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Abstract: Random numbers are at the heart of diverse fields, ranging from simulations of
stochastic processes to classical and quantum cryptography. The requirement for true randomness
in these applications has motivated various proposals for generating random numbers based on
the inherent randomness of quantum systems. The generation of true random numbers with
arbitrarily defined probability distributions is highly desirable for applications, but it is very
challenging. Here we show that single-photon quantum walks can generate multi-bit random
numbers with on-demand probability distributions, when the required “coin” parameters are
found with the gradient descent (GD) algorithm. Our theoretical and experimental results exhibit
high fidelity for various selected distributions. This GD-enhanced single-photon system provides
a convenient way for building flexible and reliable quantum random number generators. Multi-bit
random numbers are a necessary resource for high-dimensional quantum key distribution.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Random numbers are important for science research and engineering applications, such as Monte-
Carlo simulations [1,2], cryptography [3,4] and tests of fundamental physics [5,6]. For example,
quantum key distribution (QKD) technology highly relies on the availability of true random
numbers to protect its communication security [7—10]. Theoretically, pseudo-random number
generators, due to their deterministic and predictable nature, cannot satisfy the requirement for
building perfectly secure communication systems. Therefore, the inherent randomness of a
quantum system makes it a promising platform for generating faithful random numbers. This is
known as quantum random number generator (RNG) [11].

Practical quantum RNGs using various sources of randomness have been demonstrated.
Discrete generators can use branching paths [12—14], arrival times [15—18], photon counting
[19-22], and attenuated pulse [23,24]; whereas continuous approaches exploit quantum vacuum
fluctuations [25-27], phase noise of lasers [28—30], amplified spontaneous emission [10,31], and
Raman scattering [32]. Among these schemes, quantum RNG based on quantum walks promise
a convenient and fast way to generate true random numbers [33].
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The applications of a RNG strongly rely on the probability distribution used. Different
distributions are indispensable in various fields. Uniformly distributed random numbers are
most desirable and particularly useful in practical applications [11] because these avoid inherent
bias. A Gaussian distributed RNG is of most significance in the modulation of coherent states
in continuous-variable QKD systems [34—36], simulations of communication channels, and
stochastic processes (e.g. noise) [37].

It is highly valuable to develop a quantum RNG with an on-demand probability distribution.
Based on quantum walks, significant efforts have been made for this task [33,38]. However, it is
challenging to find the proper parameter numbers for a complex system to generate true random
numbers with a given distribution. In contrast, the gradient descent (GD) algorithm, as a highly
adaptive optimization algorithm that has been widely utilized in many fields [39—42], can provide
a more general and efficient way to accomplish this challenging task.

In this work, we propose a GD-enhanced quantum walk for realizing quantum RNG with, in
principle, an on-demand probability distribution. Our GD-based scheme can be implemented by
using a linear optical system without the need of time-bin encoding and dynamical modulation.
We further experimentally demonstrate the generation of true random numbers with various
selected probability distributions by using quantum walks of heralded single photons.

2. System and model

In quantum walks, the walker is located in the Hilbert space H = H, ® H,, where H,, is position
space and H; is the coin space. The coin space contains two basis vectors {|L), |R)}, which
represent the eigenstate of the coin. Therefore, the definite position and classical coins are both
replaced by position states and coin operators in a quantum walk system.

In a one-dimensional (1D) discrete-time quantum walk system, the quantum walker’s state can
be described by a product state |¥) = [i) ® |c), where |¢) = ar|L) + ag|R) is the coin state and
ly) = Zx a,|x) is the position state. Each walkmg step consists of a unitary operator U = 8§C,
where § is the conditional shift operator and € is the coin operator. The coin operator C rotates
the coin state and its most general form can be expressed as

. [ e cos(8) e sin(0)
C=> ee?| A , ey
T —e“sin(8) e cos(9)

where &, € [0,2n] and 6 € [0, /2] are the parameters of the rotation and S fixes the global
phase. The conditional shift operator § moves the walker either to the left or right depending on
the coin state and has the form

S':Z|x—1,L)(x,R|+|x+l,R)(x,L|. 2)

It leads to the conditional shift operation S|x,L) = |x + 1,L) and S|x,R) = |x — 1,R). In
the following, we fix the parameters 8 = n/2 and & = ¢ = —n/2, so that we obtain the coin
determined by one parameter 6. If 6 = x/4, the coin then becomes the Hadamard coin :

H = b /N2.
1 -1
After n walking steps, the state of a quantum walk system becomes |¥,,). The quantum walker
remains in a superposition of many positions until the final measurement is performed. The
measured probability for the walker being at x; after n walking steps can be written as

P i) = [(RICI o) |? + (LI o )] 3)

The probability distribution is determined by the choice of the coin parameter set in each
walking step. It is difficult to adjust the coin parameters to obtain desired probability distributions
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because the number of the coin parameters grows rapidly when increasing the walking steps. In
this work, we exploit the gradient descent algorithm to solve this challenging problem.

3. Algorithm

Generally, the training procedure using the GD algorithm consists of the following elements
[43]: a differentiable function F, function parameters {6} (i = 1,2, ..., k) and a loss function
L. The function F defines the input-output relation and is parameterized by the parameters
{6;} (i = 1,2,...,k), and the loss function £ is used to evaluate the difference between the
function output F(x ;{6;}) and target T. Here, F(x ;{6;}) represents the function output
with a input example x and parameters {6;} during each training step. The basic idea of the
GD algorithm is to take repeated steps in the opposite direction of the gradient of the loss
function to minimize the loss function. Considering the mean square error function as the loss
function £ = %(T — F(x ;{6;}))? in the training, the loss function is then also parameterized by
{6;} (i = 1,2,...,k) and can be written as £({6;}). Essentially, the gradient descent method
minimizes the loss function £({6;}) by updating {6;} according to [6; — 17 - Vg, L(6;)] — 6; (the
opposite direction of the gradient of the loss function), where n7 € (0, 1] is the learning rate.

A 1D discrete-time quantum walk process is depicted in Fig. 1(a). The blue circles denote
different position states, and the red arrows indicate the directions of the walk starting from
different position states in each walking step. Without loss of generality, we assume the splitting
ratio can be adjusted for every coin operation at different position states in different walking steps.
This assumption can be experimentally realized in a linear optical system [44].

Position
(@ 3 2 -1 0o +1 +2 +3 (b
| | | | ' | ™ () () ()
| | | | | | Cm-2,kIR) : Crr’ll.LlL> | Crr:R'R) ! Cmt2,IL)
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Fig. 1. (a) Schematic of a one-dimensional discrete-time quantum walk process. The
red arrows represent the walking directions. The vertical and horizontal gray dashed lines
denote the position states and the walking steps, respectively. (b) Details of the quantum
state transfer in a quantum walk. The symbols next to the red arrows describe the coin
state transfer in each walking step. The symbol r, represents the splitting ratio of the n-th
walking step starting from position m.

The specific description of quantum state transfer in a quantum walk system is shown in
Fig. 1(b). The letters c and r represent the complex amplitude and splitting ratio, respectively.
The notation CE::)R (c, ;) represents the complex amplitude of the coin state |R) (|L)) at the

position m in the n-th walking step; while rﬁﬁ’) is the splitting ratio of the n-th walking step starting

from position m, and P,, is the measured probability at the detector located at position m. The
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splitting ratio r is defined as r = cos? @. Thus, the state transformation with splitting ratio r can
be modeled as c|L) — \r-c|L) + V1 — r-c|R), and ¢|R) — V1 —r-c|L) — v/r - ¢|R). Then the
measured probability P,, becomes

(n+1) (n) (n+ 1) (n)

(n+1)b(n) (n+1 b(n) ]

m 1 m 2R~ m 1 m-1 “m-2,R ~ m 1
, @
, (n+1) (n) ’ (n+l) (n) (n+l b(n) ,1 (n+l)b(n) ]
Tme1 @ Tt m+2 L P+l T+l m+2,L ’
where a and b are the real and imaginary components of ¢, respectively.
According to the GD algorithm, the updated value of rf,',l) with respect to P; is

0L dL OP; OP;

An = =1 = N an s = (T = P)—5 )
mFj ar,(,;l) OP; ﬁrf,'ll) 6;’,(,7)

where here the loss function becomes £ = 3 Y,(Tj = Pj)*, and T; is the target probability at
position j. Then the overall updated value of rf,',' ) is obtained by summing Eq. (5),

AR, Z n(T; - (n) ©6)

J

The details of the derivation are presented in the Supplement 1. Therefore, during each
iteration of our algorithm, r(") updates according to the following relation

'+ Z n(T; - P; ) - @

The training finishes when the simulated quantum walk probability distribution reaches the
target distribution. After the training is completed, the theoretical values of the splitting ratios
for generating the desired probability distribution are obtained.

4. Experimental setup

Quantum walks lay the natural foundation for studying plenty of novel quantum phenomena and
can be realized in various systems [45-50]. Among these, linear-optics-based quantum walks
have advantages in convenience of implementation and compatibility. Therefore, we use this
platform for our GD-based quantum RNG scheme.

In linear optical implementations of quantum walks, we use single photons as the quantum
walker that moves in both directions in every position. The polarization states {|H), |V)} are
introduced to represent two orthogonal coin states {|L), |R)}, respectively. We use single-photon
spatial modes to represent the position of the walker |x).

The schematic of our experimental setup is shown in Fig. 2(a). Pairs of single photons are
created via type-II spontaneous parametric down-conversion in a periodically poled potassium
titanyl phosphate (PPKTP) crystal with 20 mm-length. This crystal is pumped by a continuous
wave diode laser centered at 397.5nm and emits orthogonally polarized photon pairs (i.e.,
horizontal and vertical polarized) with a wavelength of 795 nm and a FWHM bandwidth of 0.3
nm. The photon pairs are separated by a polarized beam splitter. One photon from each pair
served as a trigger while the other photon is launched into the quantum walk system.

The position states of the quantum walk are represented by spatial modes of the single photons.
The shift operator § acting on these modes is implemented by a 37.7 mm long, birefringent
calcite beam displacer. The optical axis of each calcite prism is cut so that vertically polarized
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Fig. 2. (a) Schematic of experimental setup. PPKTP: periodically poled potassium titanyl
phosphate crystal, PBS: polarized beam splitter, SPAD: single-photon avalanche diode,
HWP: half-wave plate, QWP: quarter-wave plate, AWP: adjustable wave plate, M: mirror,
BD: beam displacer. Here AWP is designed as a HWP in the middle of two QWPs in order
to compensate for the phase shift caused by the fiber twist, and can convert circular polarized
light to horizontal polarized light with minimal loss. (b) Details of the first two quantum
walk steps in our experiment. (c) The second-order correlation function g%(‘r) versus the
delay 7 for our heralded single-photon source. The time window length is approximately
3 ns and gg(O) is 0.0286 + 0.001. (d) the relative error range of the measurement due to
rotation error of HWPs and the stochastic photon number distributions. Difterent colors
represent different polarization states of the initial input single photons, as depicted in (e).
(e) measured (color bars) and theoretical (horizontal red segments) probability distribution
for a four-step quantum walk.

light was directly transmitted, and horizontal light underwent a 4 mm lateral displacement into a
neighboring spatial mode. Here, we place the half wave plates in front of each beam displacer
to adjust the splitting ratios in the quantum walk at each step. The aperture diameter of our
half-wave plate is small so that each half-wave plate can change the polarization state of one
beam of light without affecting adjacent beams. Therefore, we can adjust the splitting ratios at
different positions during each walking step.

The details of the first two quantum walk steps are depicted in Fig. 2(b). The spatial modes
after step 1 are recombined interferometrically in step 2. Repetition of these steps then forms an
interferometric network as in Fig. 2(a). The lattice sites are labeled so that there are odd sites
at odd walking steps, and even sites at even steps. After an n-step quantum walk, the photons
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output in (n + 1) spatial modes are coupled into an optical fiber and subsequently detected by a
single-photon photodiode, in coincidence with the trigger photon. As shown in Fig. 2(a), we
connect each single-photon output port and an optical fiber with a fiber coupler. Each fiber
coupler is connected to one end of the corresponding fiber, and we manually connect the other end
of the fiber to the SPAD?2 in order to count the number of single photons output from individual
output spatial modes. By adjusting all the fiber couplers, the collection efficiency of each fiber
coupler is maximized and ensured to be as consistent as possible. We use one SPAD to count
single photons so that the quantum efficiency of each measurement remains the same. By doing
s0, the measurement error due to the systematic difference between different individual output
modes is reduced to a negligible level. We use SPAD1 and SPAD?2 to perform coincidence
measurements in the experiments. The dark counts during the coincidence measurements are
relatively small: in our experiments, the coincidence count of each output spatial mode during
each measurement ranges from about 3, 000 to 37,000 depending on the specific probability
distribution, while the dark count remains between zero and two, which is at a negligible level.

To characterize the single-photon purity in the experiments, we also measure the second-order
correlation function g(7) for our heralded single-photon source through the Hanbury-Brown and
Twiss (HBT) experiment with coincidence time window of length 3 ns, as depicted in Fig. 2(c).
The laser power we used in the HBT experiment is 1 mW, and the photon pairs generation rate is
about 16,000/s. The minimal value of g2(7) is g2(0) = 0.0286 + 0.001. We can estimate the
probability of our heralded single-photon source generating two-photon states using the equation
22(0) = 2P,/ P% [51], where Py and P, are probabilities for generating the single- and two-photon
states. The estimated two-photon state probability is 1.39%, which is close enough to zero,
indicating that our heralded single-photon source has high single-photon purity.

For a four-step quantum walk with an unbiased coin (8 = n/4), the measured probability
distribution at given sites is shown in Fig. 2(e). Here we choose four initial polarization states
to verify our experimental system: horizontal polarization, vertical polarization, right-circular
polarization, and left-circular polarization. The experimental data (bars with colors) are in
excellent agreement with theoretical simulations (horizontal red segments). The measurement
error range is presented in Fig. 2(d), where the ordinate is the relative error level with respect to
the corresponding measurement results. There are mainly two sources of error: the systematic
error caused by the minimal adjustable angle of our half-wave plate (0.25 degree), and the
counting error caused by the two-photon state generated from the heralded single-photon source.
The former error range is calculated by introducing a random error within 0.25 deg to each HWP
and numerically simulate the quantum walk result 1, 000 times, and the latter error range can be
obtained from P, estimated from g2(0). This error analysis method is used throughout the paper
to present the error range of each experimental result.

5. Results
5.1.  Uniform distribution

Quantum RNGs with a uniform distribution [20,52] are of importance for applications without
inherent bias, such as quantum secure communications [11,53]. Therefore, we first evaluate
the performance of our algorithm for generating a uniform distribution in a four-step quantum
walk system. Here we use the fidelity 7, defined to evaluate the similarity between the output
(simulated or measured output) and the target probability distribution,

2 max(y(m), T(m))? ’
where y is the system output, 7 is the target distribution, and m represents the position.

For generating a uniform probability distribution, the fidelity curve during the training of
our GD algorithm is shown in Fig. 3(a). The “iterations" represent the accumulating time step

®)
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Fig. 3. Uniform probability distribution generation in a four-step quantum walk system.
(a) Fidelity as the iteration increases. (b) Values of the splitting ratio of each position and
walking step, obtained with our GD algorithm. The black arrow points out the direction of the
quantum walking process. The number displayed on the cell is the value of the corresponding
splitting ratio r. (c) The relative error range of the measurement. (d) Measured probability
distribution of the quantum walk with right-circular (green) and left-polarized (orange)
single photons at the input. The horizontal red segments represent the values of the target

probability distribution.
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Fidelity as the iteration increases. (b) Values of the splitting ratio for each walking step and
position, obtained with our GD algorithm. (c) The relative error range of the measurement.
(d) Measured probability distribution of the quantum walk with right-circular (green) and

left-polarized (orange) single photons at the input.
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when the training progresses. From Fig. 3(a) we can see that the fidelity increases rapidly as the
training process goes on. It exceeds 0.95 after 5 iterations and finally approaches unity within 20
iterations. The learning rate of the training process is set as 0.1. The convergence rate of the
training can be further improved by appropriately choosing the learning rate 7.

When the training is completed, we obtain the values of the splitting ratio for generating
a uniform probability distribution in the quantum walk. The values are shown in Fig. 3(b).
Obviously, these values are unlikely to be found manually, while our algorithm can find proper
values to obtain a high fidelity. According to these values, we adjust {r} in the quantum walk
experimental setup by rotating the half-wave plates in front of the BDs. The rotation accuracy of
our half-wave plate and the existence of two-photon states leads to a slight deviation between the
actual splitting ratios in the experiment and the theoretical values. The error range is depicted
in Fig. 3(c). But this does not affect the performance of our experiment because our system
is very robust (See Supplement 1 for details of the experimental system robustness analysis).
We perform experiments with right-circular and left-circular polarized single photons at the
input, respectively. The measured probability distributions for detecting the photon at given
positions are shown in Fig. 3(d). It is clear that the measured probability distributions are in
good agreement with the target distribution. The fidelities of the experimental results are 96.5%
for right-circular polarized input photons and 95.8% for left-circular polarized input photons.

5.2. Gaussian distribution

Gaussian RNGs, as another important RNG, also have diverse applications, including Monte
Carlo simulation of Gaussian noises. Specific to quantum information, this type of RNGs provide
Gaussian distributed randomness for coherent states modulation in continuous-variable quantum
key distribution systems [34—36]. In the following, we show that our GD algorithm can find the
parameter set for the quantum walk based RNG to generate Gaussian distributed single-photon
outputs.

We set the Gaussian distribution as the target probability distribution for the GD algorithm.
The fidelity change during the training process is shown in Fig. 4(a). It can be seen that the fidelity
rapidly increases to 95% at the 10th iteration. The splitting ratios can be found in Fig. 4(b).

Figure 4(d) presents the measured probability distribution of single photons in a quantum
walk with GD-optimized splitting ratios. Right- and left-circularly polarized photons are chosen
as input photons to perform the quantum walk experiment. The experimentally measured
probability distribution is again in good agreement with the target distribution. The fidelities
of the experiment results are 94.1% and 95.8% for the right- and left-circular polarized input
photons, respectively. These results show that our algorithm can be utilized to adjust a quantum
walk system to generate single photons with desired distributions. This allows one to build an
effective quantum RNG that conforms to arbitrary probability distributions.

6. Conclusion

We have reported a GD-enhanced quantum RNG based on quantum walks of single photons
in a linear optical system. Our multi-bit quantum RNG can generate true random numbers
with an arbitrarily defined probability distribution with nearly unitary fidelity. The promised
faithful randomness of our quantum RNG can determine the random measurement basis in
high-dimensional quantum communications [54-57]. We note that quantum walks with a uniform
distribution can be used to generate quantum random numbers [58]. In comparison with this
method, our GD-enhanced quantum walk can generate quantum random numbers with flexible
probability distribution.
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