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We propose a resource-efficient error-rejecting entangled-state analyzer for polarization-encoded multiphoton
systems. Our analyzer is based on two single-photon quantum-nondemolition detectors, where each of them
is implemented with a four-level emitter (e.g., a quantum dot) coupled to a one-dimensional system (such as a
micropillar cavity or a photonic nanocrystal waveguide). The analyzer works in a passive way and can completely
distinguish 2n Greenberger-Horne-Zeilinger (GHZ) states of n photons without using any active operation or
fast switching. The efficiency and fidelity of the GHZ-state analysis can, in principle, be close to unity, when
an ideal single-photon scattering condition is fulfilled. For a nonideal scattering, which typically reduces the
fidelity of a GHZ-state analysis, we introduce a passively error-rejecting circuit to enable a near-perfect fidelity
at the expense of a slight decrease of its efficiency. Furthermore, the protocol can be directly used to perform
a two-photon Bell-state analysis. This passive, resource-efficient, and error-rejecting protocol can, therefore, be
useful for practical quantum networks.
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I. INTRODUCTION

Quantum entanglement is a fascinating phenomenon in
quantum physics [1], which provides a promising platform for
various quantum technologies, including quantum communi-
cation networks [2]. Sharing quantum entanglement among
distant network nodes is a prerequisite for many practical
applications [3–9]. There are two main obstacles for practical
applications of multipartite quantum entanglement, i.e., en-
tanglement generation over desired nodes and entanglement
analysis within a local node. Usually, it is difficult to distribute
local entanglement over spatially separated nodes due to
channel high losses [10]. An efficient method to overcome
channel noise uses quantum repeaters [11–14], which are
based on entanglement purification [15–18] and quantum
swapping [19–23]. By applying a proper entanglement analy-
sis and local operations, one can complete an entanglement-
purification protocol to distill some entanglement of a higher
fidelity, and enlarge the distance of an entangled channel
through quantum swapping. In addition to entanglement pu-
rification and entanglement swapping, Bell-state analysis is
crucial, e.g., for quantum teleportation [8,9], quantum se-
cure direct communication [24–27], and quantum dense cod-
ing [28]. It plays an essential role in various entanglement-
based quantum information processing protocols [7–28].

Multipartite entanglement, compared to two-particle en-
tanglement, is more powerful to reveal the nonlocality
of quantum physics [1,28–30]. The Greenberger-Horne-
Zeilinger (GHZ) states enable more refined demonstrations of
quantum nonlocality, and can be used to build more complex
quantum networks involving many nodes [31–34] and to

perform, i.e., conference-key agreement [35]. Furthermore,
GHZ states enable efficient methods for large-scale cluster-
state generation for measurement-based quantum comput-
ing [36–42], and also provide a useful basis for quantum
metrology [43,44]. The generation and analysis of n-photon
GHZ entanglement are highly demanding. To date, various
efficient methods to generate the GHZ entanglement have
been developed for different physical systems [45–53]. In
photonic systems, an eight-photon GHZ state and a three-
photon high-dimensional GHZ state have been experimentally
demonstrated [54–57] by performing quantum fusion com-
bined with post-selection operations and quantum interfer-
ence [28,58,59]. By using a time delay, a resource-efficient
method was proposed and demonstrated [60] for generating a
six-photon GHZ state.

It is possible to generate photonic GHZ states or other
multipartite-entangled states in a deterministic way based
on nonlinear processes [61–65]. However, it is difficult to
distribute such a GHZ state efficiently to distant nodes, due
to the inefficiency of the GHZ sources and high losses during
transmission [10,66]. One possible solution is to establish
entanglement pairs between a center node and distant nodes
in parallel [11–14], and then to perform quantum swapping
together with a GHZ-state analysis in the center node [67,68].

In 1998, Pan and Zeilinger proposed, to our knowledge,
the first practical GHZ-state analysis with linear-optical el-
ements [69]. Their proposal can identify two of n-photon
GHZ states by post-selection operations. In principle, one
can constitute a nearly deterministic n-photon GHZ-state
analysis with linear optics, when massive ancillary pho-
tons are used [70]. However, according to the Cansamiglia-
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Lütkenhaus no-go theorem [71], perfect and deterministic
Bell-state analysis on two polarization-encoded qubits is
impossible by using only linear-optical elements (in addition
to photodetectors) and auxiliary modes in the vacuum state.
By taking into account nonlinear processes, a complete GHZ-
state analysis for photonic systems becomes possible [72,73],
and can achieve perfect efficiency and fidelity for an ideal
process. Moreover, a complete entangled-state analysis for
hyperentangled or redundantly encoded photon pairs is pos-
sible [74–79]. The existing GHZ-state analyses typically re-
quire active operations and/or fast switching, and always
require more quantum resources when the photon number of
a given GHZ state increases. Furthermore, the fidelity of the
Bell-state or GHZ-state analyses significantly depends on the
nonlinearity strength of realistic nonlinear processes [65]. A
deviation from an ideal nonlinear process leads to errors and,
thus, reduces the fidelity. These disadvantages significantly
limit applications of a GHZ-state analysis for practical quan-
tum networks.

Here we propose a resource-efficient passive protocol of a
multiphoton GHZ-state analysis using only two single-photon
nondestructive [quantum nondemolition (QND)] detectors,
three standard (destructive) single-photon detectors, and some
linear-optical elements. The GHZ-state analysis circuit is
universal, and can completely distinguish 2n GHZ states with
different photon numbers n, according to the measurement
results of single-photon nondestructive and destructive detec-
tors. The circuit works in a passive way as the Pan-Zeilinger
GHZ-state analyzer does [69]. During the entangled-state
analysis, there are neither active operations on ancillary atoms
nor adaptive switching of photons [80]. The efficiency of
our GHZ-state analysis can, in principle, be equal to one.
Moreover, our protocol has no requisite for direct Hong-Ou-
Mandel interference which requires simultaneous operations
on two individual photons. Thus, we can significantly simplify
the process of GHZ-state analysis and, subsequently, the
structure of multinode quantum networks. Furthermore, the
detrimental effect on the fidelity, introduced by a nonideal
scattering process, can be eliminated passively at the expense
of a decrease of its efficiency. Therefore, our protocol is
resource efficient and passive, and can be used to efficiently
entangle distant nodes in complex quantum networks.

The paper is organized as follows: A quantum interface
between a single photon and a single quantum dot (QD) is
introduced briefly in Sec. II for performing QND measure-
ments on linearly polarized photons. In Sec. III, a passive
GHZ-state analysis circuit is presented. In Sec. IV, a method
to efficiently generate entanglement among distant nodes
is described. Subsequently, the performance of the circuit,
with state-of-the-art experimental parameters, is discussed in
Sec. V. We conclude with brief discussion and conclusions
in Secs. VI and VII. Moreover, Appendixes A and B present
the two simplest examples of our method for the analysis of
two-photon Bell states and three-photon GHZ states.

II. SINGLE-PHOTON QND DETECTOR

An efficient interface, between a single photon and a single
emitter, constitutes a necessary building block for various
kinds of quantum tasks, especially for long-distance or dis-

FIG. 1. Proposal of quantum-nondemolition detection based on
spin-dependent transitions for the negatively charged exciton X −.
(a) Relative-level structure and optical transition of a singly charged
quantum dot (QD); (b) a QD coupled to an optical micropillar cavity.
Here, |↑〉 (|↓〉) denotes the electron spin state with Jz equal to 1/2
(−1/2), and |↑↓⇑〉 (|↑↓⇓〉) denotes the trion state of X − with Jz

equal to 3/2 (−3/2). A photon in a right- (left-) circularly polarized
state |R〉 (|L〉) can only couple to the transition |↑〉 ↔ |↑↓⇑〉 (|↓〉 ↔
|↑↓⇓〉). Therefore, the cross transitions are forbidden by the
quantum-optical selection rules.

tributed quantum networks [2,65]. To begin with, we consider
a process of single-photon scattering by a four-level emitter
coupled to a one-dimensional system, such as a QD coupled
to a micropillar cavity or a photonic nanocrystal waveg-
uide [81–86]. A singly charged self-assembled In(Ga)As QD
has four energy levels [85–87]: two ground states of Jz =
±1/2, denoted as |↑〉 and |↓〉, respectively; and two optically
excited trion states X −, consisting of two electrons and one
hole, with Jz = ±3/2, denoted as |↑↓⇑〉 and |↑↓⇓〉, respec-
tively. Here the quantization axis z is along the growth direc-
tion of the QD and it is the same as the direction of the input
photon. Therefore, there are two circularly polarized dipole
transmissions which are degenerated when the environment
magnetic field is zero, as shown in Fig. 1. A right-circularly
polarized photon |R〉 and a left-circularly polarized photon |L〉
can only couple to the transitions |↑〉 ↔ |↑↓⇑〉 and |↓〉 ↔
|↑↓⇓〉, respectively.

The single-photon scattering process of a QD-cavity unit
is dependent on the state of the QD. There are two individual
cases: (1) If an input photon does not match the circularly
polarized transition of the QD, the photon excites the cavity
mode that is orthogonal to the polarization transition of the
QD, and it is reflected by a practically empty cavity with a loss
probability caused by photon absorption and/or side leakage.
(Hereafter, for brevity, we refer to the side leakage only, but
we also mean other photon absorption losses.) However, (2)
if an input photon matches a given transition of the QD, the
photon interacts with the QD and is reflected by the cavity that
couples to the QD. Therefore, a j-circularly polarized photon
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(where j = right or left) in the input mode â†
ω j ,in

of frequency
ω j , after it is scattered by a QD-cavity unit, evolves into an
output mode â†

ω j ,out as follows [84–87]:

â†
ω j ,in

|0, 0, s̄〉 → r0â†
ω j ,out|0, 0, s̄〉,

â†
ω j ,in

|0, 0, s〉 → r1â†
ω j ,out|0, 0, s〉, (1)

where the state |0, 0, s〉 (|0, 0, s̄〉) denotes that both input and
output fields are in the vacuum state and the QD is in the state
|s〉 (|s̄〉) that couples (does not couple) to the input photon. Un-
der the assumptions of both adiabatic evolution of the cavity
field and negligible excitation of the QD, the state-dependent
reflection amplitudes r0 and r1, corresponding, respectively, to
the aforementioned cases (1) and (2), are given by [84–87]

r0(ω) = 1 − κ

i(ωc − ω) + κ
2 + κs

2

,

r1(ω) = 1 − κ f[
i(ωc − ω) + κ

2 + κs
2

]
f + g2

, (2)

where the auxiliary function f is given by f = i(ωX − − ω) +
γ

2 . Here ωX − is the transmission frequency of the QD and ωc

is the resonant frequency of the cavity. These frequencies can
be tuned to be equal to ωX − = ωc, for simplicity. Moreover, κ

describes a directional coupling between the cavity modes and
the input and output modes; g denotes the coupling between
the QD and cavity; κs represents the cavity side-leakage rate,
and γ is the trion decay rate. These formulas for the reflection
coefficients are valid in general for both weak and strong
couplings [88].

For ideal scattering in the strong-coupling regime with
κs 	 κ and γ , κ 	 g (or in the high-cooperativity regime
with κs 	 κ , γ 	 g 	 κ , and γ κ 	 g2) [88], an input pho-
ton, that is resonant with a QD transition, is deterministically
reflected by the QD-cavity unit. A π -phase (zero-phase) shift
is introduced to the hybrid system consisting of a photon and
the QD with r0 = −1 for g = 0 (r1 = 1 for κγ 	 g2), if the
photon decouples (couples) to a transition of the QD. When
the QD is initialized to be in the superposition state |±〉 =
(|↑〉 ± |↓〉)/

√
2, an input photon in a linearly polarized state

evolves as follows:

|H〉|±〉 → |V 〉|∓〉,
|V 〉|±〉 → |H〉|∓〉. (3)

Equation (3) means that if a QD receives a single photon,
then it receives the Pauli σx unitary. On the one hand, if the
QD does not receive any photon, then it does not change
its state. Thus, if we can identify whether the QD receives
the Pauli σx unitary, then it works as a QND measurement
for photons [85,88–90]. Furthermore, when the QD receives
a photon, then it flips the polarization state of the photon
simultaneously [91,92]. We will show in Sec. V that the QND
measurement can work faithfully with a limited efficiency for
practical scattering, i.e., when r1(ω) and r0(ω) significantly
deviate from their ideal values ±1.

FIG. 2. Schematics of the passive optical GHZ-state analyzer
using single-photon QND detectors. Here PBS denotes a polarizing
beam splitter, which transmits photons with horizontal polarization
|H〉 and reflects those with vertical polarization |V 〉. HWP represents
a half-wave plate that performs the Hadamard transformation on
photons passing it, i.e., |H〉 → (|H〉 + |V 〉)/

√
2 or |V 〉 → (|H〉 −

|V 〉)/
√

2. QND detection completes a nondestructive measurement
on single photons, and Di (i = 1, 2, 3) is an ordinary (destructive)
single-photon detector.

III. PASSIVE GHZ-STATE ANALYZER

A. The setup

So far, we have described a QND detection of linearly
polarized single photons. In this section, we describe how to
incorporate a QND detector into the setup for the passive opti-
cal GHZ-state analysis, as shown in Fig. 2. The setup is com-
posed of two half-wave plates (HWPs), two polarizing beam
splitters (PBSs), two single-photon QND detectors in the state
|+〉1|+〉2, and several standard (destructive) single-photon
detectors. The HWP is tuned to perform the Hadamard trans-
formation on photons passing it, i.e., |H〉 → (|H〉 + |V 〉)/√

2 or |V 〉 → (|H〉 − |V 〉)/
√

2. The PBS transmits linearly
polarized photons in the state |H〉 and reflects photons in
the state |V 〉. The single-photon QND and standard detectors
complete the photon on-off measurements in nondestructive
and destructive ways, respectively.

B. GHZ states

For n-photon polarization-encoded GHZ states, the sim-
plest two can be expressed as [28]

|GHZ00...0〉 = 1√
2

(|H〉⊗n + |V 〉⊗n),

|GHZ00...1〉 = 1√
2

(|H〉⊗n − |V 〉⊗n), (4)

where the last (nth) bit in the subscript of |GHZ00...n〉 refers
to the phase (±). If a photon is determined in the state |H〉
or |V 〉, the remaining (n − 1) photons collapse into the same
polarization. To constitute a complete basis for the n-photon
system, one should take the remaining (2n − 2) orthogonal
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basis states into consideration,

|GHZi1i2...in〉 =
n−1⊗
j=1

σ
i j
x j ⊗ σ in

zn
|GHZ00...0〉

= iσ in
yn

n⊗
j=1

σ
i j
x j |GHZ00...0〉, (5)

which can be generated from |GHZ00...0〉 by performing a
single-photon rotation on each photon, and

n⊗
j=1

σ
i j
x j = σ i1

x1
⊗ σ i2

x2
⊗ · · · ⊗ σ in

xn
.

Here, the superscripts i1, i2, . . ., in ∈ {0, 1}, the Pauli op-
erators σx j = |H〉 j〈V | + |V 〉 j〈H | perform a polarization flip
on the jth photon with j = 1, 2, . . . , n; σyn = −i(|H〉n〈V | −
|V 〉n〈H |); σzn = |H〉n〈H | − |V 〉n〈V | performs a phase flip on
the nth photon; and the relative phase between the two compo-
nents of Eq. (5) is determined by in; i.e., in = 0 (in = 1) leads
to a relative phase of 0 (π ).

C. State transformations for the GHZ-state analysis

Now we focus on completely distinguishing the afore-
mentioned 2n GHZ states, which is of vital importance for
multiuser quantum networks [67–69]. According to stabi-
lizer theory [93–96], the n-photon state |GHZ00...0〉, given in
Eq. (4), is a stabilizer state that can be uniquely defined by n
stabilizing operators Sk ,

Sk =
{
σx1 ⊗ σx2 ⊗ · · · ⊗ σxn , k = 1;
σzk−1 ⊗ σzk , k = 2, 3, . . . , n.

(6)

Here the operators σzk perform a phase flip on the kth photon
with k = 1, 2, . . . , and n; there is an implicit identity I⊗(n−2)

acting on the remaining photons that is suppressed in Sk�2 for
simplicity.

The set of operators S1, S2, . . ., Sn forms a complete set
of commuting observables; the 2n GHZ states are common
eigenvectors of all Sk’s with different eigenvalues [94], i.e.,
|GHZ00...0〉 gives an eigenvalue +1 for all Sk’s. Therefore,
we can measure the stabilizing operators Sk’s to completely
discriminate 2n GHZ states of an n-photon system.

Here the n-photon observable S1 corresponds to the mea-
surement of the relative phase between the two terms in a
GHZ state and can be nondestructively measured by using
two QND detectors introduced in Sec. II; Sk�2 corresponds to
parity detection on the pair of (k − 1)th and kth photons and
is measured with direct polarization measurements on each
photon scattered by the QND detectors. To explain in detail
our GHZ-state analysis, we use the ket notation instead of the
stabilizer codes, since the stabilizer states change during the
analysis.

For clarity, we divide this GHZ-state analysis into several
steps. Let us suppose that there is a spatial separation between
each two optical elements such that all photons can pass a
given optical element before entering another element. Note
this requirement is not necessary, and we will demonstrate,
in the next section, that our proposal also works when each

photon is passing one by one from the input port to the output
port and is measured by a single-photon destructive detector.

After passing n photons though the HWP, the Hadamard
transformation is performed on each photon, and the 2n GHZ
states are changed into superposition states of 2n−1 (out of 2n

possible) product states, each with an even (odd) number of
V-polarized photons for |GHZi1i2...in−10〉 (|GHZi1i2...in−11〉) . For
instance, the states |GHZi1i2...in−10〉 and |GHZi1i2...in−11〉, after
the Hadamard transformation of each photon, evolve into

|�1〉 = 1√
2n−1

[ n
2 ]∑

m=0

√
C2m

n

∣∣Gi1,...,in−1
2m

〉
,

|�1〉 = 1√
2n−1

[ n+1
2 ]∑

m=1

√
C2m−1

n

∣∣Gi1,...,in−1
2m−1

〉
, (7)

respectively. Here [x] is the integer value function that rounds
the number x down to the nearest integer; Cm

n = n!
m!(n−m)! is

the binomial coefficient; the state |Gi1,...,in−1
m 〉 is an n-photon

superposition state that contains m V-polarized photons and
(n − m) H-polarized photons as follows:

∣∣Gi1,...,in−1
m

〉 = Z√
Cm

n

∑
l1,...,ln∈{0,1}

δm,m′

n⊗
j=1

σ
l j
x j |H〉⊗n, (8)

where m′ = ∑n
j=1 l j and δm,m′ is the Kronecker delta. The

phase of each component is determined by the operator Z =⊗n−1
j=1 σ

i j
z j , which is simplified to an identity operator when

analyzing |GHZ00...0〉 and |GHZ00...1〉.

D. Measurements for the GHZ-state analysis

As follows from the above analysis, the relative phase of
|GHZi1i2...in〉, which is determined by in, can be read out by
measuring the number of V-polarized photons in the even-
odd basis after applying the Hadamard transformation to
|GHZi1i2...in〉. This measurement can be completed by a setup
consisting of a PBS and two QD-cavity units (referred to
as QND detectors). As demonstrated in Sec. II, a linearly
polarized photon, after being scattered by a QND detector,
changes its polarization state into an orthogonal state and
flips the state of the detector QD. After all photons are either
transmitted or reflected by the first PBS, and scattered by
the QND detectors, the hybrid states of the two QDs and
the n photons, corresponding to the states |GHZi1i2...in−10〉 and
|GHZi1i2...in−11〉, evolve, respectively, into

∣∣�e
2

〉 =
n⊗

j=1

σx j |�1〉|+〉1|+〉2,

∣∣�e
2

〉 =
n⊗

j=1

σx j |�1〉|−〉1|−〉2, (9)
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if n is even, and into

∣∣�o
2

〉 =
n⊗

j=1

σx j |�1〉|+〉1|−〉2,

∣∣�o
2

〉 =
n⊗

j=1

σx j |�1〉|−〉1|+〉2, (10)

if n is odd. The combined states of the two QDs in QND
detectors are different, and can be used to deterministically
distinguish |�1〉 from |�1〉 for both cases of even and odd n.

To make this point clearer, we continue our analysis to
measure the parity of each photon pair [k − 1, k] for the case
of an arbitrary even n. Now, photons in different polarization
states combine again at the first PBS, which is followed by
an HWP. The HWP completes the Hadamard transformation
on each photon passing through it and evolves the photonic
component of the hybrid states into its original GHZ state, up
to a phase difference π . For the states |�e

2〉 and |�e
2〉, given in

Eq. (9), they evolve into

|�3〉 = ±|GHZi1i2...in−10〉|+〉1|+〉2,

|�3〉 = ±|GHZi1i2...in−11〉|−〉1|−〉2. (11)

Here |GHZi1i2...in−10〉 and |GHZi1i2...in−11〉 are the n-photon GHZ
states given in Eq. (5); their sign is determined by the sum-
mation of the first (n − 1) subscripts with m′′ = ∑n−1

j=1 i j ,
i.e., “+” for even m′′ and “−” for odd m′′. Subsequently, a
photon-polarization measurement setup, consisting of a PBS
and two destructive single-photon detectors D1 and D2, is used
to detect the polarization of each photon and then divides
the measurement results according to the number of clicks of
each detector, i.e., when n H-polarized (V-polarized) photons
are detected, the n input photons are projected into either
|GHZ00...0〉 or |GHZ00...1〉, which can be distinguished by
detecting the state of the QD in each QND detector.

It is seen that there is neither active feedback nor fast
switching operations involved in the entangled-state analysis.
The setup works in a completely passive way, which is similar
to that based on linear-optical elements and single-photon
detectors. When n = 2, the GHZ-state analysis setup enables
a passive Bell-state analysis for two-photon systems, which
are typically denoted as

|φ±〉 = 1√
2

(|H〉|H〉 ± |V 〉|V 〉),

|ψ±〉 = 1√
2

(|H〉|V 〉 ± |V 〉|H〉). (12)

Detailed analyses for n = 2 and 3 are presented in Appendixes
A and B, respectively.

IV. EFFICIENT DISTANT MULTIPARTITE
ENTANGLEMENT GENERATION FOR

QUANTUM NETWORKS

In quantum multinode networks, multipartite entanglement
among many nodes is useful for practical quantum communi-
cation or distributed quantum computation [28,29]. A direct
method for sharing the GHZ entanglement among several
distant nodes can be enabled by a faithful entanglement

FIG. 3. Schematics of nonlocal GHZ-state generation for multi-
party quantum networks. Here a red circle with an arrow represents
a stationary qubit, while a yellow circle represents a photon. Each
wave line represents entanglement between the particles it connects.

distribution after locally generating the GHZ entanglement.
However, the efficiency of such a multipartite entanglement
distribution significantly decreases with the increasing photon
number involved in the GHZ entanglement [10]. Furthermore,
the experimental methods for generating multiphoton GHZ
entanglement are still inefficient due to the limited experi-
mental technologies. A significantly more efficient method
for distant GHZ-state generation can be achieved by entan-
glement swapping. In the following, we describe a scheme
for the GHZ entanglement generation among three stationary
qubits, and these stationary qubits can be atomic ensembles,
nitrogen-vacancy (NV) centers, QDs, and other systems [97].

Suppose there are three communicating nodes in a quan-
tum network, say, Alice, Bob, and Charlie. An ancillary node
(Eve) shares hybrid entanglement pairs with Alice, Bob, and
Charlie, respectively, as follows [11–18]:

|φ〉 ji = 1√
2

(|↑〉 j |H〉i + |↓〉 j |V 〉i ), (13)

where the subscript i (with i = a, b, c) represents the photons
owned by Eve, and it is entangled with the jth QD (with
j = A, B,C), which belongs to Alice, Bob, and Charlie, re-
spectively, as shown in Fig. 3. The state |φ〉Aa|φ〉Bb|φ〉Cc of
the three hybrid entanglement pairs Aa, Bb, and Cc can be
rewritten as

|φ0〉 = 1

2
√

2

∑
i, j,k

|GHZi jk〉ABC |GHZi jk〉abc. (14)

Here the subscripts i, j, k ∈ {0, 1}, and the polarization-
encoded GHZ states |GHZi jk〉abc are defined in Eq. (5) for
n = 3. The eight distant stationary GHZ states among Alice,
Bob, and Charlie are of the following forms:

|GHZ00k〉ABC = 1√
2

[|↑〉A|↑〉B|↑〉C + (−1)k|↓〉A|↓〉B|↓〉C],

|GHZ10k〉ABC = 1√
2

[|↓〉A|↑〉B|↑〉C + (−1)k|↑〉A|↓〉B|↓〉C],

|GHZ01k〉ABC = 1√
2

[|↑〉A|↓〉B|↑〉C + (−1)k|↓〉A|↑〉B|↓〉C],

|GHZ11k〉ABC = 1√
2

[|↓〉A|↓〉B|↑〉C + (−1)k|↑〉A|↑〉B|↓〉C],

(15)

with k ∈ {0, 1}. These states constitute a complete basis for
three-QD systems.
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When the ancillary node Eve performs a quantum swap-
ping operation with a three-photon polarization-encoded
GHZ-state analysis, the states of the three stationary qubits,
which belong to Alice, Bob, and Charlie, are projected into
a deterministic GHZ state according to the analysis result of
Eve. That is, we can, in principle, generate multipartite GHZ
entanglement efficiently among distant stationary qubits with
a perfect efficiency.

In Sec. III, we have described a particular pattern of the
GHZ-state analysis with a preset time delay between each
two optical elements. Now we demonstrate that the GHZ-state
analysis also works for a time-delay free pattern, by perform-
ing the aforementioned quantum swapping as an example.
Suppose both QDs in the QND detectors are initialized in
the state |+〉 = (|↑〉 + |↓〉)/

√
2, and all the linear-optical ele-

ments perform the same operation as that described in Sec. III.
The three photons from hybrid entanglement pairs Aa, Bb,
and Cc, subsequently pass though the analysis setup indepen-
dently, rather than transmitting them in a block pattern. After
photon a passing through the setup and being routed into two
spatial modes that are ended with single-photon detectors, the
hybrid system, consisting of three entanglement pairs and two
QDs in the QND detectors, evolves into

|φ1〉 = 1

2
[|H〉a(|+〉A|+〉1|−〉2 + |−〉A|−〉1|+〉2)

−|V 〉a(|+〉A|+〉1|−〉2 − |−〉A|−〉1|+〉2)] ⊗ |φ〉Bb|φ〉Cc.

(16)

For clarity, we assume that the standard (destructive) single-
photon detectors work nondestructively and a photon survives
after a measurement on it, such that we can directly specify
the state of the distant stationary qubits according to the state
of the photon a. Subsequently, the photon b is input into the
setup when the photon a has passed through the setup and
lead to a click of either single-photon destructive detector D1

or D2. The hybrid system evolves into

|φ2〉 = 1

2
√

2
[(|�+〉AB|+〉1|+〉2

+|�−〉AB|−〉1|−〉2)|H〉a|H〉b − (|�+〉AB|+〉1|+〉2

+|�−〉AB|−〉1|−〉2)|H〉a|V 〉b − (|�+〉AB|+〉1|+〉2

−|�−〉AB|−〉1|−〉2)|V 〉a|H〉b + (|�+〉AB|+〉1|+〉2

−|�−〉AB|−〉1|−〉2)|V 〉a|V 〉b] ⊗ |φ〉Cc, (17)

where the four Bell states of the two QDs, belonging to Alice
and Bob, are as follows:

|�±〉AB = 1√
2

(|↑〉A|↑〉B ± |↓〉A|↓〉B),

|�±〉AB = 1√
2

(|↑〉A|↓〉B ± |↓〉A|↑〉B). (18)

Now, if Eve terminates the input of photon c and detects
the two QDs of the QND detectors, the two distant QDs
A and B are collapsed to one of the Bell states given in
Eq. (18), according to the results of the QND detectors and
the measurement on photons ab. That is, a deterministic
quantum swapping operation can be completed between two

hybrid entanglement pairs Aa and Bb by using the passive
entanglement analysis setup.

If Eve inputs the photon c into the analysis setup rather
than terminating it with a measurement on the two QDs of
the QND detectors, the state |φ2〉 of the hybrid system evolves
into the final state,

|φ3〉 = 1

2
√

2

∑
i j

(−1)i+ j[|GHZi j0〉ABC |GHZi j1〉abc|+〉1|−〉2

+|GHZi j1〉ABC |GHZi j0〉abc|−〉1|+〉2], (19)

with the subscripts i, j ∈ {0, 1}. Three distant QDs A, B, and
C are projected into a predetermined GHZ state, according to
the results of the QND detectors and the single-photon de-
structive detectors, when Eve applies a polarization-encoded
GHZ-state analysis on three photons of the hybrid entangled
pairs. Therefore, in principle, the passive GHZ-state analysis
works faithfully for both cases, i.e., the time-delay and time-
delay-free cases, when an ideal single-photon QND detector
is available.

V. PERFORMANCE OF THE PASSIVE
GHZ-STATE ANALYZER

A. Realistic photon scattering

A core element of the passive GHZ-state analysis is the
QND detector for single photons. Here a unit consisting of
a QD and a micropillar cavity enables such QND detection.
In principle, the QND detector can perfectly distinguish two
orthogonal polarization states |H〉 and |V 〉 of a single photon
with perfect efficiency. However, there are always some im-
perfections that introduce a deviation from ideal single-photon
scattering [82–86], such as a finite single-photon bandwidth,
a finite coupling g between a QD and a cavity, and the nondi-
rectional cavity side leakage κs, etc. This leads to realistic
(nonideal) scattering for a linearly polarized photon. Thus, the
hybrid system consisting of a linearly polarized single photon
and a QD, evolves as follows:

|H〉|±〉 → 1√
CN

[(r1 + r0)|H〉|±〉 + (r1 − r0)|V 〉|∓〉],

|V 〉|±〉 → 1√
CN

[(r1 − r0)|H〉|∓〉 + (r1 + r0)|V 〉|±〉], (20)

where the parameters r and r0 are frequency-dependent re-
flection coefficients given in Eq. (2); CN = 2(|r1|2 + |r0|2) is
the normalized coefficient. After scattering, the state of the
photon and the QD evolves in two ways independent of its
initial state.

(1) It is flipped simultaneously with a probability p1 =
|r1 − r0|2/4, which is the desired output and it can be sim-
plified to perform an ideal QND detection, as given in Eq. (3),
when ideal scattering with r1 = 1 and r0 = −1 is achieved.

(2) The state of the photon and the QD are unchanged with
the probability p2 = |r1 + r0|2/4, which leads to errors and
results in an unfaithful QND detection for single photons.

Fortunately, this nonideal scattering does not affect the
fidelity of the passive GHZ-state analysis, since the undesired
scattering component is filtered out automatically by the PBS
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FIG. 4. Average efficiencies (a) ηs
2 of the two-photon Bell-state

analyzer and (b) ηs
3 of the three-photon GHZ-state analyzer versus

the coupling strength g/κs and the directional coupling rate of a
cavity κ/κs in units of the cavity side-leakage rate κs. These averages
are calculated over all detunings of input photons, with the Gaussian
spectrum given by Eq. (23) and σω = γ . The decay parameters are
(κs, γ ) = (30 μ eV, 0.3 μ eV).

and only leads to an inconclusive result rather than infidelity
result by a click of the single-photon destructive detector D3.

B. Realistic analyzer efficiency

For ideal scattering, the analyzer efficiency approaches
unity. Here, we evaluate the performance of a realistic ana-
lyzer for the general reflection amplitudes given in Eq. (2).
Nonideal scattering in practical QND detection does not
reduce the fidelity of an n-photon GHZ analysis. However,
this realistic scattering decreases the efficiency η̃s

n, which is
defined as the probability that all photons are detected by
a single-photon destructive detector, either D1 or D2. For
monochromatic photons of a frequency ω, the efficiency η̃s

n
is defined as

η̃s
n = ηn

0η
n
1(ω), (21)

where η0 is the efficiency of a single-photon detector Di and
η1(ω) is the error-free efficiency of a practical scattering with

η1(ω) =
∣∣∣∣ r1(ω) − r0(ω)

2

∣∣∣∣
2

. (22)

The average efficiencies of the passive two-photon Bell-state
and the three-photon GHZ-state analyzers are shown in Fig. 4
with decay parameters (κs, γ ) = (30μ eV, 0.3μ eV), which
are adopted according to the QDs that are embedded in
electrically controlled cavities around 4 K [98,99]. We plotted
the average efficiencies ηs

2 and ηs
3 versus the coupling strength

g/κs and the directional coupling rate of the cavity κ/κs for a

given Gaussian single-photon pulse defined by the spectrum,

f (ω) = 1√
πσω

exp

[
−

(
ω − ωc

σω

)2
]
, (23)

where ωc is the center frequency and σω denotes the pulse
bandwidth with ωc = ωX − and σω = γ . Here the average
efficiencies are calculated in the frequency domain. The re-
flection coefficients appear as a frequency-dependent redis-
tribution function that is proportional to |r1(ω) − r0(ω)|2n as
follows [100,101]:

ηs
n =

∫
dω f (ω)ηn

0

∣∣∣∣ r1(ω) − r0(ω)

2

∣∣∣∣
2n

. (24)

In general, the average efficiencies of the passive two-
photon Bell-state and three-photon GHZ-state analyzers in-
crease when the coupling g/κs between a QD and a cavity is
increased for a given directional coupling rate κ/κs. This is
because the cooperativity,

C = g2

γ κT
= g2

γ (κ + κs)
, (25)

which is defined as an essential parameter quantifying the loss
of an atom-cavity system, increases when we increase g/κs

and keep other parameters unchanged. For a given g/κs, the
average efficiencies of these two analyzers first increase and
then decrease when κ/κs is increased, as shown in Fig. 4. This
is mainly due to the competition between an increased ratio
of κ/κs and a decreased cooperativity C. Therefore, one can
maximize the efficiencies by using cavities with a mediate
κ , which can be achieved, e.g., by decreasing the number
of the Bragg reflector of a micropillar cavity. For simplicity,
we set the efficiency of a single-photon destructive detector
as η0 = 1.

For the two-photon Bell-state analyzer, its average effi-
ciency ηs

2 = 0.304 for an experimental demonstrated coupling
g/κs = 1 and the directional coupling rate of a cavity, κ/κs =
3, which corresponds to a cooperativity C = 25. For the
three-photon GHZ-state analyzer, one can obtain the average
efficiency ηs

3 � 0.168 for the same systematic parameters. If
κ is increased to κ/κs = 19 with a cooperativity C = 5 [98],
the average efficiencies are increased to ηs

2 � 0.664 and ηs
3 �

0.541, respectively. Note that the adiabatic condition is still
satisfied in this case, since the photon bandwidth σω = γ is
much smaller than 2g2/κT = 2Cγ . The protocol works with
a higher efficiency for analyzing photons with a narrower
bandwidth. However, this, in turn, usually increases the time
period of the scattering process, and, thus, decreases the
analyzer fidelity limited by QD decoherence [86,88]. The
fidelity of our analyzer is given by

Fn(T2) = 1
4 [1 + exp(−tn/T2)]2, (26)

which is determined by the process for distinguishing
|GHZi1i2...0〉 from |GHZi′1i′2...1〉 (measuring X -type stabilizer
S1), since the process for measuring Z-type stabilizers is com-
pleted directly by single-photon detectors and is independent
of QD decoherence. Here, the time required to complete the
n-photon GHZ-state analysis is given by tn � nt0. In our nu-
merical calculations shown in Fig. 5 and Table I, we assumed
t0 � 1.10 ns for performing a single-photon scattering process
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FIG. 5. Average fidelities F ′
n , F ′′

n , and efficiency ηs
n versus photon

number n. Here F ′
n ≡ Fn(T2 = 10.9 ns) and F ′′

n ≡ Fn(T2 = 2 μs).
These averages are calculated over all detunings of input photons,
with the Gaussian spectrum given by Eq. (23) and σω = 2γ . The
decay parameters are (κs, γ ) = (30 μ eV, 0.3 μ eV), g = κs, and κ =
9κs with C = 10. Meanwhile, the line of the fidelities at 1/2 is shown
for reference.

with a bandwidth σω = 2γ . Moreover, T2 is the coherence
time of the electron spin in a QD.

Typically, the coherence time T2 is in the 1–10 ns
range [87,102,103]. Taking an experimental accessible value
of T2 = 10.9 ns [102], we obtain the corresponding analyzer
fidelity F ′

n ≡ Fn(T2 = 10.9 ns) versus the photon number n for
the parameters (g, κs, γ ) = (30μ eV, 30μ eV, 0.3μ eV) and
κ/κs = 9 with C = 10, as shown by the green dash-dot curve
in Fig. 5 and listed Table I. For a four-photon system, the
analyzer fidelity can reach F ′

4 � 0.70. For an eight-photon
system, F ′

8 is still larger than 0.5.
The fidelity of our GHZ-state analyzer is influenced by

the coherence time T2. Note that the coherence time T2 can
be optimized and improved to be longer than 2 μs, when
the high-degree nuclear-spin bath polarization or spin-echo
refocusing methods are applied [87,103]. When T2 = 2 μs,
we can achieve the fidelity F ′′

n ≡ Fn(T2 = 2 μs) > 0.988 for
n � 20 (see the red solid curve in Fig. 5) assuming all the
other parameters to be the same as for F ′

n in this figure.
In contrast to the fidelity, the average efficiency ηs

n is
independent of T2, because the effective output component,
which is involved in a scattering process, is independent
of the state of the QD, as shown in Eq. (20). In general,
ηs

n decreases when the photon number n increases (see the
blue dashed curve in Fig. 5 and Table I). For a 20-photon
system, the average efficiency of our protocol is equal to
ηs

20 = 0.0039, which is many orders higher than the efficiency

TABLE I. Average fidelities F ′
n , F ′′

n , and efficiency ηs
n versus

photon number n for the parameters assumed in Fig. 5. Here F ′
n ≡

Fn(T2 = 10.9 ns) and F ′′
n ≡ Fn(T2 = 2 μs).

n F ′
n F ′′

n ηs
n n F ′

n F ′′
n ηs

n

2 0.826 0.9989 0.5893 6 0.5981 0.9967 0.2047
3 0.7564 0.9984 0.4524 7 0.5583 0.9962 0.1572
4 0.6961 0.9978 0.3473 8 0.5235 0.9956 0.1207
5 0.6437 0.9973 0.2666 20 0.3141 0.9886 0.0039

given by 1/2(n−1) = 2−19 for the standard analyzers consisting
of linear-optical elements and single-photon detectors [69].

VI. DISCUSSION

The linear-optical implementation of the GHZ-state ana-
lyzer passively distinguishes two GHZ states |GHZ00...0〉 and
|GHZ00...1〉 from the remaining (2n − 2) GHZ states, and
enables a complete analysis for 2n GHZ states when many
ancillary photons and detectors are used [70]. This kind of
GHZ analysis is much like a GHZ-state generation that is
constructed by linear optics and post-selection [28,58,59].
Currently, the GHZ state of a 10-photon system has been
demonstrated by using linear optics [104,105]. The existing
GHZ-state analyzers, which are based on optical nonlinear-
ities, have been proposed by cascading two-photon parity
QND detectors [17,106]. Such an analyzer can, in princi-
ple, distinguish 2n GHZ states of an n-photon system non-
destructively, when it is assisted by fast switching and/or
active operations during the entangled-state analysis. These
operations dramatically increase its experimental complexity
and consume more quantum resources. Furthermore, such
implementations always require a strong optical nonlinearity
to keep the analysis faithful.

Our scheme of a passive GHZ-state analysis for n
polarization-encoded photons uses only linear-optical ele-
ments, and single-photon destructive and nondestructive de-
tectors. This analyzer can, in principle, deterministically dis-
tinguish among 2n GHZ states for n-photon systems, and
hence it combines the advantages of those based on linear
optics with those based on optical nonlinearities. Moreover,
our scheme eliminates disadvantages of such standard analyz-
ers by designing an error-tolerant QND detection for single
photons, and can be useful for efficient implementations of
all-photonic quantum repeaters, even including those without
quantum memory [107,108].

The proposed QND detector consists of a four-level emitter
coupled to a microcavity or waveguide [81–86], such as a
negatively charged QD coupled to a micropillar cavity. This
analyzer is also compatible with the proposals of realistic
QND detection [85,88–90] for single photons; however, as
we have shown, it is more efficient than the standard ones for
several reasons: Our QND detector can work in a passive way
and can faithfully distinguish photon numbers subsequently
passing through it in an even-odd basis. Furthermore, it is
error tolerant, when it is used to detect linearly polarized
photons.

Our description of scattering imperfections includes the
following: finite photon-pulse bandwidth σω, cavity loss κs,
and finite coupling g. This realistic scattering process leads
to a hybrid entangled state of a photon and a QD, consisting
of ideal scattering component and the error scattering com-
ponent. When the two QDs couple equally to their respective
micropillar cavities, the error component is passively filtered
out by a PBS and then is heralded by a click of a single-photon
destructive detector, leading to an inconclusive result rather
than an unfaithful GHZ-state analysis. In practice, the two
QDs might be different due to inhomogeneous broadening and
could couple differently to their respective cavities [87]. This
would lead to different scattering processes, which result in
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different hybrid entangled states of a photon and a QD, when
a photon is reflected by different QND detectors. This effect,
in principle, can be suppressed by inserting a passive modu-
lator before the QND detector with a larger ideal scattering
component and by tuning it to match that of the other QND
detector [109].

Furthermore, a QD is a candidate for quantum informa-
tion processing due to its very good characteristics concern-
ing its optical initialization, single-qubit manipulation, and
readout, based on well-developed semiconductor technolo-
gies [97,103,110–112]. The coherence time of a QD electron
spin can be several microseconds at temperatures around
4 K [87,103], while a single-photon scattering is accom-
plished on nanosecond time scales. Moreover, the present
protocol of entanglement analysis can be generalized to other
systems with a required level structure [113,114]. Recently,
a five-photon polarization-encoded cluster state has been
demonstrated with a confined dark exciton in a QD [113] and
an all-photonic quantum repeater protocol was described with
a similar solid-state four-level emitter [114].

VII. CONCLUSIONS

In summary, we proposed a resource-efficient analyzer of
Bell and Greenberger-Horne-Zeilinger states of multiphoton
systems. Quantum-nondemolition detection is implemented in
our analyzer with two four-level emitters (e.g., quantum dots),
each coupled to a one-dimensional system (such as optical
micropillar cavity or a photonic nanocrystal waveguide). This
QND measures the number of photons passing through it in
the even-odd basis and constitutes a faithful element for the
GHZ-state analyzer by introducing a passively error-filtering
structure with linear optics.

The main idea of our proposal can be simply explained
in terms of stabilizers for GHZ states defined in Eq. (6).
Specifically, we proposed to measure the parity of the X -type
stabilizer [k = 1 in Eq. (6)] with two quantum dots and to
measure the parity of the Z-type stabilizers [k = 2, 3, . . . , n in
Eq. (6)] with direct polarization measurements on each photon
scattered by the QDs. There are neither active operations
nor adaptive switching in the proposed method, since the
faithful GHZ-state analysis for multiple photon systems works
efficiently by passively arranging two QND detectors, single-
photon destructive detectors, and linear-optical elements. Fur-
thermore, the described method is universal, as it enables
two-photon Bell-state and multiphoton GHZ-state analyses.
All these distinct characteristics make the proposed passive
analyzers simple and resource efficient for long-distance
multinode quantum communication and quantum networks.

ACKNOWLEDGMENTS

This work was supported in part by the National Key
R&D Program of China (Grant No. 2017YFA0303703), the
Natural Science Foundation of Jiangsu Province (Grant No.
BK20180461), the National Natural and Science Founda-
tion of China (Grants No. 11874212, No. 11574145, No.
11890700, No. 11890704, No. 11904171, and No. 11690031),
and the Fundamental Research Funds for the Central Univer-
sities (Grant No. 021314380095). A.M. and F.N. acknowl-

edge a grant from the John Templeton Foundation. F.N. is
also supported in part by the MURI Center for Dynamic
Magneto-Optics via the Air Force Office of Scientific Re-
search (AFOSR) (Grant No. FA9550-14-1-0040), Army Re-
search Office (ARO) (Grant No. W911NF-18-1-0358), Asian
Office of Aerospace Research and Development (AOARD)
(Grant No. FA2386-18-1-4045), Japan Science and Technol-
ogy Agency (JST) (Q-LEAP program and CREST Grant No.
JPMJCR1676), Japan Society for the Promotion of Science
(JSPS) (JSPS-RFBR Grant No. 17-52-50023 and JSPS-FWO
Grant No. VS.059.18N), the NYY PHI Labs, and the RIKEN-
AIST Challenge Research Fund.

APPENDIX A: ANALYZER OF TWO-PHOTON
POLARIZATION-ENCODED BELL STATES

Here we give a pedagogical example of our method limited
to the polarization-encoded Bell-state analysis.

The passive analyzer, in principle, enables a deterministic
analysis of two-photon polarization-encoded Bell states. For
any two-photon system, the four Bell states can be described
as follows:

|φ±〉 = 1√
2

(|H〉|H〉 ± |V 〉|V 〉),

|ψ±〉 = 1√
2

(|H〉|V 〉 ± |V 〉|H〉). (A1)

Photon pairs in these states, after passing through the analyzer,
lead to four different results that are heralded by single-photon
destructive and QND detectors.

Suppose now that the QD in each QND detector is initial-
ized to the state |+〉. The HWP introduces a Hadamard trans-
formation on photons passing it, i.e., |H〉 → (|H〉 + |V 〉)/

√
2,

or |V 〉 → (|H〉 − |V 〉)/
√

2, and evolves the states |φ+〉, |φ−〉,
|ψ+〉, and |ψ−〉 into |ψ1〉 = |φ+〉, |ψ2〉 = |ψ+〉, |ψ3〉 = |φ−〉,
and |ψ4〉 = −|ψ−〉, respectively. The original states |φ+〉
and |ψ+〉, with a relative phase of zero, are changed into
states consisting of even numbers of V-polarized photons, i.e.,
|H〉|H〉 and |V 〉|V 〉. While the original states |φ−〉 and |ψ−〉
with a relative phase of π are changed into states consisting of
odd numbers of V-polarized photons, i.e., |H〉|V 〉 and |V 〉|H〉.

Subsequently, photons in the V-polarized (H-polarized)
states are reflected (transmitted) by the PBS, and are scattered
by the detector QND1 (QND2). Photon pairs in the states |ψ1〉,
|ψ2〉, |ψ3〉, and |ψ4〉, which are combined with two QDs, are
changed into the states,

|ψ ′
1〉 = |φ+〉|+〉1|+〉2,

|ψ ′
2〉 = |ψ+〉|−〉1|−〉2,

|ψ ′
3〉 = −|φ−〉|+〉1|+〉2,

|ψ ′
4〉 = |ψ−〉|−〉1|−〉2. (A2)

The original Bell states with relative phases zero and π can be
distinguished from each other, according to the states of the
QDs.

To read out the original polarization information of the
photon pair, the HWP between two PBSs introduces a
Hadamard transformation on photons passing through it and
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TABLE II. Complete two-photon Bell-state analysis. Here |i j〉
represents the measurement result of the two single-photon de-
tectors (QDs) with |i j〉={|HH〉, |VV 〉, |HV 〉, |V H〉} (|i j〉={|+ +〉,
|− −〉}). We use the standard notation for the Bell states |φ±〉 and
|ψ±〉, as given in Eq. (A1).

|HH〉/|VV 〉 |HV 〉/|V H〉 |+ +〉 |− −〉
|φ+〉 √ √
|φ−〉 √ √
|ψ+〉 √ √
|ψ−〉 √ √

transforms |ψ ′
i 〉 into |ψ ′′

i 〉 for i = 1, 2, 3, 4, with

|ψ ′′
1 〉 = |φ+〉|+〉1|+〉2,

|ψ ′′
2 〉 = |φ−〉|−〉1|−〉2,

|ψ ′′
3 〉 = −|ψ+〉|+〉1|+〉2,

|ψ ′′
4 〉 = −|ψ−〉|−〉1|−〉2, (A3)

which transforms the photon pair state to their original state,
up to an overall phase π . Therefore, we can distinguish |ψ ′′

1 〉
and |ψ ′′

2 〉 from |ψ ′′
3 〉 and |ψ ′′

4 〉 by performing single-photon
destructive measurements in the vertical-horizontal basis.
Thus, one can distinguish |φ±〉 from |ψ±〉. Finally, we can
completely identify the four Bell states by the measurement
results of the single-photon destructive and QND detectors, as
shown in Table II.

APPENDIX B: ANALYZER OF THREE-PHOTON
POLARIZATION-ENCODED GHZ STATES

Here we give another pedagogical example of our method
of state analysis for polarization-encoded three-photon GHZ
states.

For a three-photon system, the eight GHZ states can be
written as follows,

|GHZ00k〉abc = 1√
2

[|H〉a|H〉b|H〉c + (−1)k|V 〉a|V 〉b|V 〉c],

|GHZ10k〉abc = 1√
2

[|V 〉a|H〉b|H〉c + (−1)k|H〉a|V 〉b|V 〉c],

|GHZ01k〉abc = 1√
2

[|H〉a|V 〉b|H〉c + (−1)k|V 〉a|H〉b|V 〉c],

|GHZ11k〉abc = 1√
2

[|V 〉a|V 〉b|H〉c + (−1)k|H〉a|H〉b|V 〉c].

(B1)

To distinguish these eight GHZ states from one another, we
input photons (a,b,c) into the setup for the GHZ-state analysis.
Photons (a,b,c) in the GHZ states |GHZi jk〉abc, i, j, k ∈ {0, 1}
pass through the HWP that performs a Hadamard operation
on them, and are changed, respectively, into the states,

|�i j0〉abc = 1
2

(∣∣Gi j
0

〉 + √
3
∣∣Gi j

2

〉)
,

|�i j1〉abc = 1
2

(√
3
∣∣Gi j

1

〉 + ∣∣Gi j
3

〉)
, (B2)

TABLE III. Complete three-photon GHZ-state analysis. Here the
measurement results C1, C2, C3, and C4 of the two single-photon
detectors D1 and D2 correspond to either |HHH〉 or |VVV 〉, and
similarly for |HVV 〉 or |V HH〉, |V HV 〉 or |HV H〉, and |VV H〉 or
|HHV 〉, respectively. Here, |+ −〉 and |− +〉 denote two possible
results of the measurement on the two QDs.

C1 C2 C3 C4 |+ −〉 |− +〉
|GHZ000〉 √ √
|GHZ001〉 √ √
|GHZ100〉 √ √
|GHZ101〉 √ √
|GHZ010〉 √ √
|GHZ011〉 √ √
|GHZ110〉 √ √
|GHZ111〉 √ √

where the ancillary states |Gi j
m〉 with m = 0, 1, 2, 3, are given

in Sec. III C and can be detailed as follows:

∣∣Gi j
0

〉 = |H〉a|H〉b|H〉c,

∣∣Gi j
1

〉 = σ i
za

⊗ σ
j

zb√
3

(|V 〉a|H〉b|H〉c

+ |H〉a|V 〉b|H〉c + |H〉a|H〉b|V 〉c),

∣∣Gi j
2

〉 = σ i
za

⊗ σ
j

zb√
3

(|H〉a|V 〉b|V 〉c

+ |V 〉a|H〉b|V 〉c + |V 〉a|V 〉b|H〉c),∣∣Gi j
3

〉 = σ i
za

⊗ σ j
zb
|V 〉a|V 〉b|V 〉c. (B3)

The GHZ states |GHZi j0〉abc (|GHZi j1〉abc) with the relative
phase 0 (π ) can be distinguished from one another by mea-
suring the numbers of V-polarized photons in the even-odd
basis with QND detectors. The QND detectors initialized to
the state |+〉 flip the states of the QD and photon during the
scattering process, and evolve photons (a,b,c) and two QDs
into the states:

|�′
i j0〉abc = σxa ⊗ σxb ⊗ σxc

2

(∣∣Gi j
0

〉 + √
3
∣∣Gi j

2

〉)|+〉1|−〉2,

|�′
i j1〉abc = σxa ⊗ σxb ⊗ σxc

2

(√
3
∣∣Gi j

1

〉 + ∣∣Gi j
3

〉)|−〉1|+〉2. (B4)

The original GHZ states with relative phases 0 and π can be
distinguished from one another, according to the states of the
QDs.

To read out the original polarization information of photons
(a,b,c), the HWP between two PBSs introduces a Hadamard
transformation on photons passing through it and transforms
|�′

i jk〉 into |�′′
i jk〉 with

|�′′
i j0〉abc = (−1)i+ j |GHZi j1〉abc|+〉1|−〉2,

|�′′
i j1〉abc = (−1)i+ j |GHZi j0〉abc|−〉1|+〉2. (B5)

Now the photons (a,b,c) are transformed to their original state,
up to a phase difference π , which is independent of the results
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of the single-photon destructive measurements in the vertical-
horizontal basis. Therefore, we can completely identify the

eight GHZ states by the measurement results of the single-
photon destructive and QND detectors, as shown in Table III.
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