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1. DETAILS OF THE THEORETICAL MODEL

Here we present the details of the mathematical expression for our gradient descent (GD) algo-
rithm. The basic idea of our algorithm is iteratively adjusting the splitting ratio of the quantum
walk system according to the error between the system output and the target, so that the final
single-photon distribution reaches the target distribution. Therefore, the key of our GD-based
scheme is deriving the mathematical form of the updated value for the splitting ratio. In the
following, we present the mathematical derivation of the updating value in our algorithm.

Without loss of generality, we first consider the splitting ratio at position m in the last walking
step of an n-step quantum walk system. The schematic of the last walking step is shown in

Fig. S1(a). The notation c(n)m,R (cn
m,L) represents the complex amplitude of the coin state |R⟩ (|L⟩)

at the position m in the n-th walking step, and r(n)m is the splitting ratio of the n-th walking step
starting from position m. The measured probability and target probability for detecting single
photons at position m is denoted by Pm and Tm, respectively. The error em between Pm and Tm is
defined as em = Tm − Pm. As we have demonstrated in the main text, the measured probability
Pm can be written in terms of the complex amplitude of the coin state. Then Pm−1 and Pm+1 in
Fig. S1(a) can be written as

Pm−1 = |c(n)m,L|
2 + |c(n)m−2,R|

2 = |a(n)m,L + i · b(n)m,L|
2 + |a(n)m−2,R + i · b(n)m−2,R|

2

Pm+1 = |c(n)m,R|
2 + |c(n)m+2,L|

2 = |a(n)m,R + i · b(n)m,R|
2 + |a(n)m+2,L + i · b(n)m+2,L|

2 ,
(S1)

where a and b are the real and imaginary components of c, respectively. From Fig. S1(a) we can

see that the complex amplitudes c(n)m,L, c(n)m,R can be further expressed in terms of c(n−1)
m−1,R, c(n−1)

m+1,L and

the splitting ratio r(n)m as follows,

c(n)m,L =

√
r(n)m c(n−1)

m+1,L +

√
1 − r(n)m c(n−1)

m−1,R

c(n)m,R =

√
1 − r(n)m c(n−1)

m+1,L −
√

r(n)m c(n−1)
m−1,R ,

(S2)

so the relation between {a(n)m,L, a(n)m,R} ({b(n)m,L, b(n)m,R}) and {a(n−1)
m−1,R, a(n)m+1,L} ({b(n−1)

m−1,R, b(n)m+1,L}) be-
comes

a(n)m,L =

√
r(n)m a(n−1)

m+1,L +

√
1 − r(n)m a(n−1)

m−1,R

a(n)m,R =

√
1 − r(n)m a(n−1)

m+1,L −
√

r(n)m a(n−1)
m−1,R

b(n)m,L =

√
r(n)m b(n−1)

m+1,L +

√
1 − r(n)m b(n−1)

m−1,R

b(n)m,R =

√
1 − r(n)m b(n−1)

m+1,L −
√

r(n)m b(n−1)
m−1,R .

(S3)



By substituting Eq. S3 into Eq. S1, we obtain the mathematical relation between the measured
probability and the interested splitting ratio,

Pm−1 =

(√
r(n)m a(n−1)

m+1,L +

√
1 − r(n)m a(n−1)

m−1,R

)2

+

(√
r(n)m b(n−1)

m+1,L +

√
1 − r(n)m b(n−1)

m−1,R

)2

+

(√
1 − r(n)m−2a(n−1)

m−1,L −
√

r(n)m−2a(n−1)
m−3,R

)2
+

(√
1 − r(n)m−2b(n−1)

m−1,L −
√

r(n)m−2b(n−1)
m−3,R

)2

Pm+1 =

(√
1 − r(n)m a(n−1)

m+1,L −
√

r(n)m a(n−1)
m−1,R

)2

+

(√
1 − r(n)m b(n−1)

m+1,L −
√

r(n)m b(n−1)
m−1,R

)2

+

(√
r(n)m+2a(n−1)

m+3,L +

√
1 − r(n)m+2a(n−1)

m+1,R

)2
+

(√
r(n)m+2b(n−1)

m+3,L +

√
1 − r(n)m+2b(n−1)

m+1,R)

)2
.

(S4)

As we have demonstrated in the main text, in each iteration of our algorithm, the splitting ratio

r(n)m updates according to
[

r(n)m + ∑j η(Tj − Pj)
∂Pj

∂r(n)m

]
→ r(n)m , where η ∈ (0, 1] is the learning rate

and the term (Tj − Pj) can be written as ej. Since r(n)m only connects to the two photon detector

channels Pm−1 and Pm+1, the updating value of r(n)m can be written as

∆r(n)m = ∑
j

ηej
∂Pj

∂r(n)m

= η

(
em−1

∂Pm−1

∂r(n)m

+ em+1
∂Pm+1

∂r(n)m

)
, (S5)

substituting Eq. S4 into Eq. S5, we then obtain the detailed expression for the updated values of

the splitting ratio r(n)m as

∆r(n)m =ηem−1

(√r(n)m a(n−1)
m+1,L +

√
1 − r(n)m a(n−1)

m−1,R

) 1√
r(n)m

a(n−1)
m+1,L − 1√

1 − r(n)m

a(n−1)
m−1,R


+ ηem−1

(√r(n)m b(n−1)
m+1,L +

√
1 − r(n)m b(n−1)

m−1,R

) 1√
r(n)m

b(n−1)
m+1,L − 1√

1 − r(n)m

b(n−1)
m−1,R


+ ηem+1

(√1 − r(n)m a(n−1)
m+1,L −

√
r(n)m a(n−1)

m−1,R

)− 1√
1 − r(n)m

a(n−1)
m+1,L − 1√

r(n)m

a(n−1)
m−1,R


+ ηem+1

(√1 − r(n)m b(n−1)
m+1,L −

√
r(n)m b(n−1)

m−1,R

)− 1√
1 − r(n)m

b(n−1)
m+1,L − 1√

r(n)m

b(n−1)
m−1,R

 .

(S6)

Therefore, during the training process of our algorithm, we iteratively update the values of r(n)m
according to Eq. S6 to minimize the loss function. For a splitting ratio in the walking step other
than the last step, the derivation of its updating value in our algorithm is similar to the above
process. Here we consider the splitting ratio at position m in the (n − 1) walking step of an n-step

quantum walk, as depicted in Fig. S1. From Fig. S1 we can see that the value of r(n−1)
m affects three

photon detection probabilities: Pm−2, Pm, Pm+2. Therefore, the updating value of r(n−1)
m during

the algorithm training process can be written as

∆r(n−1)
m = ∑

j
ηej

∂Pj

∂r(n−1)
m

= η

(
em−2

∂Pm−2

∂r(n−1)
m

+ em
∂Pm

∂r(n−1)
m

+ em+2
∂Pm+2

∂r(n−1)
m

)
.

= ηem−1

 ∂Pm−2

∂a(n)m−1,L

∂a(n)m−1,L

∂a(n−1)
m,L

∂a(n−1)
m,L

∂r(n−1)
m

+
∂Pm−2

∂b(n)m−1,L

∂b(n)m−1,L

∂b(n−1)
m,L

∂b(n−1)
m,L

∂r(n−1)
m

 .

(S7)

The terms in brackets in Eq. S7 are the sum of the partial derivatives of {Pm−2, Pm, Pm+2} with

respect to r(n−1)
m , which can be split into four partial derivation paths as marked in Fig. S1(b).
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Fig. S1. Detailed description of quantum state transfer in a quantum walk system. (a) Detailed
quantum state transfer in the last quantum walking step. (b) Detailed quantum state transfer
in the second-to-last quantum walking step. Blue arrows and circled numbers represent the
different partial derivation paths of detection probabilities {Pm−2, Pm, Pm+2} with respect to

r(n−1)
m .

Then Eq. S7 can be written as

∆r(n−1)
m = ηem−2 1⃝+ ηem 2⃝+ ηem 3⃝+ ηem+2 4⃝

= ηem−2

 ∂Pm−2

∂a(n)m−1,L

∂a(n)m−1,L

∂a(n−1)
m,L

∂a(n−1)
m,L

∂r(n−1)
m

+
∂Pm−2

∂b(n)m−1,L

∂b(n)m−1,L

∂b(n−1)
m,L

∂b(n−1)
m,L

∂r(n−1)
m


+ ηem

 ∂Pm

∂a(n)m−1,R

∂a(n)m−1,R

∂a(n−1)
m,L

∂a(n−1)
m,L

∂r(n−1)
m

+
∂Pm

∂b(n)m−1,R

∂b(n)m−1,R

∂b(n−1)
m,L

∂b(n−1)
m,L

∂r(n−1)
m


+ ηem

 ∂Pm

∂a(n)m+1,L

∂a(n)m+1,L

∂a(n−1)
m,R

∂a(n−1)
m,R

∂r(n−1)
m

+
∂Pm

∂b(n)m+1,L

∂b(n)m+1,L

∂b(n−1)
m,R

∂b(n−1)
m,R

∂r(n−1)
m


+ ηem+2

 ∂Pm+2

∂a(n)m+1,R

∂a(n)m+1,R

∂a(n−1)
m,R

∂a(n−1)
m,R

∂r(n−1)
m

+
∂Pm

∂b(n)m+1,R

∂b(n)m+1,R

∂b(n−1)
m,R

∂b(n−1)
m,R

∂r(n−1)
m

 .

(S8)

According to Eq. S8 we can obtain the updating value for r(n−1)
m during the training. The

mathematical expression of the updating value for the splitting ratio seems complex, but it is
convenient to be programmed because the partial derivatives have highly similar mathematical
forms.

2. SYSTEM ROBUSTNESS ANALYSIS

Our GD algorithm can be used to obtain precise splitting ratio values for generating arbitrarily
distributed single photons. However, the actual splitting ratio values in the experiment may
have a slight deviation from theoretical values. In the following, we will show that the influence
caused by these deviations can be neglected. We introduce a random deviation ∆rerr into each
splitting ratio value in our quantum walk system and numerically simulated its final probability
distribution, and compare the probability distribution with the deviation-free simulated result.
By doing so, we can quantify the robustness of our quantum walk system.

Here we introduce random deviation at ∼ 1% level into each splitting ratio value in a 10-step
quantum walk system, and numerically simulated its probability distributions. The results are
shown in Fig. S2, where the left and right panel present the results for the generation of a Gaussian
(a) and a uniform probability (b) distribution, respectively. The red dots are the ideal probability
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Fig. S2. Numerical simulations of a Gaussian (a) and a uniform (b) probability distributions
of a quantum walk system with 1% deviation in the splitting ratio. Box-plot is counted from
100 numerical simulation results. Red markers indicate the ideal probabilities of the target
distributions.

distributions. The box-plots are drawn by characterizing 100 numerical simulation results. From
Fig. S2 we can see that the influence caused by the splitting ratio deviation are tolerable. The
fidelities of the simulated probability distributions with deviation are also above 95%, which
further proves the strong robustness of our quantum walk system.
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