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Matrix quantum mechanics plays various important roles in theoretical physics, such as a holographic
description of quantum black holes, and it underpins the only practical numerical approach to the study
of complex high-dimensional supergravity theories. Understanding quantum black holes and the role of
entanglement in a holographic setup is of paramount importance for the realization of a quantum theory of
gravity. Moreover, a complete numerical understanding of the holographic duality and the emergence of
geometric space-time features from microscopic degrees of freedom could pave the way for new discover-
ies in quantum information science. Euclidean lattice Monte Carlo simulations are the de facto numerical
tool for understanding the spectrum of large matrix models and have been used to test the holographic
duality. However, they are not tailored to extract dynamical properties or even the quantum wave function
of the ground state of matrix models. Quantum computing and deep learning provide potentially useful
approaches to study the dynamics of matrix quantum mechanics. If successful in the context of matrix
models, these rapidly improving numerical techniques could become the new Swiss army knife of quan-
tum gravity practitioners. In this paper, we perform the first systematic survey for quantum computing and
deep-learning approaches to matrix quantum mechanics, comparing them to lattice Monte Carlo simula-
tions. These provide baseline benchmarks before addressing more complicated problems. In particular, we
test the performance of each method by calculating the low-energy spectrum.

DOI: 10.1103/PRXQuantum.3.010324

I. INTRODUCTION

Gauge-gravity duality [1,2] translates difficult (or
intractable) problems in quantum gravity to well-defined
problems in nongravitational quantum theories. Although
it originated from string–M-theory, connections to vari-
ous other fields, including quantum information theory,
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condensed-matter theory, and cosmology, have been rec-
ognized by now, with research programs actively pur-
sued. Quantum mechanics with matrix degrees of freedom
(matrix QM, or matrix models in the following) plays an
important role in gauge-gravity duality. More specifically,
Yang-Mills–type matrix models can provide us with a non-
perturbative formulation of superstring–M-theory [2–5]. In
certain regions of the parameter space (i.e., strong coupling
and large N ), weakly coupled gravity with small stringy
corrections can be described by matrix models. Therefore,
matrix models can offer us an ideal setup to study quan-
tum corrections to gravity. By solving the matrix models,
it should be possible to study fascinating problems such as
the microscopic mechanism of black-hole evaporation.

2691-3399/22/3(1)/010324(44) 010324-1 Published by the American Physical Society

https://orcid.org/0000-0003-4134-809X
https://orcid.org/0000-0003-2042-0857
https://orcid.org/0000-0002-8171-2549
https://orcid.org/0000-0003-3682-7432
https://orcid.org/0000-0001-5174-2571
https://crossmark.crossref.org/dialog/?doi=10.1103/PRXQuantum.3.010324&domain=pdf&date_stamp=2022-02-10
http://dx.doi.org/10.1103/PRXQuantum.3.010324
https://creativecommons.org/licenses/by/4.0/


ENRICO RINALDI et al. PRX QUANTUM 3, 010324 (2022)

Under the gauge-gravity (or holographic) duality setup,
we seek a precise understanding of the quantum-
mechanical solution to matrix models, including proper-
ties of the quantum ground-state wave function, quantum
dynamical effects, and quantum entanglement patterns.
This is our best shot at advancing our knowledge about
puzzling concepts including the information-loss para-
dox. In the past, Monte Carlo simulations based on the
Euclidean path-integral formulation have been used exten-
sively to extract thermodynamic information from several
matrix models; for a remarkable agreement between the
D0-brane matrix model and type-IIA superstring theory,
see, e.g., Ref. [6]. However, there are certain problems
that it is hard to access via Monte Carlo methods, such as
the Hamiltonian time evolution, which would be needed
to understand dynamical phenomena such as graviton
scattering. Therefore, it is important to develop alterna-
tive methods too. In this paper, we consider quantum
simulation [7–11] and deep learning as such alternative
approaches. Quantum simulations of lattice gauge theo-
ries have recently attracted considerable attention, since
the pioneering work of Ref. [12], and deep learning is
being used to accelerate simulations of lattice gauge the-
ories similar to QCD [13]. These two rapidly growing
numerical techniques hold the promise to transform the
landscape of numerical simulations in quantum gravity,
under the umbrella of “quantum gravity in the laboratory,”
and matrix models are a simple and theoretically well-
controlled setup to test them. Another interesting approach,
outside the scope of this paper, is related to the numerical
bootstrap [14–16].

We briefly introduce the pros and cons of these numeri-
cal approaches to matrix models:

Monte Carlo simulations—Monte Carlo simulations can
be used to study problems that can be accessed by the
Euclidean path integral, such as canonical thermodynamics
and Euclidean correlation functions. Large-scale parallel
simulations on high-performance computing (HPC) sys-
tems are doable and are done regularly. It is known how
to improve the simulation results systematically, by accu-
mulating more chain trajectories and simulating larger
systems.

However, Monte Carlo simulation can only work when
there is no sign problem [17].

Due to the sign problem, we cannot study the Hamil-
tonian time evolution. The sign problem may also appear
at the very-low-temperature region of the matrix models.
Note also that, even when there is no sign problem, we
cannot see the quantum states in the Hilbert space directly.
This might be a disadvantage for several interesting appli-
cations, such as decoding the emergent bulk geometry in
holography along the lines of Ref. [18].

Quantum computing—On a quantum computer, quantum
states are directly realized. Therefore, quantum computing

does not suffer from the sign problem and the Hamiltonian
time evolution can be simulated straightforwardly. Some
research directions that could benefit from direct quantum
simulations are the formation and evaporation of a black
hole, or a wormhole, and quantum teleportation [19].

The biggest challenge is that we do not yet have a
reliable large-scale quantum computer. Although we can
emulate a quantum computer on a classical computer, these
simulations are restricted to systems with only a small
number of qubits. Furthermore, the effects of the regular-
ization needed to map a theory on a quantum device are
not well understood yet.

The variational quantum eigensolver (VQE)
[20–22] is expected to be a useful quantum-classical
hybrid algorithm in the noisy intermediate-scale quan-
tum (NISQ) era, because it can provide accurate results
using shallower quantum circuits, less prone to noise.
Being a variational method, the VQE can have system-
atic errors: a priori, we do not know if we can obtain the
right answer, because the simulation might be trapped in
a local optimum. This is a general problem for variational
methods.

Quantum computing represents the computation in
terms of qubits and quantum gates that can represent
larger Hamiltonians and Hilbert spaces on quantum hard-
ware than classical computers that are limited by memory
constraints. Also, quantum computing represents fermions
straightforwardly in a similar way to how bosons are rep-
resented and, as mentioned above, it is not susceptible to
the sign problem like classical methods using Monte Carlo
algorithms.

Some of the disadvantages of NISQ devices [23] include
the lack of quantum error correction for quantum gates
and the presence of noise, which can lead to inaccurate
quantum gates and decoherence of the qubits during the
computation. For the hybrid quantum-classical computa-
tions that we discuss here, the advantages are that many
parts of a hybrid quantum-classical variational calcula-
tion, such as optimization, can be done efficiently on a
classical computer, while expectation values can be com-
puted on a quantum computer. This leads to a lower
depth for the circuits, making them less susceptible to
decoherence. However, these methods include compli-
cated state-preparation protocols and variational ansatze
for the wave function that need to be specified to have
strong overlaps with the true ground state. Such wave func-
tions may need a high-depth quantum circuit, which is
difficult to implement on NISQ hardware and is prone to
decoherence.

Deep Learning—Deep-learning methods have been applied
successfully to the study of many-body quantum systems
[24]. As one such approach, we consider a variational
quantum Monte Carlo method with generative autoregres-
sive flows: this method uses a deep neural network to
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represent the probability distribution given by the system
wave function [25]. This method may make the calcu-
lation on a classical computer much more efficient and
we can obtain quantum states directly. This enables us
to access a class of physics that cannot be handled via
Markov chain Monte Carlo simulations of the Euclidean
path integral.

The biggest disadvantage of this approach is that, a pri-
ori, we do not know if we can get the right answer; that
is, systematic errors are difficult to estimate and the sim-
ulation might be trapped in a local optimum. This is the
same problem as the one we mentioned above for the VQE.
However, in practice, this approach has been used exten-
sively across several many-body quantum systems [26–
32], with neural quantum states becoming increasingly
useful in real-world applications.

Focus of this paper—By listing the differences between
the available numerical methods, it is clear that quan-
tum computing and deep learning can, in principle, be
very useful tools in solving matrix models. These allow a
direct representation of quantum states (encoded in qubits
or neural networks), which is needed to access the quan-
tum information stored in the wave function. However,
we do not know in practice if they can be useful. In
this paper, we perform a systematic survey for quantum-
simulation and deep-learning approaches that will serve
as the first stepping stone for future research directions.
Specifically, we focus on two important aspects that need
to be addressed, before embarking on more complicated
numerical efforts:

(a) Quantum simulation requires a truncation of the
Hilbert space when the underlying degrees of free-
dom can access an infinite tower of states, such
as for bosonic particles. For SU(2) matrix mod-
els, we study the truncation effects by determin-
ing the low-energy states precisely via an exact
diagonalization procedure. We find that the trunca-
tion effects are exponentially small with respect to
the truncation level. This is not expected a priori
and it represents the first original outcome of this
paper.

(b) We use the VQE and deep-learning methods to esti-
mate the low-energy spectrum and compare them
with other methods (exact diagonalization of a trun-
cated Hamiltonian, lattice Monte Carlo simulation,
and some exact results for supersymmetric mod-
els). The energy of the ground state is our first
benchmark, telling us if the qubit and the neural-
network representation of the Hamiltonian is cor-
rect. This is a mandatory first step for any future
algorithm where an accurate representation of the
Hamiltonian is needed, such as time evolution. For
the deep-learning method, we observe a reasonable
agreement, showing that there are specific neural

networks that are empirically well suited to rep-
resent matrix-model states. As for the VQE, the
specific architecture that we use does not show a
satisfactory performance at strong coupling, per-
haps due to the variational forms parametrized by
the quantum circuits not adequately probing the full
gauge-invariant Hilbert space. This result shows that
going beyond the VQE and using more compli-
cated or fully quantum algorithms is not the correct
way to approach matrix quantum mechanics for
now, because they would require even deeper quan-
tum circuits that are more prone to noise on actual
quantum hardware.

This paper is organized as follows. In Sec. II, we define
the models: a Yang-Mills–type bosonic matrix model and
a supersymmetric matrix model, which we call “mini-
mal BMN.” We can obtain a few exact results for the
latter due to supersymmetry. In Sec. III A, we consider
the quantum simulation approach. We introduce a sim-
ple scheme of the truncation of the Hilbert space and
study the truncation effect on the energy spectrum and
gauge symmetry. Then, in Sec. IV, we study the VQE as
an actual example of the application of a quantum com-
puter. In Sec. V, we estimate the ground-state energy via
the deep-learning approach. In Sec. VI, we calculate the
ground-state energy of the bosonic matrix model by per-
forming lattice Monte Carlo simulation. We compare the
results in Sec. VII.

The codes used to generate the data and make the figures
are open source and we provide a web site with additional
figures and tables in Ref. [33].

II. MODELS

In this section, we define the two kinds of matrix mod-
els studied in this paper. The first model contains only
bosonic degrees of freedom (DOF), while the second con-
tains both bosonic and fermionic DOF in a supersymmetric
setup.

A. Bosonic matrix model

Let us start with the bosonic matrix model, i.e., a
matrix model consisting of only bosonic degrees of
freedom. We introduce d traceless Hermitian matrices
X1(t), X2(t), . . . , Xd(t), where t is time. We consider the
following action (in the Minkowski signature):

S = N
∫

dtTr

(
1
2

∑
I

(DtXI )
2 − m2

2

∑
I

X 2
I

+ λ

4

∑
I �=J

[XI , XJ ]2

⎞
⎠ , (1)
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where λ = g2N and Dt is the covariant derivative with
gauge field At, i.e., DtXI = ∂tXI − i[At, XI ]. Via the SU(N )
transformation XI (t) → �(t)XI (t)�−1(t), DtXI transforms
as DtXI → �(t)[DtXI (t)]�−1(t); hence this action has the
SU(N ) gauge symmetry. The normalization used in Eq. (1)
is convenient when we take the ‘t Hooft large-N limit. The
number of matrices d can be arbitrary; we consider d = 2
in this paper. We can also use different normalization, by
rescaling XI with a factor

√
N :

S =
∫

dtTr
(

1
2
(DtXI )

2 − m2

2
X 2

I + g2

4
[XI , XJ ]2

)
. (2)

In the operator formalism, the Hamiltonian is given by

Ĥ = Tr
(

1
2

P̂2
I + m2

2
X̂ 2

I − g2

4
[X̂ I , X̂ J ]2

)
, (3)

where

P̂I =
N 2−1∑
α=1

P̂αI τα , X̂ I =
N 2−1∑
α=1

X̂ α
I τα . (4)

τα are the generators of SU(N ) normalized as Tr(τατβ) =
δαβ . The canonical commutation relation is

[X̂ Iα , P̂Jβ] = iδIJ δαβ . (5)

The Hamiltonian and the canonical commutation rela-
tion are invariant under the SU(N ) transformation X̂ I ,ij →
(�X̂ I�

−1)ij , P̂I ,ij → (�P̂I�
−1)ij . The physical states are

restricted to singlets under this SU(N ) transformation
(gauge singlets). We denote the Hilbert space spanned by
gauge singlets by Hinv. We can also consider a bigger
“extended” Hilbert space Hext that contains nonsinglets.
Because operators X̂ I and P̂I are not gauge invariant, they
are defined naturally on Hext.

It is tedious but straightforward to show the equiva-
lence between the path-integral formalism and the operator
formalism; see Appendix A.

B. Supersymmetric matrix model (minimal BMN)

The BMN matrix model [5] is a one-parameter defor-
mation of the D0-brane quantum mechanics that preserves
all supersymmetries. In Ref. [34], low-supersymmetry
analogs of the BMN matrix model are listed [35]. The one
corresponding to 3D N = 1 SYM [Eq. (6.3) in Ref. [34] ]
has the minimal degrees of freedom. So let us denote this
model “minimal BMN.”

Gamma matrices in three dimensions can be chosen as
γ 0 = iσ3, γ 1 = σ1 and γ 2 = σ2. The charge conjugation
matrix C, which satisfies C−1γμC = −γ T

μ , can be chosen

as C = iσ2. The Majorana condition Cψ = γ T
0 ψ

∗ can be

solved by ψ =
(
ξ

iξ ∗

)
. When ψ is a matrix, ψ =

(
ξ

iξ †

)
.

Having this convention in mind, the Hamiltonian of
minimal BMN is expressed as [34]

Ĥ = Tr
(

1
2

P̂2
I − g2

4
[X̂ I , X̂ J ]2 + g

2
ˆ̄ψγ I [X̂ I , ψ̂]

− 3iμ
4

ˆ̄ψψ̂ + μ2

2
X̂ 2

I

)
− (N 2 − 1)μ

= Tr
(

1
2

P̂2
I − g2

2
[X̂ 1, X̂ 2]2 + g

2
ξ̂ [−X̂ 1 − iX̂ 2, ξ̂ ]

+ g
2
ξ̂ †[−X̂ 1 + iX̂ 2, ξ̂ †] + 3μ

2
ξ̂ †ξ̂ + μ2

2
X̂ 2

I

)

− (N 2 − 1)μ. (6)

The last term −(N 2 − 1)μ causes the ground-state energy
to be zero [36]. Although the fermion number is not con-
served because there are interaction terms including two
ξ̂ or two ξ̂ †, fermion parity (i.e., fermion number even or
odd) is conserved.

1. Symmetry of the model

The supersymmetry transformation is given by [34]

δε · = [Q̂ε∗ + Q̂†ε, · ], (7)

where

Q̂ = −ξ̂ †
α

[
(P̂α1 − iP̂α2 )− iμ(X̂ α

1 − iX̂ α
2 )
]

− ig√
2

fαβγ ξ̂ αX̂ β

1 X̂ γ

2 . (8)

Here, fabc is the structure constant of SU(N ), which is εabc
for SU(2).

It is convenient to use

Ẑ = X1 − iX2√
2

, P̂Z = P̂1 − iP̂2√
2

, (9)

which satisfy

[Ẑ, P̂†
Z] = [Ẑ†, P̂Z] = i, [Ẑ, P̂Z] = [Ẑ†, P̂†

Z] = 0.
(10)

The Hamiltonian is
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Ĥ = Tr
(

P̂ZP̂†
Z + g2

2
[Ẑ, Ẑ†]2 − g√

2
ξ̂ [Ẑ†, ξ̂ ]

− g√
2
ξ̂ †[Ẑ, ξ̂ †] + 3μ

2
ξ̂ †ξ̂ + μ2ẐẐ†

)
. (11)

Hence the SO(2) rotation is

Ẑ → eiθ Ẑ, ξ̂ → eiθ/2ξ̂ . (12)

The generator of SO(2) is

M̂ =
∑
α

(
i(ẐαP̂†

Zα − Ẑ†
αP̂Zα)− 1

2
ξ̂ †
α ξ̂α

)
. (13)

Note that Ĥ and M̂ commute. The supercharge is written
as

Q̂ = −
√

2ξ̂ †
α

(
P̂Zα − iμẐα

)
− g√

2
fαβγ ξ̂αẐβ Ẑ†

γ . (14)

This satisfies

Q̂2 = −iẐαĜα , Q̂†2 = iẐ†
αĜα , (15)

and

{Q̂, Q̂†} = 2
(

Ĥ − μM̂
)

. (16)

This means that Ĥ − μM̂ is positive semidefinite and that
the supersymmetric states [also called the Bogomol’nyi-
Prasad-Sommerfield (BPS) states [37] ] should satisfy

Q̂|BPS〉 = Q̂†|BPS〉 =
(

Ĥ − μM̂
)

|BPS〉 = 0. (17)

When restricted to the gauge-invariant Hilbert space, Q̂
and Q̂† commute with Ĥ − μM̂ . Hence any non-BPS
states form a pair consisting of states in fermion-number
even and odd sectors. Therefore, when the coupling is
turned on, the BPS states must remain BPS. In particular,
the SO(2)-invariant ground state has to stay at zero energy.
This property is useful for a sanity check of numerical
computations.

III. HAMILTONIAN TRUNCATION AND
QUANTUM SIMULATION

On a quantum computer, the dimension of the Hilbert
space is finite, because the number of qubits is finite.
On the other hand, bosons require an infinite-dimensional
Hilbert space. The matrix models contain bosons and,
hence, we have to truncate the Hilbert space. The Hamil-
tonian is also truncated to a matrix of finite size and,
hence, we call this method “Hamiltonian truncation” (HT).

In the Hamiltonian-truncation method, it is important to
control the truncation effects. How the full theory is recov-
ered when the truncation level is taken to infinity is a
well-known problem in many-body quantum physics [38].

In this section, we test the performance of the
Hamiltonian-truncation method. Specifically, we study the
truncation effect to estimate the amount of resources
needed for precise quantum simulations. As a concrete
truncation scheme, we use a simple Fock-space truncation.
To confirm the validity of this approach, we implement
the regularized Hamiltonian on a classical computer and
study its properties numerically. The numerical results in
this section are obtained by using QuTiP [39] (QUANTUM
TOOLBOX in PYTHON) [40,41].

In Sec. III A, we regularize the Hamiltonian by using
the Fock basis and explain how it can be written in terms
of qubits. We then discuss the gauge-singlet constraint in
Sec. III B. In Sec. III C, we numerically study the reg-
ularized Hamiltonian and estimate the truncation effects.
The results in these sections tell us how we can control the
truncation effects. In Sec. IV, we use the truncation studied
in this section together with the VQE, a promising hybrid
quantum-classical tool available for NISQ-era hardware.

A. Regularization of the Hamiltonian

We start by truncating the infinite-dimensional Hamil-
tonian to a finite dimension. Here, we closely follow Ref.
[42] and use the Fock-space truncation method [43]. As
a concrete example, let us consider the bosonic SU(N )
matrix model given in Eq. (3). We can regularize the mini-
mal BMN in a very similar manner, as we see in Sec. III C
2.

We write the matrices as in Eq. (4), where τα in Eq.
(4) is the generator of SU(N ) satisfying Tr(τατβ) = δαβ
and [τα , τβ] = ifαβγ τγ . (The values of the structure con-
stant fαβγ depend on the detail of the choice of τα .) Then,
the Hamiltonian given in Eq. (3) is written as

Ĥ =
∑
α,I

(
1
2

P̂2
Iα + m2

2
X̂ 2

Iα

)
+ g2

4

∑
γ ,I ,J

⎛
⎝∑
α,β

fαβγ X̂ α
I X̂ β

J

⎞
⎠

2

.

(18)

The canonical commutation relation is given by Eq. (5).
We introduce the creation and annihilation operators as

â†
Iα =

√
m
2

X̂ Iα − iP̂Iα√
2m

, âIα =
√

m
2

X̂ Iα + iP̂Iα√
2m

.

(19)

By using the creation and annihilation operators and the
number operator n̂Iα = â†

Iα âIα , the Hamiltonian can be
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expressed as

Ĥ = m
∑
α,I

(
n̂Iα + 1

2

)
+ g2

16m2

∑
γ ,I ,J⎛

⎝∑
α,β

fαβγ (âIα + â†
Iα)(âJβ + â†

Jβ)

⎞
⎠

2

. (20)

The generators of the gauge transformation are

Ĝα = i
∑
β,γ ,I

fαβγ â†
Iβ âIγ . (21)

The Hamiltonian is gauge invariant or, equivalently,

[Ĥ , Ĝα] = 0. (22)

For each (I ,α), we can take the Fock vacuum |0〉Iα , which
satisfies

âIα|0〉Iα = 0, (23)

and the excited states |n〉Iα defined by

|n〉Iα = (â†
Iα)

n

√
n!

|0〉Iα . (24)

We can take the Fock states for the matrix model by taking
the tensor product, as

|{nIα}〉 = ⊗I ,α|n〉Iα . (25)

Note that the Fock vacuum is gauge invariant, i.e.,

Ĝα

(⊗I ,β |0〉Iβ
) = 0 (26)

for all gauge generators Ĝα . As a regularization, we trun-
cate the Hilbert space such that the excitation level of
each oscillator is below�. We define the truncated raising,
lowering, and number operators to be

â†
truncated =

�−2∑
n=0

√
n + 1|n + 1〉〈n|, âtruncated

=
�−2∑
n=0

√
n + 1|n〉〈n + 1|, (27)

and

n̂truncated =
�−1∑
n=0

n|n〉〈n|. (28)

To define the truncated versions of the Hamiltonian and
gauge generators, we replace n̂, â, and â† in Eqs. (20)

and (21) with n̂truncated, âtruncated, and â†
truncated, respec-

tively. Note that the truncation breaks gauge symmetry
manifestly, i.e.,

[Ĥ truncated, Ĝα,truncated] �= 0. (29)

In the truncated Fock basis, the creation and annihilation
operators are expressed as simple Pauli strings (i.e., ten-
sor products of Pauli matrices), which are convenient for
quantum computations [42]. In Eqs. (27) and (28), let |n〉
(n = 0, 1, . . . ,�− 1) be the j th excited state of an oscilla-
tor. We can write j in terms of binaries as n = ∑K−1

l=0 bl2l.
By using K = log2� qubits, we can rewrite the state |j 〉 as

|n〉 = |b0〉 |b1〉 . . . |bK−1〉 . (30)

Writing |n〉 = |b0〉 |b1〉 . . . |bK−1〉 and |n + 1〉 = ∣∣b′
0

〉 ∣∣b′
1

〉
. . .

∣∣b′
K−1

〉
, we can express |n + 1〉〈n| as an operator in this

basis as

|n + 1〉〈n| = ⊗K−1
l=0

(|b′
l〉〈bl|

)
. (31)

Note that each |b′
l〉〈bl| is a linear combination of the Pauli

matrices:

|0〉〈0| = 12 − σz

2
, |1〉〈1| = 12 + σz

2
,

|0〉〈1| = σx + iσy

2
, |1〉〈0| = σx − iσy

2
. (32)

The annihilation operator âtruncated and the number operator
n̂truncated have similar forms.

B. Gauge singlets and nonsinglets

The physical states in gauge theory are gauge singlets
(gauge-invariant states). Let us denote the Hilbert space
spanned by singlets by Hinv. Our construction involves
the extended Hilbert space Hext, which contains gauge-
nonsinglet states. Depending on the problem under con-
sideration, this may or may not be an issue. First, it is not
a problem as long as one considers an exact time evolu-
tion of the exact Hamiltonian (without truncation), for the
following reasons:

(a) Time evolution commutes with the gauge transfor-
mation, i.e., [Ĝα , e−iĤ t] = 0. Therefore, if we take
the initial state to be in Hinv, it stays in Hinv.

(b) From any nonsinglet state |φ〉, we can obtain a sin-
glet state by projecting [44] it to Hinv. We can
regard |φ〉 as a gauge-fixed state. The projection and
time evolution commute with each other. Often, the
gauge-fixed states are easier to handle.

The situation can be different when a quantum simulation
is considered. By assuming that the noise is completely
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removed, there are two sources of errors. The first is the
error associated with the truncation of the Hilbert space.
The second is the error associated with the approxima-
tion of e−iĤ t, such as the Trotter-Suzuki error. For each
algorithm, in principle, it is straightforward to make the
second type of error as small as we want. Hence let us
focus on the first type of error. Namely, we assume that
e−iĤ truncatedt is constructed precisely. We need to truncate
the generators of the gauge transformation Ĝα as well. Due
to the truncation error, neither Ĝα nor Ĝα,truncated commute
with Ĥ truncated. Therefore, even if the initial state is taken to
be (approximately) gauge invariant, the singlet condition
may be broken badly after a long time.

A related problem is that when we calculate low-lying
modes of the Hamiltonian, many nonsinglet modes, which
are not necessarily of interest, are obtained. We might
be able to circumvent these problems by adding a term
proportional to Ĝ2 ≡ ∑

α Ĝ2
α to the Hamiltonian [45–49]:

Ĥ ′ = Ĥ + c
∑
α

Ĝ2
α . (33)

Here, c is a free parameter.
Let |E′〉 be an eigenstate of Ĥ ′ with eigenvalue

λE′ , i.e., Ĥ ′|E′〉 = λE′ |E′〉. Let E′ be the expectation
value of the original Hamiltonian Ĥ for eigenstate
|E′〉, i.e., E′ = 〈E′|Ĥ |E′〉. Then, by definition, λE′ − E′ =
c
∑

α〈E′|Ĝ2
α|E′〉. We use c = � later in this paper. Because

gauge-singlet states are zero modes of
∑

α Ĝ2
α , such a

deformation makes the nonsinglets heavy and they decou-
ple from the low-energy dynamics. A nontrivial issue here
is whether λE′ converges to the energy eigenvalue of the
original Hamiltonian. As we will see, this is indeed the
case, as

∑
α〈E′|Ĝ2

α|E′〉 decays exponentially fast as �
becomes large.

If the initial state is taken to be sufficiently low energy
in terms of Ĥ ′

truncated and e−iĤ ′
truncatedt is calculated pre-

cisely, then the singlet condition is preserved with a good
precision. Note that even with this deformation, the Hamil-
tonian can be written in a simple form in terms of the Pauli
strings. Therefore, we can study this modified Hamiltonian
efficiently on a quantum computer.

C. Energy spectrum via classical computation

1. SU(2) bosonic matrix model

We consider the SU(2) two-matrix model. Following
Sec. III A, we can easily write down the Hamiltonian
explicitly, by taking τα = σα/

√
2 and fαβγ = √

2εαβγ ,
where ε123 = ε231 = ε312 = +1, ε321 = ε213 = ε132 = −1.

The Hamiltonian is sparse (only a small fraction of
the matrix elements are nonzero) and we can make effi-
cient use of optimized sparse linear-algebra solvers from
the ARPACK [50] software suite, such as the implicitly

restarted Arnoldi methods [51], to find the eigenvalues and
eigenvectors.

First, we use the setup without deformation, i.e., c =
0 and hence Ĥ ′ = Ĥ [cf. Eq. (33)]. We obtain the
ground state, which we denote by |E0〉. We estimate the
ground-state energy E0 = 〈E0|Ĥ |E0〉 and the violation of
the singlet constraint

∑
α〈E0|Ĝ2

α|E0〉 for the cutoff � =
3, 4, . . . , 14 and the couplings λ = g2N = 0.2, 0.5, 1.0,
and 2.0. We plot them in Fig. 1 and Fig. 2, respec-
tively. The tables corresponding to the plots are reported
in Appendix B.

At each value of the coupling constant, we can see that∑
α〈E0|Ĝ2

α|E0〉 scales as e−a�, with the same exponent a
but different overall factors for even and odd�; see Fig. 2.
This suggests that we can take c to be an arbitrary power of
�; we expect that as long as it is smaller than e+a�, it does
not affect the ground state and probably the excited states
as well. (We will confirm this shortly, by taking c = �.)

In Fig. 1, the approach of the ground-state energy to the
large-� limit appears to be exponentially fast. To confirm
the exponential decay manifestly, we plot the difference of
the ground-state energies for cutoffs differing by one unit,
Ediff

0 (�) ≡| E0(�)− E0(�− 1) |, and we can see that it
decays exponentially with � in Fig. 3.

Next, we consider the setup with deformation Ĥ ′ =
Ĥ + cĜ2 [cf. Eq. (33)]. We take c = �, such that the non-
singlet modes completely decouple in the limit � → ∞.
For this deformed Hamiltonian Ĥ ′, we compute the low-
lying eigenstates |E′〉. Let us first set the mass and coupling
to m2 = 1 and λ = 0.2, respectively.

In Fig. 4, we compare the five eigenstates of Ĥ with the
smallest values of

∑
α〈E|Ĝ2

α|E〉 and the five eigenstates of
Ĥ ′ with the smallest eigenvalues λE′ = 〈E′|Ĥ ′|E′〉, for c =
� = 4, m2 = 1, and λ = 0.2. We can see the deformation
does not affect the low-lying modes; it just removes the
nonsinglet modes.

As we can see from Fig. 5, up to the fourth excited
level we already achieve a reasonably good convergence at
� = 5 or� = 6. Higher excited modes receive larger trun-
cation effects, as expected. We can see that the violation
of the singlet constraint

∑
α〈E′

n|Ĝ2
α|E′

n〉 decays exponen-
tially with �. We can see the same pattern for m2 =
1, λ = 1.0 in Fig. 6. Therefore, both λE′ = 〈E′|Ĥ ′|E′〉
and E′ ≡ 〈E′|Ĥ |E′〉 converge to the correct energy
eigenvalue.

Because we add Ĝ2 to the Hamiltonian, the low-lying
modes of Ĥ ′ are gauge-singlet states. In the weak-coupling
limit (λ → 0), the five lowest-energy levels in the gauge-
singlet sector are E′

0 = 3, E′
1 = E′

2 = E′
3 = 5, and E′

4 = 7.
Values closer to them are observed at λ = 0.2 (cf. Fig. 5).

At λ = 0, |E′
1,2,3〉 are linear combinations of Tr(â†

1â†
1)|0〉,

Tr(â†
1â†

2)|0〉, and Tr(â†
2â†

2)|0〉. With respect to the SO(2)
symmetry mixing â†

1 and â†
2, they split to the singlet
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FIG. 1. The ground-state energy E0 as a function of the cutoff � for various couplings λ = g2N = 0.2, 0.5, 1.0, and 2.0 for the
SU(2) bosonic model. Even (E) and odd (O) values of � are plotted with different colors. The other parameters are m2 = 1 and c = 0.

Tr(â†
1â†

1 + â†
2â†

2)|0〉 and the doublet. In Fig. 5 (λ = 0.2) and
Fig. 6 (λ = 1.0), we can see the degeneracy of E′

1 and E′
2 as

� → ∞; hence it is natural to expect that the first and sec-
ond excited levels form the doublet, while the third excited
level is the singlet. To check this, we define the genera-
tor of the SO(2) rotation M̂ , which acts on the states as
M̂ f (â†

1, â†
2)|0〉 = f (−â†

2, â†
1)|0〉, and calculate 〈E′

n|M̂ |E′
n〉.

We obtain +1, −1, −1, +1, +1 for n = 0, 1, 2, 3, 4, both
for λ = 0.2 and λ = 1.0, with good precision for
� ≥ 4.

2. SU(2) minimal BMN

The SU(2) minimal BMN has six bosonic degrees of
freedom and three fermionic degrees of freedom. With the
truncation scheme for the bosons discussed earlier in this
paper, the dimension of the truncated Hilbert space is 8�6,
because the dimension of the fermionic Hilbert space is

23 = 8. The Hamiltonian is

Ĥ =
∑
α

(
P̂2

1α

2
+ P̂2

2α

2
+ μ2X̂ 2

1α

2
+ μ2X̂ 2

2α

2
+ 3μ

2
ξ̂ †
α ξ̂α

)

+ g2
∑
α �=β

X̂ 2
1αX̂ 2

2β − 2g2
∑
α<β

X̂ 1αX̂ 1β X̂ 2αX̂ 2β

+ ig√
2

∑
α,β,γ

εαβγ

(
(−X̂ 1α − iX̂ 2α)ξ̂

†
β ξ̂

†
γ

+ (−X̂ 1α + iX̂ 2α)ξ̂β ξ̂γ

)
− 3μ. (34)

The complex fermion operators ξα (α = 1, 2, 3) satisfy
the canonical anticommutation relation {ξ †

α , ξβ} = δαβ .
Regarding the fermions, we can use the standard Fock
basis and build states from the Fock vacuum ξ̂α|0〉 = 0.
For SU(2), as we only have three fermions, one can use the
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FIG. 2. The violation of the singlet constraint
∑

α〈E0|Ĝ2
α|E0〉 as a function of the cutoff � for various couplings λ = g2N = 0.2,

0.5, 1.0, and 2.0 for the SU(2) bosonic model. Even (E) and odd (O) values of � are plotted with different colors in logarithmic scale.
The other parameters are m2 = 1 and c = 0.

Jordan-Wigner transformation to form fermion operators
from Pauli spin matrices. However, for SU(N ) with larger
values of N , the number of fermions increases and it will
be more efficient to adapt Bravyi-Kitaev [52] or Bravyi-
Kitaev [53] superfast methods of constructing fermion
operators. This has been successfully implemented in
quantum chemistry applications. In addition, the use of the
symmetry present in the Hamiltonian (which has been used
in quantum chemistry [54] and other many-body quantum
physics systems) can also be used to reduce the number
of qubits that will be necessary to represent the fermions
for large N . Such symmetries include discrete symmetries
such as parity as well as continuous symmetries such as
gauge invariance. In this work, we adopt a simple approach
disregarding such symmetries, leading to a less favorable
scaling of resources with respect to the size of the sys-
tem, which can be improved in the future. As already

mentioned, for the simplest case of N = 2, the annihila-
tion operator for each fermion ξ̂α is constructed using the
Jordan-Wigner prescription in the 23-dimensional Hilbert
space using Pauli matrices [55]:

ξ̂α = σz ⊗ σz ⊗ · · · ⊗ σz︸ ︷︷ ︸
α−1 times

⊗
(

0 0
1 0

)
⊗ 1 ⊗ · · · ⊗ 1,

(35)

where 1 is the 2 × 2 identity matrix. We can define the
fermion number by counting how many ξ̂ † operators act
on the Fock vacuum. The Hamiltonian does not mix the
fermion-number odd and even sectors.

The generators of the gauge transformation are

Ĝα = i
∑
β,γ

fαβγ
(

â†
1β â1γ + â†

2β â2γ + ξ̂
†
β ξ̂γ

)
. (36)
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FIG. 3. The absolute value of the ground-state energy difference between successive values of the cutoff (see text for details) as a
function of the cutoff � for various couplings λ = g2N = 0.2, 0.5, 1.0, and 2.0 for the SU(2) bosonic model. Even (E) and odd (O)
values of � are plotted with different colors and the vertical axis is in logarithmic scale. The other parameters are m2 = 1 and c = 0.

As before, we consider Ĥ ′ ≡ Ĥ + c
∑

α Ĝ2
α , in order to

eliminate the nonsinglet modes from the dynamics. Note
that Eq. (36) has an extra fermionic contribution compared
to the generator in the bosonic theory defined by Eq. (21)
and this is reflected in a more complicated form of the
deformed Hamiltonian Ĥ ′ with fermionic variables in both
terms.

We consider gauge-invariant and fixed-angular-
momentum sectors. Hence, just for numerical purposes, we
add c′(M̂ − J )2 to the Hamiltonian. In addition, we keep
c
∑

α Ĝ2
α to penalize gauge nonsinglets. To summarize, we

use a modified Hamiltonian Ĥ ′ defined by

Ĥ ′ = Ĥ + c
∑
α

Ĝ2
α + c′(M̂ − J )2. (37)

Here, J is the angular momentum of the states that we want
to consider. We take c = � as before and several choices

of c′, including c′ = 10� for two values of J = 0, 1
2 . If

we consider only the low-lying modes of Ĥ ′, states with
G2 > 0 or M �= J are removed because their energies are
increased.

Let us consider the case of zero coupling as a sanity
check. At zero coupling in the J = 0 sector, the ground
state is the Fock vacuum |0〉 and the first excited mode
is Tr(â†2

1 + â†2
2 )|0〉. The energies are 0 and 2μ (recall

that μ and m are equivalent). The ground state is BPS,
so the ground-state energy has to be zero at any cou-
pling. On the other hand, at zero coupling in the J =
1/2 sector, the lowest-energy mode is Tr[ξ̂ †(â†

1 + iâ†
2)]|0〉,

the energy of which is 5μ/2. The second lightest modes
are made of ξ̂ †, two (â†

1 + iâ†
2), and one (â†

1 − iâ†
2),

such as Tr[ξ̂ †(â†
1 + iâ†

2)(â
†2
1 + â†2

2 )]|0〉, and the energy is
9μ/2. None of them is BPS; hence their energy can
change when the interaction is turned on. We show the
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FIG. 4. We take the five eigenstates of
Ĥ (|Ej 〉) with the smallest values of∑

α〈Ej |Ĝ2
α|Ej 〉 and the five lowest eigenstates

for Ĥ ′ (|E′
j 〉 with j = 0, . . . , 4) and we plot

them as a function of their energy 〈Ĥ 〉 for c =
� = 4, m2 = 1, λ = g2N = 0.2 in the SU(2)
bosonic model. We can see the deformation
does not affect the low-lying modes; it just
removes the nonsinglet modes.

zero-coupling case explicitly in Fig. 7, where the left panel
corresponds to J = 0 and the right panel to J = 1/2 for
μ = 1.

Let the eigenstates of Ĥ ′ in the sector of angular
momentum J be |E′

0,J 〉, |E′
1,J 〉, . . .. The amount of break-

ing of gauge symmetry and SO(2) rotational symmetry

due to the truncation can be seen from 〈E′
i,J |Ĝ2|E′

i,J 〉 and
〈E′

i,J |M̂ |E′
i,J 〉 − J . These quantities are plotted in Figs. 8

and 9. We can see the quick restoration of these symmetries
as the cutoff increases, for all couplings.

〈E′
0,J=0|Ĥ |E′

0,J=0〉 is plotted in Fig. 10. Given that the
breaking of gauge symmetry and rotational symmetry is

FIG. 5. The energy 〈E′
n|Ĥ |E′

n〉 and the violation of the singlet constraint
∑

α〈E′
n|Ĝ2

α|E′
n〉 in the SU(2) bosonic model. The parameters

are c = �, m2 = 1, and λ = g2N = 0.2.
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FIG. 6. The energy 〈E′
n|Ĥ |E′

n〉 and the violation of the singlet constraint
∑

α〈E′
n|Ĝ2

α|E′
n〉. The parameters are c = �, m2 = 1, and

λ = g2N = 1.0 in the SU(2) bosonic model.

small, this is very close to the ground-state energy E0,J=0,
which has to be zero at � = ∞ due to the BPS condition.
We can see an exponentially fast approach to zero as �
increases. A few of the low-lying modes (up to the third

excited state) for the SU(2) model with λ = 0.2 are plotted
in Fig. 11 for the J = 0 and the J = 1/2 sectors. As the
cutoff� increases, the ground states reach their asymptotic
energy value, which is zero for the J = 0 sector where the

FIG. 7. 〈E′
i,J |Ĥ |E′

i,J 〉 in the SU(2) minimal-BMN model at zero coupling, for a few low-lying excited modes. The modes are ordered
by their λE′ eigenvalues of Ĥ ′ and their order can change depending on the cutoff�. The left panel is for the sector with J = 0 and the
right panel is for J = 1/2. The other parameters are λ = g2N = 0, μ = 1, c = �, and c′ = 100. (This large value of c′ ensures that
the low-cutoff states are in the right sector.)
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FIG. 8. The violation of the singlet constraint for the ground state of the Hamiltonian Ĥ ′ as a function of the cutoff � for various
couplings λ = g2N = 0.2, 0.5, 1.0, and 2.0 in the SU(2) minimal-BMN model. Even (E) and odd (O) values of � are plotted with
different colors in a logarithmic scale to show that the trend to zero is exponentially fast. The other parameters are μ = 1, c = �,
c′ = 1, and J = 0 (a low value of c′ is enough for the ground state only).

ground state is BPS but is different from zero for the J =
1/2 sector.

IV. QUANTUM-CLASSICAL HYBRID
ALGORITHM (VQE)

The VQE algorithm is expected to be a practically useful
tool in the NISQ era and has been shown to be extremely
successful in finding the ground state of large physical
systems such as molecules. The algorithm is a hybrid
quantum-classical algorithm and this makes it more robust
to noise on NISQ hardware. The expectation value of the
Hamiltonian is efficiently computed on quantum hardware
for quantum states represented by parametrized quantum
circuits that mimic wave functions with variational param-
eters. The parameters of the quantum circuits or, in other
words, of the wave function are optimized using classical

algorithms (e.g., steepest descent) on classical hardware
such that each step of the optimization is moving toward
convergence to the lower bound of the energy expecta-
tion value. The algorithm returns an upper bound for the
ground-state energy Evar:

E0 ≤ Evar = 〈ψ(θi)| H |ψ(θi)〉
〈ψ(θi)| ψ(θi)〉 , (38)

where E0 is the true ground-state energy and θi are vari-
ational parameters of the trial wave function, which is
represented in terms of parametrized quantum gates. More
details about the VQE hybrid quantum-classical algorithm
can be found in Ref. [21]. There is also a fully quan-
tum algorithm for computing eigenvalues described in
Ref. [56].
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FIG. 9. The |〈E′
i,J |M̂ |E′

i,J 〉 − J | for the ground state of the Hamiltonian Ĥ ′ as a function of the cutoff � for various couplings
λ = g2N = 0.2, 0.5, 1.0, and 2.0 in the SU(2) minimal-BMN model. Even (E) and odd (O) values of � are plotted with different
colors in logarithmic scale. The other parameters are m2 = 1, c = �, c′ = 1, and J = 0 (a low value of c′ is enough for the ground
state only).

On NISQ devices, it is of paramount importance to test
how well the VQE performs for different systems [57].
So far, research advances in VQE have only been tested
on simple systems, such as the hydrogen molecule, or
with shallow parametrized circuits. However, VQE has
the potential to become a successful tool for many quan-
tum physical systems, including lattice models or lattice
field theories. Matrix models are a natural test bed for this
hybrid quantum-classical algorithm, because they are for-
mally well defined and simpler than many useful quantum
field theories in higher dimensions. In this section, we test
the potential performance of the VQE approach in estimat-
ing the ground states of matrix models for the first time.
First, we construct a truncated Hamiltonian that maps the
Hamiltonian of the matrix model of interest into strings
of Pauli matrices that can be implemented in terms of
gates on quantum computers. We use the IBM QISKIT [58]

software framework and we use the VQE algorithm to
place an upper bound on the ground-state energy of the
matrix model. The QISKITsoftware allows us to write a
single code for performing both a classical simulation of
the VQE and a real quantum-classical run on IBM hard-
ware. Moreover, all the necessary ingredients for build-
ing the algorithm are already implemented, thus lowering
the barrier for future experimentations on matrix-model
systems.

The performance of the VQE can depend on the choice
of the ansatz for the wave function and the optimizer used
for the minimization of the energy. We try several different
combinations of classical optimizers and ansatze for the
wave function. Even if the same ansatz is used, different
upper bounds might be obtained depending on the optimiz-
ers because the convergence to the true minimum can be
sabotaged by restricting the maximum number of iterations
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FIG. 10. The energy expectation value |〈E′
0,J=0|Ĥ |E′

0,J=0〉| of the ground state of the Hamiltonian Ĥ ′ as a function of the cutoff� for
various couplings λ = g2N = 0.2, 0.5, 1.0, and 2.0 in the SU(2) minimal-BMN model. Even (E) and odd (O) values of � are plotted
with different colors in a logarithmic scale. The approach to the� → ∞ limit value of zero is exponentially fast. The other parameters
are m2 = 1, c = �, and c′ = 1.

or starting from an unfavorable point in parameter space,
i.e., getting trapped in local minima. The ansatze we use in
this section are not designed specifically for matrix mod-
els and, hence, there is no reason to expect good results. A
first step toward identifying the best ansatz within a cer-
tain class of parametrized quantum circuits is shown at
the end of this section but we leave a more comprehen-
sive search to future work. In fact, we find larger deviation
from the exact result at stronger couplings, which suggests
a need to find a better ansatz for the wave function as
we change the coupling of the matrix quantum mechan-
ics model. This is expected, since the ground state at weak
coupling is expected to exhibit different properties than at
strong coupling.

A VQE solver obtains an upper bound for the ground-
state energy by starting from a parametrized wave function
in the form of quantum circuits made of parametrized

gates. Such circuits can be chosen arbitrarily and, typically,
the final energy will depend on the choice of the initial
form of the wave function. In Fig. 12, we show a single
block of the variational circuit of six qubits that we use in
the next section, where the parameters are encoded in gates
that rotate each qubit about a certain axis. In the figure, we
show specifically Ry gates, which are single-qubit rotations
about the Y axis, so that

Ry(θ) = exp
(

−i
θ

2

)
=
(

cos θ2 − sin θ
2

sin θ
2 cos θ2

)
. (39)

We also consider a similar circuit obtained by replacing an
Ry with a sequence of Ry and Rz gates.

These blocks can be composed into multiple “layers”
to make deeper circuits, which allow the representation of

010324-15



ENRICO RINALDI et al. PRX QUANTUM 3, 010324 (2022)

FIG. 11. 〈E′
i,J |Ĥ |E′

i,J 〉 and |〈E′
i,J |M̂ − J |E′

i,J 〉| in SU(2) minimal BMN, for a few low-lying excited modes. The modes are ordered by
their λE′ eigenvalues of Ĥ ′ and their order can change depending on the cutoff�, because the deformed parameters of the Hamiltonian
in Ĥ ′ are changing. The upper row is for the sector with J = 0 and the lower row is for J = 1/2. The other parameters are λ = g2N =
0.2, m2 = 1, c = �, and c′ = 10�.

more expressive wave functions. By repeating the same
blocks multiple times in a sequence, we also increase the
number of parameters to optimize. For most optimizers in
the following sections, we use three repetitions of the Ry
fully entangled block, as shown in Fig. 13, and we refer to
this variational ansatz as having a depth of 3 (just counting
the number of layers). This amounts to 8 × 3 = 24 param-
eters in total, which are the angles θ [0], θ [1], . . . , θ [23]
for the rotation gates. If the variational ansatz requires
more qubits because, for example, we want to use a larger
cutoff of the Hilbert space, then we would need a larger
number of parameters. In general, having access to more
parameters to optimize will allow for a more expres-
sive wave function and we can expect a better overlap
with the true ground-state wave function. However, the
optimization landscape in a high-dimensional space (for a

large number of parameters) becomes more complex and
some optimizers might fail in finding a true minimum or
might take too long to converge. As a final remark, note
that these parametrized circuits are heuristically designed
without considering any prior knowledge about the
physical system that we target. We choose them because
they have been shown to be efficient at reproducing good
quantum states for a large range of physical problems.
They are our first step toward understanding the applica-
bility of VQE to matrix models. In the spirit of keeping
our variational approach agnostic with respect to the sym-
metries of the system, we do not attempt to include infor-
mation about the discrete or continuous symmetries of the
states into our quantum circuit. However, we note that this
can be done [59] and that it may improve the variational
results.
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Ry variational 
form

FIG. 12. A single block of the variational wave function in
terms of parametrized quantum circuits. A parametrized Ry gate
is applied to each qubit and each qubit is entangled with every
other qubit using CNOT gates. We also consider a similar block
(RyRz variational form) in which the Ry gate is replaced with a
sequence of Ry and Rz gates.

After choosing the variational form of the quantum
circuit, we have to choose a classical optimizer that will
be used to find the correct set of parameters to min-
imize the energy. We use four different optimizers: a
sequential least-squares programming (SLSQP) opti-
mizer, a constrained optimization by linear approxima-
tion (COBYLA) optimizer, a limited-memory Broyden-
Fletcher-Goldfarb-Shanno- (BFGS) bound (L-BFGS-B)
optimizer, and a Nelder-Mead optimizer. More informa-
tion on these optimizers can be found in Ref. [60]. For
a series of Nr runs starting from different initial parame-
ter values θ [i], the least upper bound (minimum) gives the
closest value to the ground state. For our optimizers, we
limit the maximum number of iterations to 104, which is
sufficient to reach convergence in most of the cases that
we study in the following sections, and we discuss the case
of more iterations in a dedicated section featuring deeper
parametrized circuits. To give a summary of the perfor-
mance of each optimizer for a fixed variational form of
the quantum circuit, we report the minimum value of the
energy, the maximum value, the mean value, and the stan-
dard deviation across Nr runs. These optimizers can work

Ry

variational 
form

Ry

variational 
form

Ry

variational 
form

FIG. 13. The variational ansatz used in the VQE simulation.
The circuit has a depth of 3 (i.e., the Ry variational form is
repeated three times). We also consider the RyRz variational
form.

well in the absence of noise, such as in our state-vector
simulation, but we would have to explore different algo-
rithms once we take quantum simulations of matrix models
to real quantum hardware [61].

A. SU(2) bosonic matrix model

In this section, we consider the bosonic matrix model
defined in Sec. II A. We study the case of two SU(2) matri-
ces (N = 2, d = 2) and different truncation levels: � = 2
and � = 4. They require only six and 12 qubits, respec-
tively and, hence, the emulation on a classical computer
is straightforward. IBM QISKITprovides several quantum
simulators as well as access to fully quantum hardware
resources. The QASM simulator can be used to simulate
shot noise on an actual quantum device and the state-vector
simulator holds the value of the quantum state in computer
memory through the computation. Moreover, it is straight-
forward to add different models of noise for each specific
IBM quantum hardware resource on top of the classical
simulation, thus opening up the possibility of understand-
ing the limitations of VQE in the presence of noise for
matrix models in the future. Using a NISQ device with the
current knowledge we have on the best variational wave
function for matrix models would not be an efficient use of
resources. For this reason, in this paper we use the state-
vector simulator on a classical computer, in the absence of
any source of noise, therefore focusing on an ideal scenario
as the first ever quantum simulation of matrix models.
We then focus on identifying good variational ansatze.
We would like to use the QASM simulator and hardware
resources in upcoming works when we can get the most
out of them. Moreover, we would invite researchers bench-
marking different quantum algorithms for physical systems
to take matrix models into account as a challenging test
bed. As we will clearly see below, changing the number
and type of the degrees of freedom (the gauge group size
N and the bosonic and fermionic particles), changing the
gauge coupling strength λ, and changing the truncation
level � are all tunable knobs to increase or decrease the
difficulty of the problem.

1. One qubit for each boson

When the cutoff for the truncated Hilbert space is� = 2,
we can represent each degree of freedom in the matrix
model with one qubit. In the SU(2) two-matrix model,
we have six degrees of freedom, X α=1,2,3

I=1,2 . We denote X 1
1 ,

X 2
1 , X 3

1 , X 1
2 , X 2

2 , and X 3
2 in Eq. (18) as x1, x2, . . . , x6.

There are six annihilation operators âi=1,...,6, which can be
represented in terms of tensor products as

âi = Î 1 ⊗ . . .⊗ Î i−1 ⊗
(

0 1
0 0

)
⊗ Î i+1 ⊗ . . .⊗ Î 6, (40)
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TABLE I. VQE results for the bosonic BMN matrix model with SU(2) and λ = 0.2, where each boson is represented by one qubit. We
use four optimizers and two variational forms (both with depth 3). Each optimizer begins from the same initial point. The minimum,
maximum, average, and standard deviation (SD) of the best results across Nr = 100 runs are reported. The exact result from the
Hamiltonian truncation is E0 = 3.14808 and the best results are in bold type for each variational form. We limit the maximum number
of iterations to 104.

Variational form Ry Variational form RyRz

Optimizer Minimum Maximum Mean SD Minimum Maximum Mean SD

COBYLA 3.149 370 4.147 156 3.159 740 0.099 739 3.149 157 3.150 034 3.149 862 0.000 202
L-BFGS-B 3.149 268 4.150 000 3.159 886 0.100 012 3.149 375 4.148 751 3.159 925 0.099 882
SLSQP 3.149 397 4.150 000 3.164 968 0.111 340 3.149 377 4.149 946 3.164 980 0.111 349
Nelder-Mead 3.148 972 3.195 922 3.150 774 0.005 065 3.149 516 4.149 891 3.171 468 0.140 469

where Î i is the 2 × 2 identity matrix for � = 2. The
truncated versions of the Hamiltonian Ĥ and the gauge
generators Ĝα are defined in the same way as in
Sec. III A, by using these âi qubit operators as the truncated
annihilation operators. The truncated creation operators are
defined as the Hermitian conjugate of the truncated anni-
hilation operators and the truncated number operators are
defined by n̂i = â†

i âi. This procedure changes appropri-
ately as we include more qubits in our basis for larger
cutoff values �.

The regularized Hamiltonian in Eq. (18) for � = 2 is
a 26 × 26 = 64 × 64 matrix the smallest eigenvalue of
which at coupling λ = 0.2 is E0 = 3.14808. This is the
exact result from the HT approach. We compare the VQE
result for the truncated Hamiltonian, which is only an
upper bound, to this exact HT result. Note that we do not
add a penalty term c

∑
Ĝ2
α to the Hamiltonian during the

VQE process to lift the energy of the nonsinglet states.
This is done in order to keep this first experiment simple
and compare to the exact diagonalization results for c =
0. Moreover, this simple comparison allows us to focus
on the performance of the classical optimizers and the

variational parametrized quantum circuit for this challeng-
ing new matrix-model system. In Table I, the statistics of
the results for the four different VQE solvers are shown for
Nr = 100 runs and variational forms Ry , RyRz of depth 3.
The best results are Evar = 3.148 972 and Evar = 3.149 157
for Ry and RyRz, respectively. The RyRz variational form
is an extension of the Ry form, i.e., one can set the Rz gate
angles to zero, but the high dimensionality of the parameter
space does not allow the optimizers to find an optimal point
that is better unless the starting point is carefully chosen.

The upper bounds we find are very close to the exact
value of E0, even though these variational quantum cir-
cuits have not been specifically defined for the bosonic
matrix models. The number of steps needed for the conver-
gence of the solvers depends on the optimizer, as shown in
Fig. 14. Among the solvers we use, COBYLA, L-BFGS-B,
and SLSQP exhibit faster convergence than Nelder-Mead.

2. Two qubits for each boson

When we use a cutoff � = 4, we can represent each
matrix degree of freedom with two qubits. The SU(2)

Nelder-Mead

FIG. 14. The convergence of the VQE results for the bosonic matrix model with SU(2) and λ = 0.2, where each boson is represented
by one qubit. Each curve represents a different classical optimizer (SLSQP, COBYLA, L-BFGS-B, and Nelder-Mead) and we only
show the first 2000 iterations out of 10 000. The VQE result represents the least upper bound from ten runs of each optimizer with an Ry
variational form of depth 3. The exact energy from the truncated Hamiltonian (HT) is represented by the dotted line at E0 = 3.14808.
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TABLE II. VQE results for the bosonic matrix model with SU(2) and λ = 0.2, where each boson is represented by two qubits. We
use four optimizers and two variational forms (both with depth 3). Each optimizer began from the same initial point. The minimum,
maximum, average, and standard deviation (SD) of the best results across Nr = 100 runs are reported. The exact result from the
Hamiltonian truncation is E0 = 3.134 06 and the best results are in bold type for each variational form. We limited the maximum
number of iterations to 104.

Optimizer Variational form Ry Variational form RyRz

Minimum Maximum Mean SD Minimum Maximum Mean SD

COBYLA 3.137 059 4.769 101 3.251 414 0.347 646 3.137 237 4.782 013 3.378 628 0.472 015
L-BFGS-B 3.137 059 5.769 553 3.283 462 0.434 162 3.137 050 4.286 367 3.243 110 0.307 549
SLSQP 3.137 060 5.769 554 3.327 706 0.471 957 3.137 059 4.232 419 3.236 925 0.290 855
Nelder-Mead 3.137 471 5.713 976 3.492 673 0.478 810 3.273 614 6.443 055 4.428 032 0.758 732

bosonic matrix model will then have each boson repre-
sented by a 4 × 4 matrix (corresponding to two qubits).
This is similar to Sec. 1 but with the annihilation operators
represented by the tensor product

âi = Î 1 ⊗ . . .⊗ Î i−1 ⊗

⎛
⎜⎜⎝

0 1 0 0
0 0

√
2 0

0 0 0
√

3
0 0 0 0

⎞
⎟⎟⎠

⊗ Î i+1 ⊗ . . .⊗ Î 6, (41)

where the identity matrix Î i that we use is now 4 × 4.
Again, the truncated versions of the Hamiltonian Ĥ and
gauge generators Ĝα are defined in the same way as in
Sec. III A, by using these âi matrices as the truncated anni-
hilation operators. The truncated Hamiltonian will then be
a 212 × 212 = 4096 × 4096 matrix (on 12 qubits) and the
exact ground-state energy is E0 = 3.134 06. In this case,
we also focus on the results of the VQE without a gauge
penalty term, i.e., for c = 0.

We test the performance of the same four types of VQE
solvers as before and we use the 12-qubit equivalent of

the parametrized variational form of Fig. 13, which has
48 parameters, θ [0], θ [1], . . . , θ [47]. In Fig. 15, we plot
the convergence of the best run out of Nr = 100 for each
optimizer. After a certain number of optimization steps
(which depends on the optimizer and the Hamiltonian), the
estimate for the upper bound of the ground-state energy
flattens out and this yields the best value for that run.
In Table II, we report the statistics for the VQE results
with Nr = 100. The best results are Evar = 3.137 059 and
Evar = 3.137 050 for Ry and RyRz, respectively, and are
again very close to the exact value of E0 = 3.134 06.

3. VQE for different coupling constants

To test the accuracy of the VQE results with respect to
the coupling, we run the VQE while varying the coupling
for the SU(2) Hamiltonian for both cases where the bosons
are represented by one qubit or by two qubits. A graph
of the VQE results with respect to coupling is shown in
Fig. 16, with the values tabulated in Table III, for both
cases where bosons are represented by one qubit or two
qubits. In both cases, we use the same variational forms as
before and we compare them using all of the solvers.

Nelder-Mead

FIG. 15. The convergence of the VQE results for the SU(2) bosonic matrix model with λ = 0.2, where each boson is represented by
two qubits. Each curve represents a different classical optimizer (SLSQP, COBYLA, L-BFGS-B, and Nelder-Mead), and we only show
the first 5000 iterations out of 10 000. The VQE result represents the least upper bound from ten runs of each optimizer with an Ry
variational form of depth 3. The exact energy from the truncated Hamiltonian (HT) is represented by the dotted line at E0 = 3.13406.
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Nelder-Mead Nelder-Mead

FIG. 16. The energy difference between the VQE upper bound for the SU(2) bosonic matrix model using the three best optimizers
for coupling λ = 0.5, 1.0, and 2.0. The left plot is for bosons represented by one qubit and the right plot is for bosons represented
by two qubits. The Ry ansatz with depth 3 is used and the best of Nr = 100 runs is displayed. We limited the maximum number of
iterations to 104.

We conclude our VQE studies of the bosonic matrix
model with a discussion of the dependence of the upper
bound determined by the VQE for different couplings.
Clearly, the gap between the upper bound determined by
the VQE and the exact value grows with the coupling
for both the one-qubit bosons and the two-qubit bosons.
This is consistent with what has been found in studying
the anharmonic oscillator and the supersymmetric anhar-
monic oscillator in Ref. [62]. The most likely reason for the
increase in the gap is that the ansatz of the variational wave
function does not have as large an overlap with the ground-
state wave function at strong coupling as it does at weak
coupling. Some possibilities to improve this include using
specially designed ansatze tailored to the Hamiltonian, as
is done with coupled-cluster ansatze for chemistry or with
gauge-invariant forms for lattice gauge theories [59], adap-
tive methods to obtain better ansatze described in Ref. [63],
and machine-learning methods to improve overlap with the
ground state in Ref. [30].

B. SU(2) minimal BMN

1. One qubit for each boson

For the minimal-BMN matrix model, we use the same
representation as above, with each boson represented
by one qubit (a 2 × 2 matrix) and each fermion also
represented by one qubit. In total, we have 9◦ of freedom
to be described by nine qubits. The fermionic space oper-
ators have to be tensored with the bosonic space, which is
26 = 64 dimensional. Therefore, we define three fermionic
annihilation operators as in Eq. (35) and they are tensored
with the identity matrix in the bosonic space:

c1 = Î 64 ⊗
(

0 1
0 0

)
⊗
(

1 0
0 1

)
⊗
(

1 0
0 1

)
, (42)

c2 = Î 64 ⊗
(

1 0
0 −1

)
⊗
(

0 1
0 0

)
⊗
(

1 0
0 1

)
, (43)

TABLE III. VQE results for the bosonic BMN matrix model with the SU(2) group at different couplings, with each boson represented
by one qubit and two qubits. The Ry ansatz with depth 3 is used and the best of Nr = 100 runs is reported. The last row is the exact
result obtained from the HT. The best results are reported in bold type. We limit the maximum number of iterations to 104.

One qubit Two qubits

Optimizer λ = 0.5 λ = 1.0 λ = 2.0 λ = 0.5 λ = 1.0 λ = 2.0

COBYLA 3.368 59 3.714 63 4.336 38 3.309 75 3.548 39 3.934 52
L-BFGS-B 3.370 43 3.732 59 4.411 03 3.308 69 3.547 48 3.933 48
SLSQP 3.366 75 3.731 79 4.336 36 3.309 74 3.547 76 3.939 46
Nelder-Mead 3.367 18 3.715 47 4.354 11 3.312 55 3.552 92 3.950 03
HT (exact) 3.362 54 3.697 22 4.267 95 3.298 94 3.526 25 3.895 48
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TABLE IV. VQE results for the minimal-BMN matrix model with SU(2) and λ = 0.2, where each boson is represented by one qubit.
The VQE optimizers are run Nr = 100 times with two variational forms, Ry and RyRz (both with depth 3). We limit the maximum
number of iterations to 104. Each optimizer begins from the same initial point. The minimum, maximum, average, and standard
deviation (SD) of the best results across all runs are reported. The exact value is E0 = 0.003 287. The best results are in bold type.

Variational form Ry Variational form RyRz

Optimizer Minimum Maximum Mean SD Minimum Maximum Mean SD

COBYLA 0.100 79 0.150 02 0.130 20 0.011 16 0.077 83 1.34775 0.202 78 0.278 19
L-BFGS-B 0.124 52 1.357 61 0.187 85 0.194 27 0.100 68 1.383 51 0.182 51 0.187 85
SLSQP 0.124 56 1.650 00 0.235 70 0.287 36 0.100 68 1.367 07 0.191 68 0.210 56
Nelder-Mead 0.124 96 1.358 08 0.194 79 0.200 55 0.132 18 1.888 56 0.320 12 0.319 14

c3 = Î 64 ⊗
(

1 0
0 −1

)
⊗
(

1 0
0 −1

)
⊗
(

0 1
0 0

)
, (44)

where Î 64 is the identity matrix for the bosonic space.
These qubit operators representing the ξ̂α creation opera-
tors for the fermionic DOF are used in the construction
of the truncated Hamiltonian and the gauge transforma-
tion operators Ĝα . The bosonic annihilation operators are
the same as those defined in Eq. (40), except that they
are tensored with the identity matrix Î 8 for the 23 = 8
dimensional fermionic space.

The exact ground-state energy for the minimal-BMN
matrix model is zero. The truncated Hamiltonian for this
model is represented by a 29 × 29 = 512 × 512 matrix the
exact ground-state energy of which for λ = 0.2 is E0 =
0.003 287. We repeat the same strategy as used in the
bosonic BMN model and report the performance statistics
for various optimizers and variational forms in Table IV.

For the minimal-BMN model, we find that the least
upper bound is further from the exact value than in the
bosonic BMN if we use the same type of variational wave

functions. In this case, the parametrization of the varia-
tional wave function does not have as strong an overlap
with the true ground-state wave function as is found in
the bosonic matrix-model case. It would be interesting to
investigate the form of the variational ground states to fur-
ther examine the differences between the two models and
in the following we show results for deeper parametrized
quantum circuits. We see this as a low-hanging fruit for
future improvements: similarly to advances made by the
VQE in quantum chemistry using parametrized circuits
designed with domain knowledge, we expect a great deal
of improvement in matrix models once these variational
forms are carefully designed, possibly with help from
machine-learning methods. A plot of the convergence for
the different optimizers is shown in Fig. 17, where only
the best out of Nr = 100 is plotted for each classical
optimizer. In some cases, the optimizers seem to have con-
verged to a minimum energy but during some iterations
they briefly move away (larger energy) from the minimum
before moving closer to it again. This behavior affects the
total number of iterations needed for convergence and it
depends on the path taken by the optimizer in parameter

Nelder-Mead

FIG. 17. The convergence of the VQE results for the minimal-BMN matrix model with SU(2) and λ = 0.2, where each boson is
represented by one qubit. Each curve represents a different classical optimizer that is used with the VQE algorithm (SLSQP, COBYLA,
L-BFGS-B, and Nelder-Mead). The VQE result represents the least upper bound from 100 runs of each optimizer. The exact energy
of the truncated Hamiltonian (HT) is represented by the dotted line at E0 = 0.003 287. We limit the maximum number of iterations to
104.
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FIG. 18. VQE results with respect to depth for the minimal-
BMN matrix model with SU(2) and λ = 0.2. The VQE is run
using various optimizers, for an RyRz variational form of depth
ranging from 1 to 9. The least upper bound across 100 differ-
ent runs (with 104 iterations) is reported. The exact ground-state
energy of the truncated Hamiltonian is represented by the dotted
line.

space to navigate the energy-function landscape and find
the optimal point.

2. VQE computations at different depths

Increasing the depth of a quantum circuit allows for
access to a larger number of attainable states over which
the expectation value of the Hamiltonian can be calcu-
lated. To understand how the results change with respect
to depth, we run the VQE algorithm for the minimal-BMN
model over various depths. We vary the depth from 1 to 9,
with an increment of 1.

TABLE V. VQE results for the minimal-BMN model with
SU(2) and λ = 0.2. The VQE is run using various optimizers, for
an RyRz variational form of depth ranging from 1 to 9. The least
upper bound across 100 different runs (with 10 000 iterations) is
reported. The exact value is E0 = 0.003 287.

Depth COBYLA L-BFGS-B SLSQP

1 0.150 000 0.150 000 0.150 000
2 0.100 689 0.125 154 0.125 158
3 0.077 833 0.100 683 0.100 683
4 0.064 637 0.077 476 0.071 500
5 0.078 448 0.053 471 0.052 959
6 0.047 723 0.076 528 0.074 366
7 0.057 819 0.059 495 0.052 949
8 0.063 603 0.023 726 0.010 126
9 0.075 062 0.055 973 0.029 769

The results are shown in Fig. 18 and are tabulated in
Table V. For each depth, the initial point for each opti-
mizer is the same, which ensures a fair comparison of the
ability of each optimizer to converge. Additionally, we use
an RyRz variational form to further increase the number
of attainable states by starting already with a larger num-
ber of parameters. We use the least upper bound out of
Nr = 100 different runs. As expected, a more expressive
variational form allows us to obtain results that are increas-
ingly closer to the exact diagonalization result for this
truncated Hamiltonian. For a depth of 8, the SLSQP opti-
mizer gives the best result, a least upper bound of Evar =
0.010 126 to be compared with the exact result of E0 =
0.003 287. We also note that the algorithms take more iter-
ations to reach convergence when more parameters are
included in the variational quantum circuits representing
the wave-function ansatz. This is shown in Fig. 19 for
an RyRz variational form of depth 9. These results imply
that increasing the number of maximum iterations above
104 for some of the solvers might allow them to find
better optimal points. For example, if we let the SLSQP
optimizer run until convergence, with no limit on the num-
ber of iterations, at depth 9, it will get to a least upper
bound of Evar = 0.004 755 but it would need five times
more iterations (approximately 5 × 104). In order to reduce
the number of iterations, one might consider metalearn-
ing approaches to find good initialization heuristics for the
parameters [64,65].

3. VQE for different coupling constants

As is done with the SU(2) bosonic model, we test the
accuracy of the VQE results with respect to coupling for
the minimal-BMN matrix model by running the VQE for
different coupling constants. We use an RyRz ansatz with
depth 5 to expand the number of attainable states (by
including more variational parameters), since we see this
to be advantageous in the previous section at λ = 0.2. The
VQE results at different coupling constants are tabulated
in Table VI. The accompanying optimizer convergence
plots are shown in Fig. 20. It is evident from the conver-
gence plots that the Nelder-Mead optimizers needs more
iterations to converge.

V. DEEP LEARNING

A. Overview of variational quantum Monte Carlo

Next, we discuss the deep-learning approach that has
been applied to the minimal-BMN matrix model in Ref.
[25]. Specifically, neural networks are used as the wave-
function ansatz in the variational quantum Monte Carlo
method for the ground state. The algorithm can be roughly
decomposed into four steps:

(i) Parametrize a quantum state |ψθ 〉 by a set of param-
eters θ . Specifically, we construct a function that is
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TABLE VI. VQE results for the minimal-BMN matrix model, where each boson and fermion are represented by one qubit, at different
couplings. The RyRz ansatz with depth 5 is used and the least upper bound across Nr = 100 runs is reported (with 104 iterations). In
the “Best” column, we report the least upper bound that we obtain from a depth 9 RyRz ansatz using the best optimizer for ten times
more iterations. The “HT” column is the exact energy of the truncated Hamiltonian.

λ COBYLA L-BFGS-B SLSQP Nelder-Mead Best HT (exact)

0.5 0.088 492 0.139 702 0.134 517 0.406 003 0.027 44 0.016 90
1.0 0.135 800 0.219 268 0.308 781 0.752 459 0.079 00 0.048 29
2.0 0.387 977 0.622 704 0.522 396 1.271 939 0.176 88 0.083 85

interpreted as the wave function ψθ(X ) = 〈X |ψθ 〉
by using a neural network. The explicit form of
ψθ(X ) is given later in Sec. V B.

(ii) Estimate the energy from Monte Carlo samples of
the wave function. The energy of the state |ψθ 〉 is
defined by

Eθ ≡ 〈ψθ |Ĥ |ψθ 〉 =
∫

dX |ψθ(X )|2 · 〈X |Ĥ |ψθ 〉
ψθ(X )

= EX ∼|ψθ |2[εθ (X )]. (45)

In the last expression, the samples of matrices are
drawn from the probability distribution |ψθ(X )|2,
εθ (X ) is defined as 〈X |Ĥ |ψθ 〉/ψθ(X ), and Eθ is
estimated as the mean of εθ (X ) from these sam-
ples. The generative nature of our wave-function
ansatz, to be discussed in detail later, allows for both
efficient sampling from |ψθ |2 and evaluation of εθ .

(iii) Compute the gradient of the energy with respect
to model parameters θ . Note that the sampling
distribution depends on θ as well and hence

∇θEθ = EX ∼|ψθ |2[∇θ εθ (X )] + EX ∼|ψθ |2

× [εθ (X )∇θ ln |ψθ |2]. (46)

(iv) Update the model parameters via the gradient
descent as

θ ′ = θ − β∇θEθ , (47)

where the step size β is the “learning rate.” The
energy in Eq. (45) is then minimized within the fam-
ily of wave functions parametrized by θ . The (local)
minimum found is then a variational upper bound
for the ground-state energy.

B. Form of the wave-function ansatz

First, we focus on the wave-function form in the SU(N )
bosonic matrix quantum mechanics. The quantum wave
function is a complex function ψ(X ) = |ψ(X )|eiθ(X ) of
Hermitian matrices X . The wave-function norm |ψ(X )|
and the phase θ(X ) are modeled separately.

The wave-function norm is parametrized as an autore-
gressive flow model. Flow models are extremely attractive
in the context of density estimation, i.e., sampling from
a complicated probability distribution over a large num-
ber of variables, because of their flexibility and tractability
as generative models. We choose an autoregressive type
of generative model because it allows for extremely fast
sampling of the variables according to their probability

FIG. 19. The convergence of the VQE results for the minimal-BMN matrix model with SU(2) and λ = 0.2, where each boson is
represented by one qubit. The VQE results are the least upper bound from 100 runs of each optimizer and an RyRz variational form
of depth 9 is used. The SLSQP optimizer is allowed to run for five times more iterations than the other two, which are stopped at 104

iterations. The exact energy of the truncated Hamiltonian (HT) is represented by the dotted line at E0 = 0.003 287.

010324-23



ENRICO RINALDI et al. PRX QUANTUM 3, 010324 (2022)

Nelder-MeadNelder-Mead Nelder-Mead

FIG. 20. Convergence plots of the results of the VQE computation for the minimal-BMN matrix model with SU(2) for coupling
λ = 0.5 (left), λ = 1.0 (middle), and λ = 2.0 (right). The RyRz ansatz with depth 5 is used and the best of Nr = 100 runs is displayed
up to 104 iterations.

distribution. In the following, we review the major com-
ponents of an autoregressive flow. Let |ψ(X )| = √

pθ (X ),
where pθ (X ), the wave-function probability distribution,
takes the following form:

pθ (X ) = p(x1; F0
θ )p[x2; F1

θ (x1)]p(x3; F2
θ (x1, x2)) . . . ,

(48)

in which p(x; F) is a function of x specified by parameters
F . Here, xi are the components of the Hermitian matrices
expanded onto some basis. For the SU(N ) bosonic matrix
model, i runs from 1 to N 2 − 1 times the number of matri-
ces. The xi are ordered in some arbitrary way in this ansatz,
due to the autoregressive nature of the flow, and neither the
choice of the ordering nor that of the basis of the su(N )
algebra used for expansion significantly affects the final
results. As an example, in Eq. (48), the p on the right
side could be normal distributions, which are parametrized
by their locations and scales. The location and the scale
parameters of the coordinate xi depend on xj with j < i.
The dependence is parametrized by function Fi

θ , which is
discussed later. This autoregressive ordering of coordinates
allows for easy sampling from pθ (X ), as we can first sam-
ple x1 independent of any other variables, then sample x2
dependent on x1, x3 dependent on x1 and x2, and so on.
Recall that sampling is a crucial step in the variational
quantum Monte Carlo method, both for estimating the cost
function and for its gradients, therefore dictating how well
the learning process can be tackled. Moreover, it takes up a
considerable amount of time within the full algorithm. This
form of the neural ansatz is therefore the more appropriate
one for our task.

The final component in Eq. (48) is the form of Fi
θ . If the

distributions p in Eq. (48) are normal with two parameters,
Fi
θ is then a vector function from i to two real numbers. For

each i, Fi
θ is given by a fully connected neural network (◦

denotes a concatenation of functions):

Fi
θ = Ai,m

θ ◦ tanh ◦Ai,m−1
θ ◦ tanh ◦ · · · ◦ Ai,2

θ ◦ tanh ◦Ai,1
θ ,
(49)

where for a = 1, 2, . . . , m,

Ai,a
θ (�x) = M i,a

θ �x + �bi,a
θ (50)

is an affine transformation. The weight matrices M i,a
θ and

the bias vectors �bi,a
θ are trainable parameters, not shared

among i. The input and output dimensions are determined
(i and 2 in the Gaussian example) and the dimensions of
the intermediate layers are hyperparameters.

Of course, if the distribution p in Eq. (48) is only Gaus-
sian, the ansatz cannot describe non-Gaussian conditional
distributions, although it is still much more flexible than
a free ansatz. For more flexibility, in this work we use
the neural autoregressive flow (NAF) [66] (and its B-NAF
variant [67]), which is an extension of the simple Gaussian
example discussed. We use m = 3 for the fully connected
network in NAF and denote the ratio of the intermediate
(hidden) dimension to the input dimension as α.

The phase of the wave function θ(X ) is parametrized by
another fully connected neural network as in Eq. (49). The
input dimension of the network is N 2 − 1 times the num-
ber of matrices. The output dimension is one, because the
phase is a scalar number. For ground states of the bosonic
models, the phase is not strictly necessary.

For the minimal-BMN model, the quantum wave func-
tion ψ(X , ξ) depends on fermionic matrices as well. We
expand fermionic matrices onto some SU(N ) basis and
choose the fermion-number basis as the basis for quantum
states. Then the coordinates (X , ξ) for the wave function
contain 2(N 2 − 1) real numbers and (N 2 − 1) binaries.
The wave function is parametrized as

√
p(X )[fξ (X )+

igξ (X )], where p(X ) is given by the NAF as previously
discussed and fξ and gξ are real functions given by fully
connected neural networks as in Eq. (49). The weights
and biases in fξ and gξ depend on the binary vector ξ ,
via additional fully connected networks as well. We test
other types of neural networks, such as normalizing flows,
finding them less accurate for our purposes. In all of them,
we do not use any domain knowledge, such as the pres-
ence of symmetries between degrees of freedom. In other
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words, we seek to start testing this algorithm in the context
of matrix models without any prior bias about the type of
solution we expect for the ground state. This is similar to
what we do on quantum computers with the VQE, where
our variational ansatz is not tailored to matrix models.
However, gauge symmetries are important in these mod-
els, even when not included in the variational ansatz. For
this reason, we discuss them in detail in the next section.

C. Gauge constraints

Physically, we may hope to keep only SU(N ) gauge-
invariant states. In Ref. [25], this is achieved by gauge
fixing, which scales to large SU(N ) symmetry groups.
Here, we propose two more methods of imposing gauge
invariance (cf. Sec. III B) and we discuss future relevant
directions that are not considered in our present study.

The first alternative is to add a gauge Casimir penalty to
the Hamiltonian:

Ĥ ′ = Ĥ + c
∑
α

Ĝ2
α . (51)

Here, c > 0 is a hyperparameter. We introduce this modi-
fied Hamiltonian in Sec. III B, where we use exact diago-
nalization to find the eigenstates. The penalty term favors
gauge-singlet states and imposes strict gauge invariance
as c → ∞: the lowest-energy states will be the gauge-
invariant ones. However, in practice, as our ansatz is not
strictly gauge invariant, very large values of c will inter-
fere with minimization of the energy. For this approach,
we define the gauge Casimir operator, using its differential
form as in Ref. [25], because this is easily computed with
automatic differentiation for the neural wave function with
both bosons and fermions that we adopt in Sec. V B.

The second approach is to project the wave function
onto the singlet sector. Let ψ(X ) be a variational wave
function, not necessarily gauge invariant. The projection
onto the singlet sector can be written as an average over
SU(N ) gauge transformations:

P̂|ψ〉 =
∫

dU Û|ψ〉, (52)

where the integration is done with the Haar measure. For
any gauge-invariant observable Ô, its expectation value in
the projected (unnormalized) state is

〈Ô〉singlet = 〈ψ |P̂Ô|ψ〉
〈ψ |P̂|ψ〉 . (53)

TABLE VII. The neural variational quantum Monte Carlo
ground-state energy and gauge Casimir for the bosonic SU(2)
matrix quantum mechanics, at coupling λ = g2N = 0.2, 0.5, 1.0,
and 2.0 and gauge penalty c = 0 and 10 [cf. Eq. (33)]. Here,
E0,var = 〈Ĥ 〉 in the variational state for N = 2, Ĥ in Eq. (3),
and E0,singlet = 〈Ĥ 〉singlet as in Eq. (53). The ratio of the hidden
dimension and the input dimension α = 20.

c = 0

λ 0.2 0.5 1.0 2.0
E0,var 3.137(2) 3.299(2) 3.518(2) 3.856(3)
G2

var 0.0028(4) 0.0059(6) 0.0062(7) 0.0122(9)
E0,singlet 3.135(2) 3.297(2) 3.520(2) 3.859(3)

c = 10

λ 0.2 0.5 1.0 2.0
E0,var 3.137(2) 3.309(2) 3.545(3) 3.912(3)
G2

var 0.000 11(8) 0.000 19(7) 0.000 22(11) 0.000 21(8)
E0,singlet 3.139(2) 3.307(2) 3.544(3) 3.908(3)

Note that Û|X 〉 = |UXU†〉, so the numerator is

〈ψ |P̂Ô|ψ〉 =
∫

dX 〈ψ |P̂|X 〉〈X |Ô|ψ〉

=
∫

dUdX ψ∗(UXU†)〈X |Ô|ψ〉

= EU,X ∼|ψ |2

[
〈X |Ô|ψ〉
ψ(X )

ψ∗(UXU†)

ψ∗(X )

]
. (54)

The denominator is simply Ô = 1. Hence the singlet
expectation values can be estimated with Monte Carlo
samples of U and X as well.

However, for ground states of bosonic models, it is not
necessary to impose gauge invariance, as the ground state
is always a singlet. This is numerically verified in Table
VII, where the gauge Casimir in the variational ground
states is less than 10−3 even at c = 0. With c = 10, the
expectation value of G2 is less than 10−4 and the varia-
tional ground-state energy is not significantly increased.

As we have explained before, we make the choice of
avoiding the inclusion of domain knowledge into the struc-
ture of the variational anstaz in this initial benchmark. For
this reason, the two methods above do not require a change
in the ansatz, which is allowed to represent noninvariant
states. Recent studies of quantum lattice field theory mod-
els and condensed-matter models with gauge symmetries
have shed light on the importance of realizing these sym-
metries exactly in the architecture of the variational neural
quantum states (NQSs). This is an interesting future direc-
tion to explore. Variational NQSs with gauge-invariant or
equivariant architectures have been shown to increase the
performance to convergence to the physical ground-state
wave function [68,69] and to help in extracting excited
states as well. Moreover, generative models with gauge
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TABLE VIII. The neural variational quantum Monte Carlo ground-state energy for the bosonic SU(2) matrix quantum mechanics,
at coupling λ = g2N = 0.2, 0.5, 1.0, and 2.0. The neural autoregressive flow ansatz contains a fully connected network with an input
and an output layer of 2(N 2 − 1) = 6 units and a hidden layer of α × 2(N 2 − 1) units. Hence the α here is the ratio of the hidden
dimension and the input dimension. A larger α means more parameters and a more flexible ansatz. The exact result of the HT at high
truncation level � = 11 is reported in the last column.

α 1 2 5 10 20 50 HT (exact)

λ = 0.2 3.137(2) 3.137(2) 3.140(2) 3.138(2) 3.137(2) 3.135(2) 3.134
λ = 0.5 3.313(2) 3.312(2) 3.308(2) 3.307(2) 3.302(2) 3.305(2) 3.297
λ = 1.0 3.544(3) 3.544(2) 3.541(3) 3.528(2) 3.519(2) 3.520(2) 3.516
λ = 2.0 3.914(3) 3.910(3) 3.892(3) 3.872(3) 3.857(3) 3.859(3) 3.854

equivariant neural networks have been used for sampling
configurations of non-Abelian gauge theories on the lattice
[13,70], with and without fermions. This is an extremely
challenging endeavor and it is an area of active research
[71]. In the future, matrix models could equally bene-
fit from these techniques, in particular when the field is
mature regarding the exact realization of supersymmetries
in neural quantum states.

D. Ground-state energy and observables

1. Bosonic matrix model

We start with the ground-state energy in the SU(2)
bosonic two-matrix quantum mechanics. The variational
energies will be compared to Monte Carlo results and they
agree within numerical uncertainties. The accuracy of the
variational energies can also be assessed by increasing the
number of hidden units in the neural-network ansatz. With
more parameters, we expect that the ansatz will be more
flexible and accurate, and indeed convergence to exact
(Hamiltonian-truncation) results is observed in Table VIII.

No significant improvement is observed from α = 20
to α = 50 in Table VIII. Similarly, for the SU(3) bosonic
matrix model we summarize the results in Table IX

2. SU(2) minimal BMN

In the supersymmetric model, the ground-state energy
should be zero, and indeed we see vanishing variational
energies. In Table X for N = 2 and λ = μ = 1, the vari-
ational energy converges to zero as we increase α. Other
observables in the variational state are accurate as well.

The results at α = 20 for other couplings are summarized
in Table XI. Note that a natural energy scale of the the-
ory is of order one. For example, the ground-state energies
of bosonic and fermionic oscillators are ±(N 2 − 1) = ±3,
and they cancel out. The results at α = 20 mean that the
cancellation is reproduced up to a percent-order error.

VI. MONTE CARLO SIMULATION ON A
EUCLIDEAN LATTICE

In this section, we employ the lattice Monte Carlo
method to study the bosonic matrix model and compare
its results to the methods described in the previous sec-
tions. For the minimal-BMN model, since several exact
relations are known about the ground state due to super-
symmetry, we do not repeat the study using lattice Monte
Carlo simulations. For an introductory review, see, e.g.,
Ref. [72].

We use the following Euclidean action on the circle:

S = N
∫ β

0
dtTr

(
1
2
(DtXI )

2 + m2

2
X 2

I − λ

4
[XI , XJ ]2

)
,

(55)

where λ = g2N . The circumference of the temporal circle,
β, is the inverse temperature β = 1/T of the system. The
matrices XI are traceless Hermitian.

The lattice regularization that we use is the tree-level
improved action, which is essentially the same as the one
used in Ref. [73]. The discretized lattice action can be

TABLE IX. The neural variational quantum Monte Carlo ground-state energy for the bosonic SU(3) matrix quantum mechanics, at
coupling λ = g2N = 0.5, 1.0, and 2.0. The neural autoregressive flow ansatz contains a fully connected network with an input and an
output layer of 2(N 2 − 1) = 16 units and a hidden layer of α × 2(N 2 − 1) units. Hence the α here is the ratio of the hidden dimension
and the input dimension. A larger α means more parameters and a more flexible ansatz. The results of the lattice Monte Carlo (MC)
simulations are reported in the last column.

α 1 2 5 10 20 50 MC

λ = 0.5 8.833(10) 8.828(7) 8.829(7) 8.835(7) 8.824(7) 8.826(7) 8.84(4)
λ = 1.0 9.459(7) 9.447(7) 9.468(8) 9.466(10) 9.432(7) 9.440(8) 9.38(4)
λ = 2.0 10.447(12) 10.448(9) 10.441(9) 10.457(12) 10.426(8) 10.397(13) 10.24(4)
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TABLE X. The neural variational quantum Monte Carlo ground-state observables for the SU(2) minimal-BMN model, at coupling
λ = g2N = 1.0 and μ = 1. The observables are the Hamiltonian H , the gauge Casimir G2, the SO(2) angular momentum M , and the
fermion number F . A larger α means more parameters and a more flexible ansatz. The last column contains the exact results from the
HT at � = 8.

α 1 2 5 10 20 50 HT (exact)

H 0.058(6) 0.053(6) 0.041(6) 0.031(6) 0.014(6) 0.005(6) 0.000
G2 0.007(8) −0.008(8) 0.014(8) 0.007(9) 0.022(9) 0.012(9) 0.000
M −0.0003(3) −0.0004(3) −0.0001(4) 0.0001(4) −0.0003(5) −0.0001(4) 0.0000
F 0.1844(6) 0.1833(6) 0.1895(6) 0.1922(6) 0.1946(7) 0.1935(7) 0.2034

written as

Slattice = Na
nt∑

t=1

Tr
(

1
2
(DtX )2I ,t + m2

2
X 2

I ,t − λ

4
[XI ,t, XJ ,t]2

)
,

(56)

where nt is the number of lattice points used for discretiz-
ing the circle and a = β/nt is the lattice spacing. The
lattice spacing has to be removed because it introduces
systematic effects and we are interested in the so-called
“continuum-limit” system, when a → 0.

The covariant derivative Dt is defined by

(DtX )I ,t = 1
a

(
−1

2
UtUt+aXI ,t+2aU†

t+aU†
t

+ 2UtXI ,t+aU†
t − 3

2
XI ,t

)
. (57)

Here, we adopt periodic boundary conditions for the matri-
ces, XI ,nt+1 = XI ,1. If we set the unitary link variable Ut to
be the identity, the ungauged version of the model can be
studied as well [73]. Note that β = ant.

In lattice Monte Carlo, a sequence of lattice configura-
tions {X (1), U(1)} → {X (2), U(2)} → · · · → {X (k), U(k)} →
· · · is generated, such that their probability distribution
converges to e−Slattice(X ,U). Then the average over lattice
configurations converges to the expectation value in the

TABLE XI. The neural variational quantum Monte Carlo
ground-state observables for the SU(2) minimal BMN, at cou-
pling λ = g2N = 0.5, 1.0, and 2.0, using μ = 1.

λ = 0.5 λ = 1.0 λ = 2.0

H 0.009(5) 0.014(6) 0.034(7)
G2 0.010(6) 0.022(9) 0.038(14)
M −0.0002(3) −0.0003(5) 0.0006(7)
F 0.1224(4) 0.1946(7) 0.2729(9)

Euclidean path integral:

〈f 〉 ≡
∫

dXdUf (X , U)e−Slattice(X ,U)∫
dXdUe−Slattice(X ,U)

= lim
K→∞

1
K

K∑
k=1

f (X (k), U(k)). (58)

To generate configurations with the correct probability dis-
tribution, we use the hybrid Monte Carlo (HMC) algorithm
[74], which allows us to sample configurations along
molecular dynamics trajectories in a fictitious Monte Carlo
time. The configurations sampled along these HMC trajec-
tories are autocorrelated because of the dynamics used to
select the next step in a trajectory and successive configu-
rations must be discarded to reduce such autocorrelations.

To determine the energy of the system in the ground
state using this path-integral formulation, it is convenient
to use the virial theorem, which relates the kinetic (K) and
potential terms (V) in the Hamiltonian:

〈K〉 =
〈

1
2

∑
i

xi
∂V
∂xi

〉
. (59)

Hence the total energy E at temperature T = β−1 is evalu-
ated as

E =
〈

1
β

∫ β

0
dt

(
V + 1

2

∑
i

xi
∂V
∂xi

)〉

=
〈

N
β

∫ β

0
dt
(

m2X 2
I − 3λ

4
[XI , XJ ]2

)〉
. (60)

On the discretized lattice circle, this becomes

Elattice =
〈

N
nt

nt∑
t=1

(
m2X 2

I ,t − 3λ
4

[XI ,t, XJ ,t]2
)〉

. (61)

We compute the energy for the bosonic two-matrix model
with gauge groups SU(2) and SU(3) at three values of
the coupling λ = 0.5, 1.0, and 2.0, with fixed m2 = 1.
The simulations are performed at temperatures 0.025 ≤

010324-27



ENRICO RINALDI et al. PRX QUANTUM 3, 010324 (2022)

FIG. 21. The energy of the SU(2) bosonic model at m2 = 1 and λ = g2N = 0.5 for various temperatures T and lattice sizes nt. The
black dashed line is the exact result from the HT approach at cutoff� = 14, E0 = 3.297. Higher temperatures approach it from below.

T ≤ 0.4 and lattice size nt ranging from 16 to 192. For
each parameter set, we simulate about one million HMC
trajectories of length between 0.5 and 1 (a length of 1 cor-
responds to one molecular dynamics time unit, MDTU).
We discard 1000 MDTU at the beginning of each tra-
jectory to remove thermalization (burn-in) effects and
have configurations that are from the correct distribu-
tion obtained when the HMC algorithm converges. We
also save the configuration every 10–50 MDTU to reduce
autocorrelation times. A posteriori, we check that the inte-
grated autocorrelation time of the energy is always around
unity.

In Fig. 21, we show the energy of the SU(2) theory
with m2 = 1 and λ = g2N = 0.5 at several temperature
values between T = 0.4 and T = 0.05. The horizontal axis
is the inverse lattice size, 1/nt. In Fig. 22, we change
the horizontal axis to be proportional to the lattice spac-
ing a = 1/(Tnt). In this representation, the data do not

show a significant T dependence and, at fixed lattice
spacing a, different temperatures mostly agree within sta-
tistical uncertainties. The black horizontal line is the value
coming from the HT of Sec. III A computed at a cutoff
of � = 14. We can see that the lattice data toward the
continuum limit a → 0 are consistent with this value but
the comparison requires a careful extrapolation of the lat-
tice data. The continuum limit is taken using energy data
in the range a = 1/(Tnt) ∈ [0, 0.25] and extrapolated with
simple polynomial functions of the lattice spacing.

We fit the data using Bayesian least-squares fits of
Gaussian-distributed variables implemented in LSQFIT [75]
and using uninformative priors for the parameters. A way
to assess the systematic effects of the continuum-limit
extrapolation is to try cutting the data used at different max-
imum lattice spacings—that is, using a ≤ amax—and also
to increase the order np of the fitting functions (polyno-
mials) to include higher powers of a. We use the fitting

FIG. 22. The energy of the SU(2) bosonic model at m2 = 1 and λ = g2N = 0.5 for various temperatures T and lattice sizes nt. The
horizontal axis is the lattice spacing a = 1/(Tnt). The black dashed line is the exact result from the HT approach at cutoff � = 14,
E0 = 3.297.
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TABLE XII. The results of systematic fitting for the SU(2) bosonic model with m2 = 1 and λ = g2N = 0.5.

amax np E χ2 per DOF amax np E χ2 per DOF

0.05 1 3.281(24) 1.70 0.30 1 3.2590(53) 1.43
0.05 2 3.317(57) 1.67 0.30 2 3.2841(88) 1.15
0.05 3 3.317(57) 1.67 0.30 3 3.285(14) 1.15
0.10 1 3.278(11) 1.46 0.40 1 3.2416(46) 2.31
0.10 2 3.312(26) 1.37 0.40 2 3.2878(76) 1.12
0.10 3 3.311(27) 1.37 0.40 3 3.282(12) 1.12
0.20 1 3.2725(66) 1.29 0.50 1 3.2202(41) 4.13
0.20 2 3.280(12) 1.28 0.50 2 3.2823(65) 1.23
0.20 3 3.287(22) 1.27 0.50 3 3.2900(98) 1.21

function

F(T, nt) = E +
np∑
i=1

ai

(
1

Tnt

)i

, (62)

where E is the energy value in the continuum limit that we
are seeking. We repeat the fit to Eq. (62) for np = 1, 2, and
3, while sliding amax from values closer to the continuum
limit all the way to the largest that we have for each matrix
model. The results for the SU(2) bosonic matrix model at
λ = 0.5 are summarized in Table XII.

We choose the final result based on where the results sta-
bilize and become consistent across models with polyno-
mials of different orders. This can be seen in Fig. 23, where
a linear-function fit only works very close to the continuum
limit, while higher-order polynomials can model the data
at larger lattice spacing. We repeat the above procedure for
all the couplings.

The results from this systematic procedure, choosing
the np = 2 polynomial model for the continuum limit and
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FIG. 23. The results of systematic fitting for the SU(2) bosonic
model with m2 = 1 and λ = g2N = 0.5 using different data por-
tions with polynomials of different order np . The lower panel
shows the reduced χ2 per DOF, which becomes very large for the
low-order polynomials when larger lattice spacings are included,
going well above the black dashed line that represents 1.

cutting the data at amax = 0.1, are summarized in Tables
XIII and XIV for the SU(2) and the SU(3) bosonic matrix
model, respectively.

As an alternative analysis to study fitting systematic
effects, we can also fit the energy data at each temperature
T with the function

F(T, nt) = E(T)+
np∑
i

ai(T)
(

1
nt

)i

, (63)

where the E(T) energy in the large-nt limit has T depen-
dence. Figure 24 shows that the fit for the lowest tem-
perature is of poor quality and that makes the result for
E(T) deviate from the expected result. This is due to lower
temperatures requiring much larger values of nt to achieve
small discretization effects. We summarize the results of
the fits (including only lattice sizes nt > ncut

t = 16) in
Table XV.

VII. COMPARISON OF DIFFERENT
APPROACHES

In this section, we compare the approaches investigated
in this paper.

A. Computational cost

In principle, the Hamiltonian-truncation method on a
classical computer is the most straightforward and most
reliable approach, because we are guaranteed to obtain the
precise value at large cutoffs �. As we have seen for the
SU(2) matrix models, the cutoff dependence of the ground-
state energy is exponentially suppressed. However, this
method is not tractable for SU(N ) models with N ≥ 3,

TABLE XIII. The ground-state energy for the SU(2) bosonic
model with m2 = 1 at coupling λ = g2N = 0.5, 1.0, and 2.0.
These are selected with an order np = 2 polynomial and by
removing lattice spacing larger than 0.1.

λ = 0.5 λ = 1.0 λ = 2.0

E0,MC 3.312(26) 3.497(33) 3.847(30)
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TABLE XIV. The ground-state energy for the SU(3) bosonic
model with m2 = 1 at coupling λ = g2N = 0.5, 1.0, and 2.0.
These are selected with an order np = 2 polynomial and by
removing lattice spacing larger than 0.1.

λ = 0.5 λ = 1.0 λ = 2.0

E0,MC 8.836(38) 9.381(38) 10.236(41)

because the dimension of the Hilbert space is �2(N 2−1)

for the bosonic two-matrix model and 2N 2−1�2(N 2−1) for
the minimal-BMN model. In other words, the classical
resources needed to solve the problem scale exponentially
with the size of the system (number of degrees of free-
dom). In contrast to this, the quantum resources (number
of qubits) scale polynomially with the size and logarith-
mically with the cutoff. Even with this favorable scaling,
the necessary classical resources are too large for current
technology when N ≥ 3, but the situation could be differ-
ent if we could use an error-corrected quantum computer
on which adiabatic state preparation and quantum phase
estimation could be used reliably. The VQE can circum-
vent the quantum-noise issue if a quantum computer with
sufficiently many qubits becomes available.

The deep-learning method and the lattice Monte Carlo
method do not suffer from the quick growth of the dimen-
sion of the Hilbert space. The deep-learning approach that
we have adopted requires computational resources to study
hyperparameters for the neural-network parametrizations
of the wave function that will give the best (in a variational
sense) energy. One of the advantages is that the informa-
tion on the entire wave function can be obtained instead
of just a few observables. The computational cost scales
with the dimension of the neural network (the number of
training parameters): the input dimension of the neural net-
works scales as O(N 2) for SU(N ) matrices and the number
of parameters in hidden layers scales as O(N 4). For exam-
ple, in bosonic models N = 20 (about 400 bosons) and in
the supersymmetric case N = 12 (about 150 bosons with
150 fermions) are readily accessible on a laptop [76].

TABLE XV. The results of systematic fitting for the SU(2)
matrix model with m2 = 1 and λ = g2N = 0.5 using a T-
dependent energy function.

T ncut
t np E χ2 per DOF

0.05 16 2 3.219(13) 1.54
0.10 16 2 3.294(18) 0.33
0.15 16 2 3.315(23) 0.99
0.20 16 2 3.274(27) 1.21
0.25 16 2 3.221(29) 1.05
0.30 16 2 3.263(31) 0.41
0.40 16 2 3.338(38) 0.52

TABLE XVI. The ground-state energy in the SU(2) bosonic
two-matrix model obtained from the Hamiltonian truncation
(E0,HT), the VQE (E0,VQE), deep learning (E0,DL), and lattice
Monte Carlo (E0,MC) at coupling λ = g2N = 0.5, 1.0, and 2.0.
The apparent poor performance of the VQE may come from
using a small cutoff � = 4 compared to the Hamiltonian trun-
cation. The Hamiltonian-truncation results at � = 14 have a
negligible truncation error at this number of digits.

λ = 0.5 λ = 1.0 λ = 2.0

E0,HT 3.297 3.516 3.855
E0,DL 3.302(2) 3.519(2) 3.857(3)
E0,MC 3.312(26) 3.497(33) 3.847(30)
E0,VQE 3.309 3.547 3.933

The lattice Monte Carlo simulation can be used even
when N is very large, with the computational time [77]
scaling roughly with N 3. However, we can only obtain
expectation values of observables related to the ground
state or a few low-lying states. For a reliable estima-
tion of these observables, we have to study sufficiently
low temperatures at various (large) lattice sizes, such
that discretization effects become small or can be mod-
eled accurately. Technically, the most complicated part is
the uncertainty of the continuum extrapolation. Note that
it is difficult to determine the spectrum of the excited
modes precisely when using lattice Monte Carlo meth-
ods. Moreover, we should remark that typical lattice field
configurations are not related to the wave function.

B. Results

1. SU(2) bosonic model

We compare the ground-state energy obtained with dif-
ferent methods for the SU(2) bosonic matrix model. Very
good agreement can be seen between the Hamiltonian-
truncation method (at large cutoff � = 14), the VQE
method, the deep-learning (DL) method, and the lattice
Monte Carlo (MC) method. The level of agreement dete-
riorates for the VQE as the model is explored at larger
gauge couplings λ, because the VQE has a large truncation
error due to the small cutoff � = 4 used. The agreement
might improve if a larger cutoff (larger number of qubits)
is used or if more expressive variational wave functions
are employed for the ground state. Both these directions
require an increased computational time.

The values for the ground-state energy coming from
all the approaches are compared in Table XVI. Note the
error bars in the DL and MC approaches because of their
stochastic Monte Carlo estimation nature. The DL-method
error bars are statistical and they can be reduced with more
Monte Carlo samples. On the other hand, the MC-method
error bars are mostly from a parameter-inference proce-
dure to extract the continuum-limit-extrapolated energy.
These error bars can be reduced but there will be a lower
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FIG. 24. The results of fitting different temperatures with a
second-order polynomial and including all values of nt > 16 for
the SU(2) matrix model with m2 = 1 and λ = g2N = 0.5. The
result from the HT is the black dashed line. The result from
the original fitting strategy in Table XIII with the correspond-
ing error bar is the black line (LAT) and the gray-shaded area.
The lower panel shows the reduced χ2 per DOF, with the dashed
line representing 1.

limit given by the systematic effects of finding the right
extrapolation model.

2. SU(3) bosonic model

We cannot treat the truncated Hamiltonian exactly (or
with the VQE approach) due to the growth of the Hilbert
space and the corresponding increase in the computational
resources for the SU(3) gauge group. However, the DL and
lattice MC techniques do not suffer from this unfavorable
scaling. We can see very good agreement between these
two approaches for the bosonic SU(3) matrix model. At
the large coupling λ = 2.0, the ML bound is higher than
the MC estimation in the continuum limit. At smaller cou-
pling, they are compatible within errors. The results are
summarized in Table XVII.

3. SU(2) minimal BMN

For the minimal-BMN matrix model with the SU(2)
group, we know the exact value for the ground-state
energy at each coupling λ. This energy is zero due

TABLE XVII. The ground-state energy in the SU(3) bosonic
two-matrix model at coupling λ = g2N = 0.5, 1.0, and 2.0. The
neural variational quantum Monte Carlo (DL) and lattice Monte
Carlo (MC) techniques are compared.

λ = 0.5 λ = 1.0 λ = 2.0

E0,DL 8.824(7) 9.432(7) 10.426(8)
E0,MC 8.836(38) 9.381(38) 10.236(41)

TABLE XVIII. The ground-state energy in the SU(2) minimal-
BMN model obtained from the Hamiltonian truncation (E0,HT),
the VQE (E0,VQE), and deep learning (E0,DL) at coupling λ =
g2N = 0.5, 1.0, and 2.0. The VQE results are obtained at cutoff
� = 2 with the best optimizer and variational form but they may
improve at larger cutoff. The Hamiltonian-truncation results at
� = 11 cannot be distinguished from the exact supersymmetric
results of zero, at this number of digits.

λ = 0.5 λ = 1.0 λ = 2.0

E0,HT 0.000 0.000 0.000
E0,DL 0.009(5) 0.014(6) 0.034(7)
E0,VQE 0.027 0.079 0.177

to supersymmetry; hence this case is perfectly suitable
to benchmark our computational approaches. The VQE
approach is limited by the size of the Hilbert space that can
be explored with a small number of qubits and the ground-
state energy variational upper bound is close to zero for
small coupling but much higher for larger couplings. Sim-
ilarly, the DL method is compatible with the exact energy
at small coupling and it becomes less compatible at larger
couplings, due to the difficulty in determining a good varia-
tional ansatz for a strongly coupled system. We summarize
the results in Table XVIII.

VIII. DISCUSSION AND CONCLUSIONS

Matrix models are simple (0+1)-dimensional theo-
ries that contain similar features as complicated high-
dimensional quantum field theories related to quantum
gravity via the holographic duality. In this paper, we con-
duct a systematic survey of quantum-simulation and deep-
learning approaches to matrix models for the first time,
as a first step to gauge the applicability and scalability of
these modern and rapidly growing numerical techniques.

TABLE XIX. The ground-state energy in the SU(2) bosonic
model at different coupling constants λ for various cutoffs�. The
precision of the iterative sparse eigensolver is set to 10−8.

〈E0|Ĥ |E0〉
� λ = 0.2 λ = 0.5 λ = 1.0 λ = 2.0

3 3.132 304 65 3.282 851 59 3.458 479 92 3.669 040 08
4 3.134 063 07 3.298 943 63 3.526 254 44 3.895 478 37
5 3.133 908 03 3.296 492 79 3.512 117 72 3.833 392 47
6 3.133 927 06 3.297 025 15 3.516 507 58 3.859 506 13
7 3.133 924 87 3.296 920 58 3.515 335 49 3.850 814 24
8 3.133 925 19 3.296 946 63 3.515 733 42 3.854 575 65
9 3.133 925 14 3.296 940 61 3.515 612 21 3.853 167 16
10 3.133 925 15 3.296 942 26 3.515 656 35 3.853 808 64
11 3.133 925 15 3.296 941 83 3.515 641 51 3.853 546 47
12 3.133 925 15 3.296 941 96 3.515 647 26 3.853 670 79
13 3.133 925 15 3.296 941 92 3.515 645 18 3.853 616 68
14 3.133 925 15 3.296 941 94 3.515 646 02 3.853 643 30
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TABLE XX. The ground-state violation of the singlet constraint in the SU(2) bosonic model at different coupling constants λ for
various cutoffs �. The precision of the iterative sparse eigensolver is set to 10−8.

∑
α〈E0|Ĝ2

α|E0〉
� λ = 0.2 λ = 0.5 λ = 1.0 λ = 2.0

3 0.000 224 293 831 0.003 688 212 672 0.018 964 932 725 0.060 510 041 162
4 0.000 184 221 658 0.002 400 096 378 0.011 889 840 764 0.045 924 094 777
5 0.000 004 511 062 0.000 178 633 922 0.001 732 981 158 0.011 493 185 261
6 0.000 002 506 324 0.000 101 373 665 0.000 986 724 060 0.006 352 557 866
7 0.000 000 087 650 0.000 009 947 253 0.000 176 500 569 0.001 788 911 061
8 0.000 000 049 542 0.000 005 629 387 0.000 099 441 023 0.001 011 302 266
9 0.000 000 002 327 0.000 000 683 314 0.000 020 545 750 0.000 315 815 031
10 0.000 000 001 312 0.000 000 389 452 0.000 011 932 039 0.000 185 582 780
11 0.000 000 000 077 0.000 000 055 646 0.000 002 785 207 0.000 062 685 672
12 0.000 000 000 044 0.000 000 032 055 0.000 001 643 162 0.000 037 949 122
13 0.000 000 000 003 0.000 000 005 217 0.000 000 421 954 0.000 013 712 553
14 0.000 000 000 002 0.000 000 003 031 0.000 000 252 683 0.000 008 471 522

Specifically, we consider a bosonic two-matrix model
and its supersymmetric extension (minimal-BMN model)
and compute the spectrum of the low-lying modes. In
fact, efficiently and precisely computing the energy spec-
trum—e.g., for the ground state—is a necessary require-
ment for any future algorithm aiming at solving the time
evolution of the system based on the quantum Hamilto-
nian. We use the Hamiltonian-truncation method (in the
Fock basis), the VQE method, and variational quantum
Monte Carlo with a neural-network ansatz for the wave
function. The choice of these methods is dictated by the
success they have had in many different physical sciences,
from quantum chemistry to complicated many-body mod-
els such as spin glasses. We also perform lattice Monte
Carlo simulations based on the Euclidean path integral for
the bosonic model as a comparison with more traditional
methods.

With the Hamiltonian-truncation method, we consider
the matrix model with a fixed number of modes for each
boson up to a cutoff value that is slowly taken to infinity
in order to remove truncation effects. The spectrum of the

truncated Hamiltonian is obtained using QuTiP on classi-
cal computers. We explore how quickly the correct answer
at infinite cutoff can be recovered. With this setup, we
only study the bosonic matrix model with the SU(2) gauge
group, because the SU(3) model contains more bosonic
degrees of freedom (16 compared to six), resulting in a
much larger Hilbert space: this would require computa-
tional resources not available to us at the moment. We find
that the truncation effects to the low-energy spectrum are
suppressed exponentially with respect to the cutoff�. This
is a favorable scaling and we are able to prove it empiri-
cally for the first time in this work. Note that the number
of qubits in quantum simulation scales as log2�; hence
the truncation error can be suppressed double exponen-
tially with respect to the number of qubits. It would be
natural to assume the same scaling of the truncation errors
for larger systems (larger gauge group N or more matri-
ces D). Given a fixed threshold for the truncation effects
that one is willing to accept, the number of qubits needed
to study a matrix model with a SU(N ) gauge group and D
bosonic matrices is polynomial in D · (N 2 − 1). Moreover,

TABLE XXI. The energy expectation value 〈E′
0|Ĥ |E′

0〉 for the ground state of the Ĥ ′ Hamiltonians of the SU(2) minimal-BMN
model at different coupling constants λ for various cutoffs �. Only the first 12 digits are shown.

〈E′
0|Ĥ |E′

0〉
� λ = 0.2 λ = 0.5 λ = 1.0 λ = 2.0

3 −0.000 348 435 200 −0.003 873 948 083 −0.019 907 205 965 −0.084 936 973 789
4 0.000 114 126 215 0.002 116 374 610 0.013 418 689 187 0.060 446 205 687
5 −0.000 003 216 759 −0.000 102 255 010 −0.000 909 125 958 −0.005 803 433 350
6 0.000 002 429 833 0.000 134 468 904 0.001 628 985 778 0.012 489 096 584
7 −0.000 000 036 383 −0.000 003 214 703 −0.000 051 505 094 −0.000 504 975 266
8 0.000 000 063 447 0.000 010 165 342 0.000 231 428 987 0.002 895 837 534
9 −0.000 000 000 464 −0.000 000 099 555 −0.000 002 210 416 −0.000 018 843 848
10 0.000 000 002 099 0.000 000 910 719 0.000 036 818 848 0.000 724 187 898
11 −0.000 000 000 002 0.000 000 001 411 0.000 000 259 748 0.000 012 480 441
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TABLE XXII. The gauge-constraint violation
∑

α〈E′
0|Ĝ2

α|E′
0〉 for the ground state of the Ĥ ′ Hamiltonians of the SU(2) minimal-BMN

model at different coupling constants λ for various cutoffs �. Only the first 12 digits are shown.
∑

α〈E′
0|Ĝ2

α|E′
0〉

� λ = 0.2 λ = 0.5 λ = 1.0 λ = 2.0

3 0.000 027 144 384 0.000 270 665 767 0.001 217 678 752 0.004 391 570 468
4 0.000 003 466 155 0.000 071 748 567 0.000 483 864 489 0.002 211 074 147
5 0.000 000 377 832 0.000 013 303 385 0.000 129 198 647 0.000 837 166 225
6 0.000 000 087 652 0.000 005 300 120 0.000 065 635 237 0.000 487 463 732
7 0.000 000 007 701 0.000 000 831 344 0.000 015 273 650 0.000 161 843 291
8 0.000 000 002 422 0.000 000 413 367 0.000 009 393 689 0.000 110 264 245
9 0.000 000 000 211 0.000 000 063 891 0.000 002 115 537 0.000 035 041 177
10 0.000 000 000 080 0.000 000 036 382 0.000 001 444 227 0.000 026 392 551
11 0.000 000 000 007 0.000 000 005 736 0.000 000 326 893 0.000 008 241 117

increasing the cutoff level can be done efficiently due to the
logarithmic scaling with � together with the exponential
suppression of truncation errors. Such a favorable scaling
would be good news for quantum simulation of quantum
gravity via holography. Quantum simulations of matrix
models can naturally lead to “quantum gravity in the lab”
[19,78,79]. So far, toy models such as the Sachdev-Ye-
Kitaev (SYK) models have been considered (regarding
quantum simulation protocols of the SYK model on uni-
versal quantum computers, see Refs. [80,81]) but matrix
models can be a much better, theoretically well-controlled,
setup for quantum gravity. Moreover, understanding these
matrix models through quantum simulations could help in
the context of quantum error-correction studies due to their
connection with the holographic conjecture [82–84].

We also want to understand how quantum hardware can
be utilized efficiently to study matrix models in the NISQ
era. In particular, we want to see if currently available
algorithms and software frameworks allow us to correctly
reproduce the results of the Hamiltonian truncation. This is
a necessary step for any future endeavor in this direction.
For this reason, we resort to a hybrid quantum-classical
algorithm, the VQE, to extract the ground state of the
models. We use the IBM QISKITsoftware to estimate the

ground-state energy at small system sizes and compare the
numbers with those from exact diagonalization of the trun-
cated Hamiltonian using classical hardware. In the future,
we plan to use quantum hardware for the simulations, but
first we need to investigate the performance of the vari-
ational quantum circuits and the classical optimizers. Our
results for the bosonic model show very good agreement at
weak coupling but there is a growing discrepancy between
the least upper bound for the energy from the VQE and
the exact diagonalization value of the truncated Hamilto-
nian as the coupling becomes larger. This is not surprising,
because the quantum circuits we use to approximate the
ground-state wave function are not crafted for matrix mod-
els. We need to find better circuits and for that purpose,
the deep-learning approach may give us some hints. More-
over, we note that the upper bound given by the VQE for
the bosonic model is usually better than the one in the
minimal-BMN model. In the case of the minimal-BMN
model, the energy of the ground state is zero up to expo-
nentially small truncation effects. However, we note that
the VQE is giving an upper bound that is nonzero and the
difference with the exact value grows with the coupling.
These results point out an interesting possibility: the use
of matrix models as a challenging test bed for quantum

TABLE XXIII. The angular-momentum-constraint violation |∑α〈E′
0|M̂α|E′

0〉 − J | for the ground state of the Ĥ ′ Hamiltonians of
the SU(2) minimal-BMN model at different coupling constants λ for various cutoffs �. Only the first 12 digits are shown and J = 0.

|∑α〈E′
0|M̂α|E′

0〉 − J |
� λ = 0.2 λ = 0.5 λ = 1.0 λ = 2.0

3 0.000 016 801 483 0.000 182 372 511 0.000 913 116 520 0.003 744 814 441
4 0.000 000 040 458 0.000 001 248 745 0.000 008 311 970 0.000 017 373 811
5 0.000 000 225 739 0.000 007 305 553 0.000 064 178 889 0.000 381 297 761
6 0.000 000 000 342 0.000 000 015 301 0.000 000 143 203 0.000 002 510 586
7 0.000 000 004 147 0.000 000 371 546 0.000 005 900 379 0.000 056 563 759
8 0.000 000 000 002 0.000 000 000 600 0.000 000 031 637 0.000 000 714 895
9 0.000 000 000 099 0.000 000 023 729 0.000 000 662 279 0.000 009 762 673
10 0.000 000 000 000 0.000 000 000 077 0.000 000 005 308 0.000 000 175 686
11 0.000 000 000 003 0.000 000 001 820 0.000 000 087 067 0.000 001 946 922
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TABLE XXIV. The results for the internal energy of the two-
matrix bosonic model with gauge group SU(3) and λ = 0.5. Ncfgs
is the number of configurations used in the analysis and Ndrop is
the number of molecular dynamics time units (MDTUs) between
successive configurations. τ is the integrated autocorrelation time
(in units of Ndrop) and it is always close to unity, indicating that
there are no strong autocorrelations.

T nt E Ncfgs Ndrop τ

0.400 16 7.845(70) 980 50 0.810
0.350 16 7.639(41) 1980 50 0.950
0.300 16 7.481(54) 980 50 1.040
0.250 16 7.354(52) 990 100 0.900
0.200 16 7.072(44) 990 100 0.850
0.150 16 6.710(38) 988 80 1.130
0.100 16 6.131(29) 988 80 0.750
0.050 16 5.071(20) 990 100 0.980
0.025 16 3.873(13) 990 100 1.020
0.400 24 7.912(60) 990 100 0.990
0.350 24 8.036(43) 1980 50 1.000
0.300 24 7.759(57) 990 100 0.990
0.250 24 7.773(52) 990 100 1.120
0.200 24 7.558(44) 990 100 1.450
0.150 24 7.134(38) 990 100 0.800
0.100 24 6.669(31) 990 100 0.930
0.050 24 5.670(20) 990 100 1.170
0.025 24 4.613(13) 990 100 0.910
0.400 32 8.284(69) 990 100 0.860
0.350 32 8.162(44) 1980 50 0.940
0.300 32 8.113(57) 990 100 1.000
0.250 32 8.001(49) 990 100 1.030
0.200 32 7.720(45) 990 100 0.990
0.150 32 7.513(39) 990 100 0.770
0.100 32 7.053(31) 990 100 0.820
0.050 32 6.137(22) 990 100 1.130
0.025 32 5.064(14) 990 100 0.820
0.400 48 8.430(68) 980 50 0.980
0.350 48 8.334(44) 1980 50 0.860
0.300 48 8.191(58) 980 50 0.790
0.250 48 8.219(51) 988 80 0.990
0.200 48 7.986(43) 988 80 0.680
0.150 48 7.809(41) 988 80 1.020
0.100 48 7.489(30) 990 100 0.960
0.050 48 6.697(21) 990 100 1.130
0.025 48 5.723(15) 991 102 1.030
0.400 64 8.455(62) 980 50 0.930
0.350 64 8.456(43) 1980 50 1.150
0.300 64 8.418(57) 980 50 0.790
0.250 64 8.258(50) 980 50 1.020
0.200 64 8.192(45) 980 50 1.020
0.150 64 8.024(38) 980 50 0.790
0.100 64 7.810(31) 980 50 0.830
0.050 64 7.036(22) 980 50 1.030
0.025 64 6.125(15) 980 50 1.250
0.400 96 8.654(68) 980 50 1.140
0.350 96 8.518(43) 1980 50 0.940
0.300 96 8.630(56) 980 50 1.250
0.250 96 8.405(30) 2760 25 1.380
0.200 96 8.458(48) 980 50 0.870

Continued

TABLE XXIV. Continued

T nt E Ncfgs Ndrop τ

0.150 96 8.215(39) 980 50 0.930
0.100 96 8.009(31) 980 50 0.900
0.050 96 7.475(22) 980 50 0.930
0.025 96 6.672(15) 980 50 0.860
0.400 128 8.740(54) 1267 12 5.510
0.350 128 8.568(46) 1980 50 0.990
0.300 128 8.636(59) 925 8 4.250
0.250 128 8.520(52) 1025 8 3.150
0.200 128 8.481(32) 2000 20 1.350
0.150 128 8.413(29) 1950 20 1.700
0.100 128 8.222(14) 4900 10 1.300
0.050 128 7.761(16) 2000 20 1.140
0.025 128 7.058(11) 2000 20 1.340
0.400 192 8.754(47) 1980 50 1.470
0.350 192 8.622(43) 1980 50 0.980
0.300 192 8.654(41) 1980 50 1.250
0.250 192 8.651(37) 1980 50 1.180
0.200 192 8.560(33) 1980 50 0.950
0.150 192 8.512(28) 1980 50 1.020
0.100 192 8.369(24) 1980 50 0.920
0.050 192 8.028(16) 1980 50 0.980
0.025 192 7.478(11) 1980 50 1.120

algorithms and quantum devices. Using the VQE with a
state-vector simulator as a prototypical best-case scenario,
we can tackle progressively harder problems within the
context of matrix models by simply tuning the gauge cou-
pling strength (keeping the number of qubits fixed) or by
adding fermions and bosons (increasing the number of
qubits). The same possibility holds for scenarios where
noise is introduced in the simulation or using real quan-
tum hardware, thus allowing one to test error-mitigation
strategies using matrix models.

To explore what deep learning can do for the matrix
models, we use a variational quantum Monte Carlo
approach with an autoregressive neural flow as the
parametrization for the wave function of the ground state.
This approach can be readily applicable to larger sys-
tem sizes and larger gauge groups. We study the SU(2)
bosonic model and the SU(2) minimal-BMN model and we
also look at the SU(3) bosonic model. Because we do not
study the SU(3) bosonic model via the Hamiltonian trun-
cation due to the large Hilbert space, a comparison with
lattice Monte Carlo is crucial to establish a baseline for
the results. This neural-network-based variational quantum
Monte Carlo approach is able to obtain a good approxima-
tion of the ground-state energy for all the parameters that
we study in the bosonic and minimal-BMN matrix models.
This is a very promising outcome, which is demonstrated
here for the first time. We believe that this deep-learning
approach is readily applicable to various problems such
as real-time evolution or complex models such as the full
BMN or Banks-Fischler-Shenker-Susskind (BFSS) matrix
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TABLE XXV. The results for the internal energy of the two-
matrix bosonic model with gauge group SU(3) and λ = 1.0. Ncfgs
is the number of configurations used in the analysis and Ndrop is
the number of molecular dynamics time units (MDTUs) between
successive configurations. τ is the integrated autocorrelation time
(in units of Ndrop) and it is always close to unity, indicating that
there are no strong autocorrelations.

T nt E Ncfgs Ndrop τ

0.400 16 8.084(49) 1980 50 0.930
0.350 16 7.994(45) 1980 50 0.930
0.300 16 7.880(41) 1980 50 0.850
0.250 16 7.608(37) 1980 50 0.920
0.200 16 7.291(32) 1980 50 0.980
0.150 16 6.936(28) 1980 50 0.950
0.100 16 6.352(22) 1980 50 1.280
0.050 16 5.170(15) 1980 50 1.070
0.025 16 3.9119(91) 1980 50 1.040
0.400 24 8.433(49) 1980 50 1.260
0.350 24 8.310(45) 1980 50 1.030
0.300 24 8.214(42) 1980 50 0.950
0.250 24 8.052(38) 1980 50 0.820
0.200 24 7.807(33) 1980 50 0.840
0.150 24 7.470(29) 1980 50 0.980
0.100 24 6.943(22) 1980 50 1.130
0.050 24 5.880(15) 1980 50 1.130
0.025 24 4.6610(99) 1980 50 0.910
0.400 32 8.759(50) 1980 50 0.840
0.350 32 8.572(46) 1980 50 1.130
0.300 32 8.521(42) 1980 50 0.980
0.250 32 8.247(38) 1980 50 1.060
0.200 32 8.151(34) 1980 50 0.890
0.150 32 7.857(29) 1980 50 0.870
0.100 32 7.328(23) 1980 50 1.160
0.050 32 6.311(15) 1980 50 1.000
0.025 32 5.182(10) 1980 50 0.850
0.400 48 8.834(50) 1980 50 0.770
0.350 48 8.808(48) 1980 50 0.960
0.300 48 8.654(42) 1980 50 1.090
0.250 48 8.654(39) 1980 50 0.930
0.200 48 8.568(35) 1980 50 0.950
0.150 48 8.251(29) 1980 50 0.820
0.100 48 7.825(24) 1980 50 1.090
0.050 48 6.972(16) 1980 50 0.900
0.025 48 5.877(11) 1980 50 1.170
0.400 64 9.033(50) 1980 50 0.870
0.350 64 8.958(48) 1980 50 1.020
0.300 64 8.934(43) 1980 50 0.910
0.250 64 8.768(39) 1980 50 0.840
0.200 64 8.605(35) 1980 50 0.970
0.150 64 8.482(30) 1980 50 0.960
0.100 64 8.139(25) 1980 50 0.970
0.050 64 7.362(17) 1980 50 0.930
0.025 64 6.324(11) 1980 50 0.970
0.400 96 9.173(49) 1980 50 1.080
0.350 96 9.092(46) 1980 50 0.810
0.300 96 8.997(43) 1980 50 1.340
0.250 96 8.981(38) 1980 50 0.900
0.200 96 8.851(35) 1980 50 1.350

Continued

TABLE XXV. Continued

T nt E Ncfgs Ndrop τ

0.150 96 8.748(30) 1980 50 0.910
0.100 96 8.476(25) 1980 50 1.010
0.050 96 7.844(17) 1980 50 0.930
0.025 96 6.928(12) 1980 50 0.970
0.400 128 9.200(50) 1980 50 0.940
0.350 128 9.104(47) 1980 50 0.840
0.300 128 9.143(43) 1980 50 0.990
0.250 128 9.112(40) 1980 50 0.960
0.200 128 8.962(35) 1980 50 0.850
0.150 128 8.866(31) 1980 50 0.950
0.100 128 8.715(24) 1980 50 0.990
0.050 128 8.138(17) 1980 50 1.130
0.025 128 7.326(12) 1980 50 1.100
0.400 192 9.238(51) 1980 50 1.380
0.350 192 9.252(48) 1980 50 1.110
0.300 192 9.182(43) 1980 50 0.980
0.250 192 9.148(40) 1980 50 0.790
0.200 192 9.068(35) 1980 50 1.130
0.150 192 9.012(30) 1980 50 0.940
0.100 192 8.905(26) 1820 50 0.790
0.050 192 8.469(17) 1980 50 1.100
0.025 192 7.834(12) 1980 50 1.050

models. Moreover, the ability to incorporate discrete and
continuous symmetries of the Hamiltonian into the neu-
ral parametrization of the wave function, demonstrated in
other systems such as lattice models or quantum chemistry,
will lead to future improvements.
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TABLE XXVI. The results for the internal energy of the two-
matrix bosonic model with gauge group SU(3) and λ = 2.0. Ncfgs
is the number of configurations used in the analysis and Ndrop is
the number of molecular dynamics time units (MDTUs) between
successive configurations. τ is the integrated autocorrelation time
(in units of Ndrop) and it is always close to unity, indicating that
there are no strong autocorrelations.

T nt E Ncfgs Ndrop τ

0.400 16 8.831(54) 1980 50 1.120
0.350 16 8.510(48) 1980 50 0.900
0.300 16 8.275(44) 1980 50 0.990
0.250 16 8.104(40) 1980 50 0.960
0.200 16 7.780(35) 1980 50 0.830
0.150 16 7.322(29) 1980 50 1.060
0.100 16 6.614(24) 1980 50 0.950
0.050 16 5.316(15) 1980 50 0.840
0.025 16 3.9537(95) 1980 50 0.960
0.400 24 9.186(54) 1980 50 1.100
0.350 24 9.069(51) 1980 50 0.910
0.300 24 8.864(46) 1980 50 0.910
0.250 24 8.606(41) 1980 50 0.840
0.200 24 8.312(38) 1980 50 0.730
0.150 24 7.901(32) 1980 50 1.050
0.100 24 7.349(24) 1980 50 0.960
0.050 24 6.064(16) 1980 50 0.950
0.025 24 4.762(10) 1980 50 1.140
0.400 32 9.394(54) 1980 50 0.980
0.350 32 9.097(48) 1980 50 0.870
0.300 32 9.238(47) 1980 50 1.150
0.250 32 8.954(40) 1980 50 1.070
0.200 32 8.714(37) 1980 50 1.120
0.150 32 8.337(31) 1980 50 0.910
0.100 32 7.761(25) 1980 50 1.050
0.050 32 6.604(17) 1980 50 1.150
0.025 32 5.321(11) 1980 50 1.000
0.400 48 9.627(54) 1980 50 1.000
0.350 48 9.552(52) 1980 50 0.870
0.300 48 9.385(47) 1980 50 0.980
0.250 48 9.348(42) 1980 50 0.960
0.200 48 9.184(38) 1980 50 1.000
0.150 48 8.813(32) 1980 50 0.890
0.100 48 8.331(25) 1980 50 1.130
0.050 48 7.315(18) 1980 50 0.950
0.025 48 6.083(11) 1980 50 1.050
0.400 64 9.829(55) 1980 50 0.990
0.350 64 9.711(51) 1980 50 0.860
0.300 64 9.570(47) 1980 50 0.950
0.250 64 9.470(42) 1980 50 0.940
0.200 64 9.325(37) 1980 50 0.890
0.150 64 9.112(33) 1980 50 0.910
0.100 64 8.669(26) 1980 50 1.080
0.050 64 7.756(18) 1980 50 0.920
0.025 64 6.605(12) 1980 50 0.980
0.400 96 9.882(54) 1980 50 1.130
0.350 96 9.927(52) 1980 50 0.980
0.300 96 9.822(46) 1980 50 1.040
0.250 96 9.778(43) 1980 50 1.120
0.200 96 9.647(39) 1980 50 0.990

Continued

TABLE XXVI. Continued

T nt E Ncfgs Ndrop τ

0.150 96 9.414(33) 1980 50 0.940
0.100 96 9.114(26) 1980 49 1.110
0.050 96 8.312(18) 1980 49 1.010
0.025 96 7.290(12) 1980 50 1.130
0.400 128 9.920(53) 1980 50 1.160
0.350 128 10.017(51) 1980 50 1.150
0.300 128 10.047(49) 1980 50 0.920
0.250 128 9.864(42) 1980 50 0.880
0.200 128 9.797(39) 1980 50 0.990
0.150 128 9.656(34) 1980 50 0.950
0.100 128 9.338(27) 1980 50 1.200
0.050 128 8.677(18) 1980 50 0.960
0.025 128 7.748(12) 1980 50 0.940
0.400 192 10.129(55) 1980 50 0.980
0.350 192 10.124(52) 1980 50 0.970
0.300 192 10.074(46) 1980 50 0.980
0.250 192 9.915(44) 1980 50 0.940
0.200 192 9.891(40) 1980 50 1.120
0.150 192 9.848(34) 1980 50 1.090
0.100 192 9.659(27) 1980 50 1.120
0.050 192 9.128(19) 1980 50 0.970
0.025 192 8.335(13) 1980 50 1.080
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APPENDIX A: OPERATOR FORMALISM AND
PATH-INTEGRAL FORMALISM

1. Hilbert space with and without singlet constraint

When quantum gauge theory is treated in the Hamilto-
nian formulation in the temporal gauge (At = 0 gauge), it
is often said that “physical states are gauge singlets.” The
canonical partition function can be written as a trace over
the space of gauge-invariant states Hinv,

Z(T) = TrHinv

(
e−Ĥ/T

)
. (A1)

There is another, but equivalent, formulation with nons-
inglet Hilbert space (“extended” Hilbert space) Hext, in
which the quantum states that map to each other via
gauge transformation are identified. The partition function
is written as

Z(T) = 1
vol(G)

∫
G

dgTrHext

(
ĝe−Ĥ/T

)
. (A2)
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TABLE XXVII. The results for the internal energy of the two-
matrix bosonic model with gauge group SU(2) and λ = 2.0. Ncfgs
is the number of configurations used in the analysis and Ndrop is
the number of molecular dynamics time units (MDTUs) between
successive configurations. τ is the integrated autocorrelation time
(in units of Ndrop) and it is always close to unity, indicating that
there are no strong autocorrelations.

T nt E Ncfgs Ndrop τ

0.400 16 3.296(32) 1980 50 0.960
0.300 16 3.121(26) 1980 50 0.930
0.250 16 3.017(24) 1980 50 0.820
0.200 16 2.924(22) 1980 50 0.920
0.150 16 2.750(18) 1980 50 0.780
0.100 16 2.477(15) 1980 50 1.120
0.050 16 1.9920(94) 1980 50 1.080
0.400 24 3.428(32) 1980 50 1.120
0.300 24 3.289(28) 1980 50 0.920
0.250 24 3.237(25) 1980 50 1.240
0.200 24 3.101(22) 1980 50 1.060
0.150 24 2.935(19) 1980 50 1.120
0.100 24 2.722(14) 1980 50 0.990
0.050 24 2.2931(99) 1980 50 1.050
0.400 32 3.531(32) 1980 50 0.940
0.300 32 3.373(28) 1980 50 1.000
0.250 32 3.394(27) 1980 50 1.150
0.200 32 3.258(22) 1980 50 0.990
0.150 32 3.157(20) 1980 50 1.000
0.100 32 2.922(16) 1980 50 0.880
0.050 32 2.464(10) 1980 50 0.990
0.400 48 3.649(34) 1980 50 1.160
0.300 48 3.524(28) 1980 50 0.980
0.250 48 3.518(26) 1980 50 1.040
0.200 48 3.446(24) 1980 50 1.120
0.150 48 3.328(20) 1980 50 1.140
0.100 48 3.129(16) 1980 50 0.930
0.050 48 2.721(10) 1980 50 0.970
0.400 64 3.666(34) 1980 50 1.040
0.300 64 3.697(30) 1980 50 0.930
0.250 64 3.560(25) 1980 50 0.960
0.200 64 3.512(23) 1980 50 1.180
0.150 64 3.398(19) 1980 50 0.820
0.100 64 3.246(16) 1980 50 1.010
0.050 64 2.916(11) 1980 50 1.100
0.400 96 3.736(34) 1980 50 1.170
0.300 96 3.733(29) 1980 50 1.100
0.250 96 3.658(27) 1980 50 0.800
0.200 96 3.630(24) 1980 50 1.040
0.150 96 3.530(20) 1980 50 0.870
0.100 96 3.379(16) 1980 50 0.880
0.050 96 3.122(11) 1980 50 0.950
0.400 128 3.796(34) 1980 50 0.870
0.300 128 3.725(28) 1980 50 1.170
0.250 128 3.700(26) 1980 50 1.030
0.200 128 3.640(23) 1980 50 1.050
0.150 128 3.617(20) 1980 50 0.950
0.100 128 3.507(16) 1980 50 0.990
0.050 128 3.262(12) 1980 50 1.170
0.400 192 3.741(34) 1980 50 0.940

Continued

TABLE XXVII. Continued

T nt E Ncfgs Ndrop τ

0.300 192 3.740(28) 1980 50 1.060
0.250 192 3.762(26) 1980 50 0.990
0.200 192 3.737(23) 1980 50 0.900
0.150 192 3.705(20) 1980 50 0.960
0.100 192 3.581(16) 1980 50 0.950
0.050 192 3.425(12) 1980 50 1.170

Here, G = SU(N ) and the integral is taken with the Haar
measure. Note that

P̂ ≡ 1
vol(G)

∫
G

dgĝ (A3)

is a projection operator from Hext to Hinv that satisfies
P̂2 = P̂ .

We show the equivalence of Eqs. (A1) and (A2). This
is a well-known fact but we present the derivation to
make the paper self contained. Essentially, we repeat the
materials in Refs. [18,85].

Suppose that an energy eigenstate |�〉 ∈ Hext is invari-
ant only under G� ⊂ G. From |�〉, we can obtain |�〉inv ∈
Hinv as

|�〉inv = 1√
C�

× 1
vol(G)

∫
G

dg(ĝ|�〉). (A4)

The normalization factor C� is determined such that the
norm of |�〉inv is 1. Namely,

C� = 1
[vol(G)]2

∫
G

dg
∫

G
dg′〈�|ĝ−1ĝ′|�〉

= 1
vol(G)

∫
G

dg〈�|ĝ|�〉

= vol(G�)

vol(G)
. (A5)

Again, this is the inverse of the overcounting factor.
Therefore,

TrHinv

(
e−Ĥ/T

)
=
∑
�

vol(G�)

vol(G) inv〈�|e−Ĥ/T|�〉inv

=
∑
�

vol(G�)

vol(G)
× 1

C�

1
[vol(G)]2

∫
G

dg

∫
G

dg′〈�|ĝ−1e−Ĥ/Tĝ′|�〉

=
∑
�

1
vol(G)

∫
G

dg〈�|ĝe−Ĥ/T|�〉

= 1
vol(G)

∫
G

dgTrHext

(
ĝe−Ĥ/T

)
. (A6)
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TABLE XXVIII. The results for the internal energy of the two-
matrix bosonic model with gauge group SU(2) and λ = 1.0. Ncfgs
is the number of configurations used in the analysis and Ndrop is
the number of molecular dynamics time units (MDTUs) between
successive configurations. τ is the integrated autocorrelation time
(in units of Ndrop) and it is always close to unity, indicating that
there are no strong autocorrelations.

T nt E Ncfgs Ndrop τ

0.400 16 3.070(31) 1980 50 1.050
0.300 16 2.973(26) 1980 50 1.010
0.250 16 2.880(23) 1980 50 0.980
0.200 16 2.799(20) 1980 50 0.920
0.150 16 2.615(17) 1980 50 1.090
0.100 16 2.359(13) 1980 50 0.760
0.050 16 1.9534(87) 1980 50 0.950
0.400 24 3.169(30) 1980 50 1.180
0.300 24 3.103(26) 1980 50 0.880
0.250 24 3.017(22) 1980 51 0.970
0.200 24 2.927(20) 1981 51 0.890
0.150 24 2.819(18) 1980 51 1.050
0.100 24 2.592(14) 1980 50 1.000
0.050 24 2.2188(93) 1980 50 1.380
0.400 32 3.273(30) 1980 50 1.090
0.300 32 3.160(26) 1980 50 1.150
0.250 32 3.111(24) 1980 50 1.040
0.200 32 3.059(21) 1980 50 1.050
0.150 32 2.918(17) 1981 51 0.980
0.100 32 2.738(14) 1981 51 0.970
0.050 32 2.3711(94) 1980 50 1.100
0.400 48 3.374(32) 1980 50 1.000
0.300 48 3.281(27) 1980 50 0.970
0.250 48 3.209(23) 1980 50 1.020
0.200 48 3.194(21) 1980 50 1.000
0.150 48 3.081(18) 1980 50 0.980
0.100 48 2.910(14) 1980 51 0.970
0.050 48 2.5936(95) 1980 50 0.870
0.400 64 3.393(32) 1980 50 0.980
0.300 64 3.354(26) 1980 50 0.920
0.250 64 3.279(24) 1980 50 1.160
0.200 64 3.262(21) 1980 50 0.950
0.150 64 3.163(18) 1980 50 0.880
0.100 64 3.040(15) 1980 50 1.000
0.050 64 2.7500(99) 1980 50 0.950
0.400 96 3.430(22) 3980 50 1.030
0.300 96 3.341(27) 1980 50 1.080
0.250 96 3.373(24) 1980 50 1.040
0.200 96 3.339(22) 1980 50 1.380
0.150 96 3.288(19) 1980 50 1.250
0.100 96 3.179(15) 1980 50 0.870
0.050 96 2.941(10) 1981 51 0.980
0.300 128 3.420(27) 1980 50 1.070
0.250 128 3.418(24) 1980 50 0.990
0.200 128 3.367(22) 1980 50 1.270
0.150 128 3.334(18) 1980 50 0.990
0.100 128 3.237(15) 1980 50 0.950
0.050 128 3.029(10) 1980 50 0.980
0.300 192 3.461(27) 1980 50 1.390
0.250 192 3.417(24) 1980 50 1.090

Continued

TABLE XXVIII. Continued

T nt E Ncfgs Ndrop τ

0.200 192 3.437(22) 1980 50 1.130
0.150 192 3.378(18) 1980 50 1.110
0.100 192 3.332(15) 1980 50 0.940
0.050 192 3.176(11) 1980 50 0.940

Here, the sum over � is taken over the extended Hilbert
space.

2. Relation between canonical quantization and
path-integral formalism

In the canonical partition function defined on the
extended Hilbert space, the group element g is interpreted
as the Polyakov loop. It can be seen as follows. The
expression given in Eq. (A2) can be rewritten as

Z(T) = 1
[vol(G)]K

∫ (
K∏

k=1

dU(k)

)
TrHext

×
(

Û(K)e− H(P̂,X̂ )
TK Û−1

(K−1)Û(K−1)

× e− H(P̂,X̂ )
TK Û−1

(K−2)Û(K−2) · · · Û−1
(1)Û(1)e− H(P̂,X̂ )

TK

)

= 1
[vol(G)]K

∫ (
K∏

k=1

dU(k)

)∫ (
K∏

k=1

dX(k)

)

〈X(K)|Û(K)e−H(P̂,X̂ )/TK Û−1
(K−1)|X(K−1)〉

× 〈X(K−1)|Û(K−1)e−H(P̂,X̂ )/TK Û−1
(K−2)|X(K−2)〉

× · · · × 〈X(1)|Û(1)e−H(P̂,X̂ )/TK |X(K)〉. (A7)

At the first line, we simply insert Û−1Û = 1̂ in many
places. Û(K) corresponds to ĝ. At the next line, we insert∫

dX(k)|X(k)〉〈X(k)| = 1̂ in many places:

〈X(k)|Û(k)e−H(P̂,X̂ )/TK Û−1
(k−1)|X(k−1)〉

= 〈U(k)X(k)U−1
(k) |e−H(P̂,X̂ )/TK |U(k−1)X(k−1)U−1

(k−1)〉

=
∫

dP〈U(k)X(k)U−1
(k) |e−H(P̂,X̂ )/TK |P〉

× 〈P|U(k−1)X(k−1)U−1
(k−1)〉

=
∫

dPeiTr[P(U(k)X(k)U
−1
(k)−U(k−1)X(k−1)U

−1
(k−1))]

× e−H(P,U(k)X(k)U
−1
(k) )/(TK)

= e−KTTr[(U(k)X(k)U
−1
(k)−U(k−1)X(k−1)U

−1
(k−1))

2]

× e−V(U(k)X(k)U
−1
(k) )/(TK)
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TABLE XXIX. The results for the internal energy of the two-
matrix bosonic model with gauge group SU(2) and λ = 0.5. Ncfgs
is the number of configurations used in the analysis and Ndrop is
the number of molecular dynamics time units (MDTUs) between
successive configurations. τ is the integrated autocorrelation time
(in units of Ndrop) and it is always close to unity, indicating that
there are no strong autocorrelations.

T nt E Ncfgs Ndrop τ

0.400 16 2.941(28) 1980 50 1.000
0.300 16 2.805(24) 1980 50 0.870
0.250 16 2.750(21) 1980 50 1.000
0.200 16 2.645(19) 1980 50 0.850
0.150 16 2.527(16) 1980 50 1.070
0.100 16 2.303(13) 1980 50 1.080
0.050 16 1.9063(85) 1980 50 1.010
0.400 24 3.038(28) 1980 50 1.080
0.300 24 2.915(24) 1980 50 0.770
0.250 24 2.876(22) 1980 50 0.990
0.200 24 2.819(20) 1980 50 1.100
0.150 24 2.673(16) 1980 50 1.130
0.100 24 2.527(14) 1980 50 1.160
0.050 24 2.1593(88) 1980 50 1.080
0.400 32 3.058(27) 1980 50 1.150
0.300 32 3.050(24) 1980 50 0.940
0.250 32 2.946(22) 1980 50 0.980
0.200 32 2.927(19) 1980 50 0.930
0.150 32 2.806(17) 1980 50 1.040
0.100 32 2.631(13) 1980 50 1.190
0.050 32 2.3029(89) 1980 50 0.930
0.400 48 3.137(28) 1980 50 1.180
0.300 48 3.087(25) 1980 50 1.150
0.250 48 3.102(23) 1980 50 0.940
0.200 48 3.050(20) 1980 50 0.970
0.150 48 2.916(17) 1980 50 1.100
0.100 48 2.809(14) 1980 50 1.050
0.050 48 2.4901(91) 1980 50 0.990
0.400 64 3.223(29) 1980 50 0.820
0.300 64 3.133(24) 1980 50 1.000
0.250 64 3.105(22) 1980 50 1.110
0.200 64 3.137(20) 1980 50 0.940
0.150 64 3.028(17) 1980 50 1.050
0.100 64 2.899(14) 1980 50 1.060
0.050 64 2.6519(93) 1980 50 1.020
0.400 96 3.199(28) 1980 50 1.130
0.300 96 3.195(24) 1980 49 0.730
0.250 96 3.178(22) 1980 50 1.060
0.200 96 3.134(20) 1980 50 1.090
0.150 96 3.082(17) 1980 50 0.860
0.100 96 3.037(14) 1980 50 1.150
0.050 96 2.7978(97) 1980 50 1.190
0.400 128 3.252(29) 1980 50 1.040
0.300 128 3.204(24) 1980 50 0.970
0.250 128 3.141(22) 1980 49 0.710
0.200 128 3.164(20) 1980 50 1.100
0.150 128 3.142(18) 1980 50 0.940
0.100 128 3.077(14) 1980 50 0.900
0.050 128 2.903(10) 1980 50 0.990
0.400 192 3.287(30) 1980 50 1.310
0.300 192 3.231(23) 1980 50 1.200

Continued

TABLE XXIX. Continued

T nt E Ncfgs Ndrop τ

0.250 192 3.196(22) 1980 50 1.070
0.200 192 3.249(21) 1980 50 1.070
0.150 192 3.230(18) 1980 50 0.940
0.100 192 3.150(14) 1980 50 0.790
0.050 192 3.018(10) 1980 50 0.910

TABLE XXX. Systematic fitting for the bosonic SU(3) model
with λ = 0.5.

amax np E
χ2 per
DOF amax np E

χ2 per
DOF

0.05 1 8.823(33) 1.11 0.30 1 8.6919(87) 2.13
0.05 2 8.822(68) 1.11 0.30 2 8.773(15) 1.30
0.05 3 8.822(68) 1.11 0.30 3 8.809(22) 1.20
0.10 1 8.768(17) 1.12 0.40 1 8.6369(74) 4.49
0.10 2 8.836(38) 0.99 0.40 2 8.767(12) 1.24
0.10 3 8.836(38) 0.99 0.40 3 8.794(20) 1.19
0.20 1 8.722(11) 1.82 0.50 1 8.5880(67) 7.94
0.20 2 8.807(19) 1.24 0.50 2 8.747(10) 1.36
0.20 3 8.809(30) 1.24 0.50 3 8.789(15) 1.14

TABLE XXXI. Systematic fitting for the bosonic SU(3) model
with λ = 1.0.

amax np E
χ2 per
DOF amax np E

χ2 per
DOF

0.05 1 9.359(35) 0.57 0.30 1 9.2273(86) 2.72
0.05 2 9.375(70) 0.57 0.30 2 9.337(14) 0.99
0.05 3 9.375(70) 0.57 0.30 3 9.367(21) 0.92
0.10 1 9.328(17) 1.00 0.40 1 9.1622(73) 6.30
0.10 2 9.381(38) 0.93 0.40 2 9.326(12) 1.04
0.10 3 9.381(39) 0.93 0.40 3 9.361(19) 0.95
0.20 1 9.281(11) 1.45 0.50 1 9.0787(64) 14.87
0.20 2 9.355(19) 1.01 0.50 2 9.307(10) 1.21
0.20 3 9.359(31) 1.01 0.50 3 9.348(15) 0.99

TABLE XXXII. Systematic fitting for the bosonic SU(3)
model with λ = 2.0.

amax np E
χ2 per
DOF amax np E

χ2 per
DOF

0.05 1 10.235(38) 1.09 0.30 1 10.0660(93) 4.43
0.05 2 10.265(73) 1.08 0.30 2 10.227(15) 1.34
0.05 3 10.265(73) 1.08 0.30 3 10.264(23) 1.25
0.10 1 10.247(19) 1.10 0.40 1 9.9657(80) 11.43
0.10 2 10.236(41) 1.09 0.40 2 10.213(13) 1.31
0.10 3 10.237(42) 1.09 0.40 3 10.256(21) 1.19
0.20 1 10.142(12) 2.21 0.50 1 9.8484(70) 25.52
0.20 2 10.251(21) 1.41 0.50 2 10.176(11) 1.78
0.20 3 10.288(33) 1.36 0.50 3 10.249(16) 1.21
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TABLE XXXIII. Systematic fitting for the bosonic SU(2)
model with λ = 1.0.

amax np E
χ2 per
DOF amax np E

χ2 per
DOF

0.05 1 3.519(31) 0.57 0.30 1 3.4579(58) 1.80
0.05 2 3.526(77) 0.57 0.30 2 3.5159(98) 0.58
0.05 3 3.526(77) 0.57 0.30 3 3.516(16) 0.58
0.10 1 3.507(13) 0.55 0.40 1 3.4351(50) 3.17
0.10 2 3.497(33) 0.55 0.40 2 3.5074(84) 0.74
0.10 3 3.498(34) 0.55 0.40 3 3.523(14) 0.70
0.20 1 3.4854(72) 0.64 0.50 1 3.4080(44) 5.46
0.20 2 3.514(14) 0.50 0.50 2 3.4923(71) 0.95
0.20 3 3.513(26) 0.50 0.50 3 3.522(11) 0.68

� e−L[Dt(U(k)X(k)U
−1
(k) ),(U(k)X(k)U

−1
(k) )]/(TK)

= e−L[DtX(k),X(k))]/(TK). (A8)

Here, we use

U−1
(k−1)U(k) ≡ eiA(K)/(KT) (A9)

and

X(k) − (U(k−1)U−1
(k))

−1X(k−1)(U(k−1)U−1
(k)) � DtX(k)

KT
.

(A10)

L[DtX , X ] is the Lagrangian with the Euclidean signature.
By taking K → ∞ limit, we obtain

Z(T) =
∫

[dA][dX ]e− ∫
dtL[DtX ,X ]. (A11)

The temporal direction is compactified with the circumfer-
ence 1/T and the periodic boundary condition is imposed
on XI and At. Therefore,

g = UK

= UK(U−1
K−1UK−1)(U−1

K−2UK−2) · · · (U−1
1 U1)

TABLE XXXIV. Systematic fitting for the bosonic SU(2)
model with λ = 2.0.

amax np E
χ2 per
DOF amax np E

χ2 per
DOF

0.05 1 3.836(28) 0.68 0.30 1 3.7745(62) 2.25
0.05 2 3.775(62) 0.59 0.30 2 3.831(10) 1.19
0.05 3 3.775(62) 0.59 0.30 3 3.864(16) 1.03
0.10 1 3.835(13) 1.02 0.40 1 3.7414(54) 4.63
0.10 2 3.847(30) 1.01 0.40 2 3.8341(89) 1.12
0.10 3 3.845(31) 1.01 0.40 3 3.848(14) 1.09
0.20 1 3.8028(77) 1.55 0.50 1 3.7056(47) 7.96
0.20 2 3.854(14) 1.10 0.50 2 3.8147(76) 1.43
0.20 3 3.849(25) 1.10 0.50 3 3.851(11) 1.07
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FIG. 25. The bosonic SU(3) model with λ = 0.5. The results
of fitting different data portions with polynomials of different
order np . The lower panel shows the reduced χ2, which becomes
very large for the low-order polynomials when larger lattice
spacings are included.

= (UK U−1
K−1)(UK−1U−1

K−2) · · · (U2U−1
1 )U1

= Pei
∫ 1/T

0 dtAt (A12)

is the Polyakov loop. (Here, P denotes the path-ordered
product along the time direction.)

Note that unless the time direction is noncompact or a
special boundary condition is taken, the condition At =
0 cannot be imposed in the literal sense. In the case
of the canonical partition function, we cannot eliminate
the degrees of freedom of the Polyakov loop. The inte-
gration over the Polyakov loop leads to the projector
1/vol(G)

∫
dgĝ in the operator formalism.
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FIG. 26. The bosonic SU(3) model with λ = 1.0. The results
of fitting different data portions with polynomials of different
order np . The lower panel shows the reduced χ2, which becomes
very large for the low-order polynomials when larger lattice
spacings are included.
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FIG. 27. The bosonic SU(3) model with λ = 2.0. The results
of fitting different data portions with polynomials of different
order np . The lower panel shows the reduced χ2, which becomes
very large for the low-order polynomials when larger lattice
spacings are included.

APPENDIX B: TABLES OF RESULTS OF
HAMILTONIAN TRUNCATION

1. SU(2) bosonic matrix model

We tabulate the values of the ground-state energy for
the SU(2) bosonic model at four coupling constants λ in
Table XIX. The values of the singlet constraint violation
corresponding to the same couplings are tabulated in Table
XX. For the SU(2) bosonic model we study up to cut-
off � = 14, corresponding to a Hamiltonian matrix with
7529536 rows.
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FIG. 28. The bosonic SU(2) model with λ = 1.0. The results
of fitting different data portions with polynomials of different
order np . The lower panel shows the reduced χ2, which becomes
very large for the low-order polynomials when larger lattice
spacings are included.
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FIG. 29. The bosonic SU(2) model with λ = 2.0. The results
of fitting different data portions with polynomials of different
order np . The lower panel shows the reduced χ2, which becomes
very large for the low-order polynomials when larger lattice
spacings are included.

2. SU(2) minimal BMN

We tabulate the values of the energy measured on the
ground-state of the modified Hamiltonian for the SU(2)
minimal-BMN model at four coupling constants λ in
Table XXI. The values of the singlet constraint viola-
tion corresponding to the same couplings are tabulated in
Table XXII. In Table XXIII we also report the angular-
momentum-constrain violation for the same states. For the
SU(2) minimal-BMN model we study up to cutoff� = 11,
corresponding to a Hamiltonian matrix with 14172488
rows.

APPENDIX C: TABLES OF RESULTS OF LATTICE
MONTE CARLO SIMULATIONS

1. Tables for the results of the ground-state energy

An example of raw results from the analysis of the
Markov chain Monte Carlo histories is shown in Table
XXIV. For each parameter set of T and nt, we thermal-
ize the MCMC chain and remove a burn-in subset of
trajectories (in units of MDTU) of 1000 MDTU at the
beginning of each chain. We save the energy observable
every Ndrop MDTU and we collect the observables on a
total of Ncfgs configurations. We also measure the inte-
grated autocorrelation time τ of the energy observable
using the Madras-Sokal windowing algorithm. Results are
tabulated in Tables XXIV–XXVI for SU(3) and in Tables
XXVII–XXIX for SU(2).

2. Tables and figures for the results of the systematic
fitting of the continuum limit

The results of the systematic fitting are tabulated in
Tables XXX–XXXII for SU(3) and in Tables XXXIII and
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XXXIV for SU(2) (in addition to Table XII in the main
text). The results are plotted in Figs. 25–27 for SU(3) and
in Figs. 28 and 29 for SU(2) (in addition to Fig. 23 in the
main text).
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