + F

2

)
− γm

2
〈b〉. (C3)

Here, we have made the semiclassical approximation, such
that 〈a2

s b†〉 ≈ 〈a2
s 〉〈b〉∗ and 〈a†

s asb〉 ≈ 〈a†
s as〉〈b〉. Under this

approximation, the fluctuation correlation between the cavity
and the mechanical resonator is neglected. It is found that
Eqs. (C1)–(C3) construct a closed set.

a. Excitation spectrum for resonant mechanical driving: ωm = ωd

We first consider the case of a resonant mechanical driv-
ing (i.e., ωm = ωd ). In this case, we have �m = 0, and the
steady-state SCM photon number 〈a†

s as〉ss satisfies a cubic
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FIG. 11. Correlation function g(2)
s (0) versus mechanical driving F for (a) nth = 0, (b) nth = 3, and (c) nth = 5. We assumed the same curve

correspondences and the same parameters as in Fig. 9.
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FIG. 12. (a) Photon number 〈a†
s as〉ss, (b) real part of the correlation function 〈a2

s 〉ss, and (c) phonon number |〈b〉ss|2 versus detuning
�s = ωs − ωd/2 for κ = 500γm (solid curves) and κ = 1000γm (dashed curves). We have assumed that ωm = ωd , g0 = 10γm, F = 50γm,
and sinh2(r) = 0.5.

equation,

0 = g4
DCE x3 − g2

DCE

(
g2

DCE − γ 2
0

)
x2

+ [
1
4

(
�2

s γ
2
m + γ 4

0

) − g2
DCE

(
F 2 + γ 2

0

)]
x

− 1
4

(
�2

s γ
2
m + γ 4

0

)
, (C4)

where γ0 = √
κγm/2 and x = 2〈a†

s as〉ss + 1. The solutions of
such an equation can be exactly obtained using the Cardano
formula. Then, the steady-state 〈a2

s 〉 and 〈b〉 are given, respec-
tively, by

〈
a2

s

〉
ss = − gDCE

2g2
DCE x + γ 2

0 + i�sγm
Fx, (C5)

〈b〉ss = − (−2�s + iκ )

2g2
DCE x + γ 2

0 + i�sγm

F

2
. (C6)

For simplicity, we numerically solve the cubic equation (C4),
and in Fig. 12 we plot 〈a†

s as〉ss, Re[〈a2
s 〉ss], and |〈b〉ss|2 versus

the detuning �s for κ = 500γm and 1000γm. At large detun-
ings, the resonantly driven mechanical resonator is effectively
decoupled from the cavity mode. As a consequence, there is
almost no conversion of mechanical energy into photons. Thus
at large detunings, the mechanical phonon number |〈b〉ss|2
quickly approaches (F/γm)2, i.e., the steady-state phonon
number when the mechanical resonator is completely un-
coupled. Meanwhile, both the photon number 〈a†

s as〉ss and
correlation function 〈a2

s 〉ss are very close to zero. As the
detuning decreases, the effective parametric coupling between
the mechanical motion and the cavity mode increases, and the
parametric conversion from mechanical energy into photons
is accordingly enhanced. Such an energy conversion is max-
imized at resonance ωm = ωd = 2ωs. Thus, when decreas-
ing the detuning, both 〈a†

s as〉ss and |Re[〈a2
s 〉ss]| increase but

|〈b〉ss|2 decreases, as shown in Fig. 12. In particular, 〈a†
s as〉ss

and |Re[〈a2
s 〉ss]| reach their maximum values at resonance,

and at the same time, |〈b〉ss|2 reaches its minimum value.
This behavior implies that the photons are emitted by the
mechanical resonator.

b. Excitation spectrum for resonant parametric coupling:
ωm = 2ωs

We next consider the case of a resonant parametric cou-
pling (i.e., ωm = 2ωs). In this case, we have �m = 2�s = �,
and the steady-state 〈a†

s as〉 also satisfies a cubic equation

0 = g4
DCE x3 − g2

DCE

(
g2

DCE + �2 − γ 2
0

)
x2

+ {
1
4

[(
�2 − γ 2

0

)2 + �2γ 2
1

] + g2
DCE

× (
�2 − γ 2

0 − F 2
)}

x − 1
4

[(
�2 − γ 2

0

)2 + �2γ 2
1

]
, (C7)

where γ1 = κ + γm/2. This cubic equation can also be exactly
solved using the Cardano formula, and then the steady-state
〈a2

s 〉 and 〈b〉 are given, respectively, by〈
a2

s

〉
ss = − gDCE

2gDCE x − �2 + γ 2
0 + i�γ1

Fx, (C8)

〈b〉ss = − (−� + iκ )

2gDCE x − �2 + γ 2
0 + i�γ1

F

2
. (C9)

We numerically solve the cubic equation (C7), and in Fig. 13,
we plot 〈a†

s as〉ss, Re[〈a2
s 〉ss], and |〈b〉ss|2 versus the detuning

�s for κ = 500γm and 1000γm. At large detunings, the me-
chanical driving is effectively decoupled from the mechanical
resonator, so that almost no phonons are excited and almost no
photons are emitted. As the detuning decreases, the mechani-
cal phonon number increases, which strengthens the paramet-
ric conversion from mechanical energy into photons, and in
turn, leads to an increase in the excited photon number. This
process is maximized at resonance ωm = ωd = 2ωs. Thus, we
find that, as shown in Fig. 13, with decreasing the detuning,
not only 〈a†

s as〉ss and |Re[〈a2
s 〉ss]| but also |〈b〉ss|2 increases,

and that they simultaneously reach their maximum values at
resonance. This behavior also implies that the photons are
emitted by the mechanical resonator.

c. Output-photon flux spectrum for resonant mechanical driving
and parametric coupling

Having obtained 〈a†
s as〉ss and 〈a2

s 〉ss in the squeezed frame,
we can, according to the Bogoliubov transformation, calculate
the steady-state intracavity photon number 〈a†a〉ss in the
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FIG. 13. (a) Photon number 〈a†
s as〉ss, (b) real part of the correlation function 〈a2

s 〉ss, and (c) phonon number |〈b〉ss|2 (c) versus detuning
�s = ωs − ωd/2 for κ = 500γm (solid curves) and κ = 1000γm (dashed curves). We have assumed that ωm = 2ωs, g0 = 10γm, F = 50γm, and
sinh2(r) = 0.5.

original laboratory frame, as given in Eq. (12). Then we can
calculate the steady-state output-photon flux �out according
to the input-output relation, given in Eq. (14). We plot the
photon flux �out as a function of the detuning �s in Fig. 14.
As expected, for a given mechanical driving, we can observe
a resonance peak, corresponding to the maximum value of the
photon flux. This behavior in the laboratory frame can directly
reflect the behavior of the excitation spectrum 〈a†

s as〉ss(�s) in
the squeezed frame in Figs. 12(a) and 13(a). This is because
the background noise �BGN remains unchanged when the
detuning is changed, and the peak completely arises from the
DCE in the squeezed frame. Thus, the appearance of the peak
of the output flux spectrum �out (�s) can be considered as an
experimentally observable signature of the DCE.

2. Signal-to-noise ratio and second-order correlation
function at resonance

As mentioned before, there exists a background noise
�BGN in the flux �out. Thus, we need to analyze the ability
of our proposal to resolve the DCE-induced signal from the
background noise. To quantitatively describe this ability, we
typically employ the signal-to-noise ratio defined in Eq. (15).
Without loss of generality, we focus on the ratio R at reso-
nance ωm = ωd = 2ωs. Under this resonance condition, the

-4000 0 4000
0

4

8 (a)

-5 0 5

(b)

FIG. 14. Steady-state output-photon flux �out as a function of the
detuning �s = ωs − ωd/2 for κ = 500γm (solid curves) and 1000γm

(dashed curves). We assumed that ωm = ωd (resonant mechanical
driving) in (a) and ωm = 2ωs (resonant parametric coupling) in
(b). For both plots, we assumed that g0 = 10γm, F = 50γm, and
sinh2(r) = 0.5.

cubic equation satisfied by 〈a†
s as〉ss becomes

0 = g4
DCE x3 − g2

DCE

(
g2

DCE − γ 2
0

)
x2

+
[
γ 4

0

4
− g2

DCE

(
γ 2

0 + F 2)]x − γ 4
0

4
, (C10)

where x = 2〈a†
s as〉 + 1. Then, 〈a2

s 〉ss and 〈b〉ss are given by〈
a2

s

〉
ss = − gDCE

2g2
DCE x + γ 2

0

Fx, (C11)

〈b〉ss = − iκ

2g2
DCE x + γ 2

0

F

2
. (C12)

We plot the ratio R versus the driving F in Fig. 15(a). We find
that the signal-to-noise ratio monotonically increases with the
mechanical driving. This is owing to the fact that an increase
in the mechanical driving leads to an increase in the number of
DCE-induced photons, but at the same time leaves the number
of background-noise photons unchanged.

The equal-time second-order correlation function is de-
fined in Eq. (17). Similarly to the discussion of the signal-
to-noise ratio R, we also only focus on the g(2)

s (0) correlation
at resonance ωm = ωd = 2ωs. In the semiclassical treatment
presented in this section, 〈a†2

s a2
s 〉ss can be approximated as

〈a†2
s a2

s 〉ss ≈ |〈a2
s 〉ss|2, and as a result, the g(2)

s (0) correlation is
reduced to

g(2)
s (0) ≈

∣∣〈a2
s

〉
ss

∣∣2

〈a†
s as〉2

ss

, (C13)
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FIG. 15. (a) Signal-to-noise ratio R and (b) correlation function
g(2)

s (0) versus the mechanical driving F for κ = 500γm (solid curves)
and 1000γm (dashed curves). For both plots, we assumed that ωm =
ωd = 2ωs, g0 = 10γm, and sinh2(r) = 0.5.
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which is plotted as a function of the mechanical driving in
Fig. 15(b). We find that g(2)

s (0) starts with very large values,
and as the mechanical driving increases, g(2)

s (0) then decreases
approaching 1. This behavior, as expected, suggests the phe-
nomenon of photon bunching, thus confirming the DCE.

3. Analytical solutions in the limits F → 0 and F → ∞
In order to have a better analytical understanding, let us

now consider the limit of F → 0, and also the opposite limit
of F → ∞, at resonance ωm = ωd = 2ωs.

For the F → 0 limit, we have 〈a†
s as〉ss → 0, and thus,

xn ≈ 1 + 2n〈a†
s as〉 for n = 0, 1, 2, . . . . Based on this, an ap-

proximate solution of the cubic equation in Eq. (C10) is found
to be

〈a†
s as〉ss ≈ 2g2

DCE(
2g2

DCE + γ 2
0

)2 F 2, when F → 0, (C14)

which corresponds to Eq. (B13) for nth = 0. Analogously, we
obtain〈

a2
s

〉
ss ≈ − gDCE

2g2
DCE + γ 2

0

F, when F → 0, (C15)

〈b〉ss ≈ − iκ

2g2
DCE + γ 2

0

F

2
, when F → 0. (C16)

Note that Eq. (C15) corresponds to Eq. (B14). Therefore,
according to Eq. (B15), we obtain a quadratic increase in the
ratio

R = �DCE

�BGN
∝ F, (C17)

with large driving F , as shown in Fig. 15(a).
In the opposite limit of F → ∞, we have x → 2〈a†

s as〉ss,
and then obtain

〈a†
s as〉ss ≈ F

2gDCE
, when F → ∞, (C18)〈

a2
s

〉
ss ≈ − F

2gDCE
, when F → ∞, (C19)〈

b
〉
ss ≈ − iκ

4gDCE
, when F → ∞. (C20)

Consequently, the photon flux �out is given by

�DCE = F

2gDCE
exp (2r), when F → ∞. (C21)

This indicates a linear increase in the ratio R with the driving
F , as shown in Fig. 15(a).

For the g(2)
s (0) correlation in the limit of F → 0, we find

g(2)
s (0) ≈ 1

2〈a†
s as〉ss

, when F → 0, (C22)

which is the same as Eq. (B17). This corresponds to a large
g(2)

s (0) as in Fig. 15(b) and, thus, to large photon bunching.

Furthermore, in the opposite limit of F → ∞, the correla-
tion function g(2)

s (0) is approximately equal to 1, i.e.,

g(2)
s (0) ≈ 1, when F → ∞, (C23)

as shown Fig. 15(b). This means that the DCE radiation field
is approximately in a coherent state.

4. Stability analysis

We now turn to the multistability effects of our system.
As discussed previously, in the semiclassical approximation,
the system is governed by a cubic function. However, a cubic
function has three solutions, and thus the system may exhibit
multistability effects. To analyze them, we need to perform
steady-state analysis [78]. Thus, we express the quantities
〈a†

s as〉, 〈a2
s 〉, and 〈b〉 as the sum of their steady-state values

(〈a†
s as〉ss, 〈a2

s 〉ss, 〈b〉ss) and time-dependent small perturbations
[δ1(t ), δ2(t ), δ3(t )], that is,

〈a†
s as〉 = 〈a†

s as〉ss + δ1(t ), (C24)〈
a2

s

〉 = 〈
a2

s

〉
ss + δ2(t ), (C25)

〈b〉 = 〈b〉ss + δ3(t ). (C26)

Then, substituting these equations into Eqs. (C1)–(C3) yields

d

dt
δ1(t ) = i2gDCE

(〈b〉∗ssδ2 + 〈
a2

s

〉
ssδ

∗
3

− 〈b〉ssδ
∗
2 − 〈

a2
s

〉∗
ssδ3

) − κδ1, (C27)

d

dt
δ2(t ) = − i2�sδ2 − i2gDCE(2〈a†

s as〉ss + 1)δ3

− i4gDCEδ1〈b〉ss − κδ2, (C28)

d

dt
δ3(t ) = − i�mδ3 − igDCEδ2 − γm

2
δ3. (C29)

We further make the following replacements:

δ1(t ) �→ exp(−iωt )x1 + exp(iω∗t )y∗
1, (C30)

δ2(t ) �→ exp(−iωt )x2 + exp(iω∗t )y∗
2, (C31)

δ3(t ) �→ exp(−iωt )x3 + exp(iω∗t )y∗
3, (C32)

where xk and yk (k = 1, 2, 3) are time-independent complex
numbers, and ω denotes a complex frequency. Then, the
coupled equations (C27)–(C29) can be rewritten as

M� = ω�, (C33)

where

� = (x1, y1, x2, y2, x3, y3)T , (C34)

M = i

⎛⎜⎜⎜⎜⎜⎝
−κ 0 A∗ A B∗ B
0 −κ A∗ A B∗ B

2A 0 −i2�s − κ 0 C 0
0 2A∗ 0 i2�s − κ 0 C∗
0 0 −igDCE 0 −i�m − γm/2 0
0 0 0 igDCE 0 i�m − γm/2

⎞⎟⎟⎟⎟⎟⎠, (C35)
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FIG. 16. Steady-state squeezed cavity mode photon number
〈a†

s as〉ss as a function of the detuning �s for κ = 10γm, 20γm, and
40γm. Dashed curves represent unstable solutions. Here, we assumed
that ωm = 2ωs, g0 = 10γm, F = 50γm, and sinh2(r) = 0.5.

where

A = −i2gDCE〈b〉ss, (C36)

B = i2gDCE〈a2
s 〉ss, (C37)

C = −i2gDCE(2〈a†
s as〉ss + 1). (C38)

If all imaginary parts of the eigenvalues of the matrix M are
negative, then the system is stable; otherwise the system is
unstable [79]. According to this criterion, we estimate the
stability of our system. We find that for the parameters used
in the above discussion about the DCE, the system does not
exhibit multistability. Furthermore, when the mechanical loss
is close to the cavity loss, we find for ωm = 2ωs that the
system becomes multistable, as shown in Fig. 16. However,
the requirement that the mechanical loss is close to the cavity
loss makes the threshold

Fth = gDCE + κγm/4gDCE (C39)

very low. For F � Fth, the system behaves classically, and
quantum effects are negligible [55,56]. For the parameters in
Fig. 16, the value of Fth is ≈9γm (here, we set κ = 20γm),
which is smaller than one-fifth of the force F = 50γm. As
a consequence, the system, when demonstrating such multi-
stable behaviors, has probably reached the classical regime,
where the DCE effect induced by the quantum fluctuations is
negligible. Therefore, in order to observe the DCE, it is better
to avoid the multistable regime of the system.

APPENDIX D: POSSIBLE IMPLEMENTATIONS WITH
SUPERCONDUCTING QUANTUM CIRCUITS

Our scheme to implement the DCE is based on a generic
optomechanical system, and at the same time, does not re-
quire an ultrahigh-frequency mechanical resonator and an
ultrastrong single-photon coupling between light and me-
chanical motion. Therefore, we can expect that it can be
implemented in various physical systems. In this section, as an
example, we discuss in detail a possible implementation with

 0L0C   xC
x

 tC

(a) (b)

 0L

FIG. 17. (a) A standard LC circuit consisting of a capacitor
(C0) and an inductor (L0). This circuit behaves as a single-mode
microwave cavity. (b) An LC circuit used to implement the DCE.
Its capacitor (Cx) is modulated by the mechanical motion, e.g.,
of a micromechanical membrane, and this results in a standard
optomechanical coupling between light and mechanics. Meanwhile,
the use of the electrically tunable capacitor (Ct ) can parametrically
drive and squeeze the cavity mode.

superconducting circuits and, in particular, we refer to the
experimental superconducting quantum circuit of Ref. [74],
described by the standard optomechanical coupling of the
form a†a(b + b†).

A standard LC circuit consists of a capacitor (e.g., with
capacitance C0) and an inductor (e.g., with inductance L0), as
shown in Fig. 17(a). Its Hamiltonian is expressed in terms of
the capacitor charge Q and the inductor current I as

H0 = �2

2L0
+ 1

2 L0ω
2
0Q2, (D1)

where � = L0I is the magnetic flux through the inductor, and
ω0 = 1/

√
L0C0 is the fundamental frequency of the circuit.

After quantization, the charge Q and the flux � represent a
pair of canonically conjugate variables, which obey the com-
mutation relation [Q,�] = ih̄. Upon introducing a canonical
transformation,

Q = 1

2

√
2h̄ω0C0(a + a†),

� = 1

2i

√
2h̄ω0L0(a − a†), (D2)

the Hamiltonian H0 becomes

H0 = h̄ω0a†a. (D3)

Here, we have subtracted the constant zero-point energy
h̄ω0/2. Such an LC circuit thus behaves as a single-mode
microwave cavity, with ω0 being the cavity frequency, and
with a (a†) being the annihilation (creation) operator of the
cavity mode.

As demonstrated in Ref. [74], when the capacitance C0

in Fig. 17(a) is modulated by the mechanical motion of
a micromechanical membrane, the mechanical motion can
couple to the cavity mode. In this manner, the capacitance C0

becomes

C0 �→ Cx = C0

1 + x/d
, (D4)

where x is the displacement of the membrane, and d is
the distance between the conductive plates of the capacitor.
To parametrically squeeze the cavity mode, we further add
an additional and electrically tunable capacitor into such an
experimental setup. The LC circuit is shown in Fig. 17(b).
Here, we assume the capacitance of the additional capacitor
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to be

Ct = C0 + �C cos(ωLt ), (D5)

where ωL is the modulation frequency, and �C � C0. The
total capacitance is thus given by Ctotal = Ct + Cx. Note that,
in the absence of both mechanical motion and cosine modu-
lation, the total capacitance is equal to 2C0, and as a result,
the resonance frequency of the bare LC cavity, shown in
Fig. 17(b), is ωc = ω0/

√
2, rather than =ω0. When both

mechanical motion and cosine modulation are present, the
cavity frequency ωc is modulated as

ωc �→ ω′
c = 1√

L0Ctotal
= ω0√

1 + �C
C0

cos (ωLt ) + 1
1+x/d

.

(D6)

In the limit {�C/C0, x/d} � 1, we can expand ω′
c, up to first

order, to have

ω′
c ≈ ωc

[
1 − �C

4C0
cos(ωLt ) + x

4d

]
. (D7)

The Hamiltonian describing the cavity mode of the LC circuit
in Fig. 17(b) is then given by

Hc = �2

2L0
+ 1

2
L0ω

2
c

[
1 − �C

2C0
cos(ωLt ) + x

2d

]
Q2. (D8)

Using the canonical transformation in Eq. (D2), but with ω0

replaced by ωc, the Hamiltonian Hc is reduced to

Hc = h̄ωca†a − h̄g0a†a(b + b†)

+ 1
2 h̄�[exp(iωLt )a2 + exp(−iωLt )a†2], (D9)

where b (b†) is the annihilation (creation) operator of the
mechanical mode, g0 = −ωcxzpf/4d is the single-photon op-
tomechanical coupling, xzpf is the zero-point fluctuation of

the mechanical resonator, � = −ωc�C/8C0 is the amplitude
of the two-photon driving, and ωL is its frequency. Here, we
have made the rotating-wave approximation, and we have also
replaced

x �→ xzpf (b + b†). (D10)

After including the free Hamiltonian of the mechanical res-
onator, the full Hamiltonian, in a rotating frame at ωL/2,
becomes (h̄ = 1)

H = ωmb†b + �a†a − g0a†a(b + b†) + 1
2�(a2 + a†2),

(D11)

where ωm is the frequency of the mechanical mode, and � =
ωc − ωL/2. The Hamiltonian in Eq. (D11) is exactly the one
applied by us in this work.

A squeezed-vacuum reservoir coupled to the cavity mode
can be realized directly using the LC circuit in Fig. 17(a), but
the constant capacitance C0 needs to be replaced by a tunable
capacitance Ct . By following the same recipe as above, the
corresponding Hamiltonian is then given by

Hr = �0a†a + 1
2�0(a2 + a†2), (D12)

where �0 = ω0 − ωL/2, and �0 = −ω0�C/8C0. The canon-
ical transformation used here is the same as given in Eq. (D2).
When the input field of the cavity is in the vacuum, we can
obtain a squeezed-vacuum field at the output port, according
to the input-output relation.

In addition to the LC circuit, the squeezed-vacuum reser-
voir can also be generated by a Josephson parametric am-
plifier, as experimentally demonstrated in Refs. [50,58]. In
particular, a squeezing bandwidth of up to ∼10 MHz was
reported in Ref. [50]. This is sufficient to fulfill the large-
bandwidth requirement of the reservoir.
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