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coherence distillation: Realizing N-dimensional strictly incoherent operations"

1. OPERATIONS TO IMPLEMENT THE PROPOSAL IN FIG. 1.

We propose a general way to achieve N-dimensional SIO (N ≥ 2) in Fig. 1. In the module S,
two components |i〉 and |j〉 of the primary system should be coupled to the ancillary modes

∣∣0̃〉0
and

∣∣1̃〉0, then some unitary operations are performed on the 2× 2 space. Focusing on the two
components of the primary system, 2D SIO can be realized. In the module S, one can implement
a set of unitary operations driven by the following Hamiltonian:

(1) The interaction Hamiltonian

HI = gIσ
+
ij σ̃−0 + g∗I σ−ij σ̃+

0 , (S1)

with σ+
ij = |i〉 〈j|, σ−ij = |j〉 〈i| corresponding to the primary system, σ̃+

0 =
∣∣1̃〉0

〈
0̃
∣∣, and

σ̃−0 =
∣∣0̃〉0

〈
1̃
∣∣ corresponding to the first ancillary qubit. This Hamiltonian realizes the cou-

pling between the two primary levels and ancillary qubit. The corresponding unitary operations
UI = exp(−itIHI/h̄) realizes the the following map:

|i〉
∣∣0̃〉0 → cos η1 |j〉

∣∣1̃〉0 + sin η1 |i〉
∣∣0̃〉0 . (S2)

(2) A local operation
Hf = κσ+

ij + κ∗σ−ij , (S3)

and thus Uf = exp(−itfHf/h̄), should be introduced to flip the components |i〉 ↔ |j〉, then UI [in
Eq. (S1)] is performed again. Finally we have

|i〉
∣∣0̃〉0 → cos η1 |i〉

∣∣1̃〉0 + sin η1 |j〉
∣∣0̃〉0 ,

|j〉
∣∣0̃〉0 → cos η2 |j〉

∣∣1̃〉0 + sin η2 |i〉
∣∣0̃〉0 , (S4)

which actually realizes the 2D SIO working on the primary modes |i〉 and |j〉.
(3) Another local operation

Ha = ωσ̃+
0 + ω∗σ̃−0 (S5)

and thus Ua = exp(−itaHa/h̄), acting on the ancillary states following the primary components,
except |i〉 and |j〉, adjust the ancillary modes into the same superposition state. This is done in
order to obtain a product form of the primary modes and the ancillary modes. The process can be
described as:

∑
i

ψi |i〉 ⊗
∣∣0̃〉0 →


(

ψi |i〉+ ψj |j〉
)
⊗
∣∣0̃〉0 UI, Uf−−−−→

(
φ1i |i〉+ φ1j |j〉

)
⊗
(
α̃
∣∣0̃〉0 + β̃

∣∣1̃〉0

)
∑

l 6=i,j
ψl |l〉 ⊗

∣∣0̃〉0 Ua−→ ∑
l 6=i,j

ψl |l〉 ⊗
(
α̃
∣∣0̃〉0 + β̃

∣∣1̃〉0

) .

(S6)
(4) In the module RS, one should introduce a new ancillary mode

∣∣0̃〉k (k 6= 0) to reset the
superposed ancillary modes α̃

∣∣0̃〉0 + β̃
∣∣1̃〉0 to the initial situations, i.e.,

∣∣0̃〉0, by performing the
coupling

Hr = grσ̃+
0 σ̃−k + g∗r σ̃−0 σ̃+

k , (S7)



as well as the unitary operation Ur = exp(−itrHr/h̄), which can reset the superposed ancillary
modes αn

∣∣0̃〉0 + βn
∣∣1̃〉0 to

∣∣0̃〉0 by setting special times. This is the reset process mentioned in
module RS of Fig. 1.

At present, it has become a mature technology to couple qubit systems and manipulate two-
level states in various controllable quantum devices. Therefore, the operations needed in our
proposal are implementable. In the optical setups shown in Fig. 2(a), one can find that the

combination of the HWPs (i.e., P(i,j)
1 , P(i,j)

2 , and Px) and the BDs realizes HI, Hf and the map in

Eq. (S4). HWP P(i,j)
3 in Fig. 2(a) realizes the operation of Ha in Eq. (S5), and the PBS in Fig. 2(b)

realizes the reset operation of Hr in Eq. (S7).

2. KRAUS REPRESENTATION OF THE PROPOSED INCOHERENT OPERATIONS.

Let us introduce the proposed SIO in detail. For the state transformation in a 2D space |ψ〉 =
∑1

i=0 ψi|i〉 → |φ〉 = ∑1
i=0 φi|i〉, the Kraus-operator representation is |φ〉 〈φ| = ∑2

i=1 Ki|ψ〉 〈ψ|K†
i ,

and the Kraus operators can be described as [1]

K1 =
√

a
φ0
ψ0
|0〉〈0|+

√
a

φ1
ψ1
|1〉〈1|,

K2 =
√

1− a
φ0
ψ1
|0〉〈1|+

√
1− a

φ1
ψ0
|1〉〈0|, (S8)

where displayed a = |ψ0|2−|φ1|2

|φ0|2−|φ1|2
and 0 ≤ a ≤ 1, which is equivalent to ensure the majorization

relation. A pure state |ψ〉 = ∑N
i=0 ψi |i〉, majorized by another state |φ〉 = ∑N

i=0 φi |i〉, should satisfy
∑k

i=0 |ψi|2↓ ≤ ∑k
i=0 |φi|2↓, where k ∈ [0, N] and the superscript “↓” indicates the descending order

of the elements. The majorization relation is sufficient and necessary for SIO (or special IO)-
dominated pure states conversions [1–3].

The Kraus operators above can be rewritten as

K1 = cos 2θ1|0〉〈0|+ sin 2θ2|1〉〈1|,
K2 = cos 2θ2|0〉〈1|+ sin 2θ1|1〉〈0|. (S9)

In our optical setups, the polarization modes |V〉 and |H〉 correspond to the ancillary modes∣∣0̃〉0 and
∣∣1̃〉0 in Eqs. (S1) and (S2). Then the map is realized in the optical setup,

|0V〉 → cos(2θ1)|0H〉+ sin(2θ1)|1V〉,
|1V〉 → cos(2θ2)|0V〉+ sin(2θ2)|1H〉, (S10)

which can be translated into the Kraus-operator representation in Eq. (S9). For a pure input

state |ψ〉 = α |0〉+ β |1〉, if the angles θ1,2 of the HWP [denoted by P(i,j)
1 , P(i,j)

2 in Fig. 2(a)] satisfy
|α|2 sin(4θ1) = |β|2 sin(4θ2), one can obtain the pure state at the output, i.e.,

|φ〉 =
1
Q

[β sin(2θ2) |1〉+ α cos(2θ1) |0〉] ,

Q =

√
|β|2 sin2(2θ2) + |α|2 cos2(2θ1). (S11)

Recall the definition of IO and SIO. For a chosen reference basis {|i〉}, the class of free states
is denoted by I . IO and SIO can be described by a set of Kraus operators {Kn} satisfying
∑n K†

nKn = 1. For an IO, every Kraus operator should satisfy KnIK†
n ⊆ I . While, for a SIO, an

additional condition, i.e., K†
nIKn ⊆ I , is needed. An operation is IO if and only if every column

of Kn in the fixed basis {|i〉} has at most one nonzero entry. More strictly, SIO requires that not
only every column but also every line of Kn has at most one nonzero element [1, 2]. Therefore,
the 2D operation proposed by us belongs to the SIO.

In order to consider the multi-step operations applicable to high-dimensional space, we in-
troduce the SIO performed on the subspace spanned by the two modes |i〉 and |j〉, with its
experiment setup in Fig. 2(a). The whole map, in the composite system of the spatial modes and
the ancillary polarization modes (|H〉and |V〉), reads

|iV〉 → cos 2θ
(i,j)
1 |iH〉+ sin 2θ

(i,j)
1 |jV〉,

|jV〉 → cos 2θ
(i,j)
2 |iV〉+ sin 2θ

(i,j)
2 |jH〉,

|kV〉 → |k〉
[
cos 2θ

(i,j)
3 |V〉+ sin 2θ

(i,j)
3 |H〉

]
, (S12)
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where the parameters θ
(i,j)
1 and θ

(i,j)
2 correspond to the two HWPs P(i,j)

1 and P(i,j)
2 in the module S.

The mode |k〉 (k 6= i and j) denote the modes different from the i and j modes, and the angle θ
(i,j)
3

corresponding to the HWP P(i,j)
3 should be adjusted to prepare the same superposition structure

of the polarization modes as those following the spatial modes of |i〉 and |j〉.
After this step, we realize the transformation

∑
i

ψi|i〉 → φi|i〉+ φj|j〉+ ∑
k

ψk|k〉. (S13)

The Kraus operators can be expressed as

K(i,j)
1 = cos 2θ

(i,j)
1 |i〉〈i|+sin 2θ

(i,j)
2 |j〉〈j|+sin 2θ

(i,j)
3 Ik,

K(i,j)
2 = cos 2θ

(i,j)
2 |i〉〈j|+sin 2θ

(i,j)
1 |j〉〈i|+cos 2θ

(i,j)
3 Ik,

Ik = ∑
k 6=i,j
|k〉〈k|, (S14)

where the parameters

2θ
(i,j)
1 = arccos(

√
aij

φi
ψi

),

2θ
(i,j)
2 = arcsin(

√
aij

φj

ψj
),

2θ
(i,j)
3 = arcsin

√
aij, (S15)

with aij =
|ψi |2−|φj|2

|φi |2−|φj|2
. As a consequence, in the multi-step proposal, the Kraus operators are

implemented on different two-dimensional subspaces. One of the total Kraus operators can

be described as Kl = ∏(i,j) K(i,j)
q , with q = 1, 2 and the superscript (i, j) going through all the

component modes necessary to complete the state transformation. Obviously, the class of {Kl}
still belongs to the SIO, and the index of the operators is l = 2, 4, . . . , 2n (n is the number of the
steps in Fig. 1). Therefore, we can finally obtain ∑2n

l Kl |ψ〉〈ψ|K†
l = |φ〉〈φ|.

Here, we can discuss the extensions of the experimental proposal. If we change the operations
at the outputs to different local operations, other incoherent operations will be realized. For
example, one can adjust the angle of Px at path |1〉 to different angles ξ, and perform another
HWP with angle π/4 + ξ at the path |0〉, which ensures the polarization states of the two paths to
be orthogonal with each other. There will be another type of incoherent operations with different
Kraus operators, i.e.,

K′1 = cos 2θ1 cos 2ξ|0〉〈0|+ sin 2θ2 cos 2ξ|1〉〈1|
+ sin 2θ1 sin 2ξ|1〉〈0| − cos 2θ2 sin 2ξ|0〉〈1|,

K′2 = cos 2θ1 sin 2ξ|0〉〈0|+ sin 2θ2 sin 2ξ|1〉〈1|
− sin 2θ1 cos 2ξ|1〉〈0|+ cos 2θ2 cos 2ξ|0〉〈1|. (S16)

The incoherent operations above are different from the SIO proposed in this paper.

3. ANALYTICAL RESULTS OF THE DISTILLATION FIDELITY.

For any pure state and the incoherent operation O ∈ {MIO, DIO, SIO, IO}, the fidelity can also
be described by the m-distillation norm [4]:

FO(|ψ〉 , |Φm〉) =
1
m
‖|ψ〉‖2

[m], (S17)

where ||ψ〉‖[m] is the m-distillation norm

||ψ〉‖[m] = min
|ψ〉=|x〉+|y〉

‖|x〉‖l1 +
√

m‖|y〉‖l2 , (S18)
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where || • ||l1 and || • ||l3 are the l1 norm and l2 norm. For a d-dimensional pure state, the
m-distillation norm can be described as

‖|ψ〉‖[m] = ‖ψ
↓
1:m−k?‖l1 +

√
k?‖ψ↓m−k?+1:d‖l2 , (S19)

where ψ↓1:k denotes the vector consisting of the k largest (by magnitude) coefficients of |ψ〉, and

analogously ψ↓k+1:d denotes the rest of the coefficients. The special number of k? is defined by

k? = arg min
1≤k≤m

(‖ψ↓m−k?+1:d‖
2
l2 /k). (S20)

To consider the conversion from the 3D input state

|ψ3〉 =
√

α|2〉+
√
(1− α)/2(|0〉+ |1〉) (S21)

into a 2D target state, for 0 ≤ α ≤ 1/2, the distillation fidelity can be easily verified to be 1
by using the m-distillation norm presentation. It implies that the state |ψ3〉 can be successfully
converted to the 2D maximal coherence state |Φ2〉 =

√
1/2 (|0〉+ |1〉) by choosing a proper

incoherent operation. While, for 1/2 < α ≤ 1, it can be calculated that

‖ψ3↓
2−k+1:3‖

2
l2 /k = 1− α, for k = 1,

‖ψ3↓
2−k+1:3‖

2
l2 /k = 1/2, for k = 2. (S22)

Thus we have k? = 1, and

‖|ψ3〉‖[2] = ‖ψ↓1:1‖l1 + ‖ψ
↓
1+1:3‖l2

=
√

α +
√

1− α. (S23)

Finally, the distillation fidelity becomes

FO(|ψ3〉, |Φ2〉) =
1
2
‖|ψ3〉‖2

[2]

=
1
2
(
√

α +
√

1− α)2. (S24)

Obviously, a reasonable target state is |φ3→2〉 =
√

α|0〉+
√

1− α|1〉, which can reach the distilla-
tion fidelity above.

In an analogous way, for the transformation from the 4D input state (α ∈ [0, 1/2])

|ψ4〉 =
√

α(|0〉+ |1〉) +
√

1/2− α(|2〉+ |3〉) (S25)

into a 3D target state, we can obtain the fidelity

FO(|ψ4〉, |Φ3〉) =
1
3
‖|ψ4〉‖2

[3]

=

[√
2α

3
+

√
2− 4α

3

]2

(S26)

for α ∈ [0, 1/6] ∪ [1/3, 1/2]. Thus a possible target state is

|φ4→3〉 =
√

2α|1〉+
√
(1/2− α)(|2〉+ |3〉). (S27)

While, for α ∈ [1/6, 1/3], the optimal value FO(|ψ4〉, |Φ3〉) = 1 can be reached, which means that
in this region the achievable target state is the maximally coherent state |Φ3〉 =

√
1/3 (|0〉+ |1〉+ |2〉).
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4. STATE TRANSFORMATIONS FROM 3D STATE INTO 2D STATE.

In this section, we show more details of the map and the operations corresponding to the
conversion ψ1|0〉 + ψ2|1〉 + ψ3|2〉 → φ1|0〉 + φ2|1〉. With the help of the ancillary modes, the
devices in Fig. 3(b) realize the map as follows:

|0V〉 → cos 2θ1(cos 2θ4|0H0̃〉−sin 2θ4|0V0̃〉)+sin 2θ1|1H1̃〉,
|1V〉 → cos 2θ2(cos 2θ5|0H1̃〉−sin 2θ5|0V1̃〉) + sin 2θ2|1H0̃〉,
|2V〉 → cos 2θ3|1V0̃〉−sin 2θ3|1V1̃〉, (S28)

where, 0̃ and 1̃ distinguish the two groups of the spatial modes split by the PBS, and both with
the polarization modes |H〉 and |V〉 acting as the ancillary modes. Then the Kraus operators can
be derived from the above map,

K1 = − cos 2θ1 sin 2θ4|0〉〈0|+ cos 2θ3|1〉〈2|,
K2 = cos 2θ1 cos 2θ4|0〉〈0|+ sin 2θ2|1〉〈1|,
K3 = − cos 2θ2 sin 2θ5|0〉〈1| − sin 2θ3|1〉〈2|,
K4 = sin 2θ1|1〉〈0|+ cos 2θ2 cos 2θ5|0〉〈1|. (S29)

These Kraus operators provide a general conversion process from 3D states into 2D states. In the
experiment, we consider a special case, i.e., the input state is

|ψ3〉 =
√

α|2〉+
√
(1− α)/2(|0〉+ |1〉), (S30)

with α ∈ [0, 1/2] and the target state is |φ〉 =
√

2
2 (|0〉+ |1〉). The angles of the HWPs in Fig. 3(b)

are set as

2θ1 = 2θ2 = arccos

[
1√

2(1− α)

]
,

2θ3 = −π/4,

2θ4 = 2θ5 = − arccos(
√

1− 2α). (S31)

The output state of the whole system is
√

2
2

(|0〉+|1〉)
[√

1−α

2
(|H1̃〉+|H0̃〉)+

√
α(|V0̃〉+|V1̃〉)

]
, (S32)

from which we will obtain the target state by performing spatial tomography on the modes of |0〉
and |1〉. Note that the tomography has been done on both of the two groups of the path.

5. EXPERIMENTAL IMPLEMENTATION OF THE STATE PREPARATION, SPATIAL TO-
MOGRAPHY, AND SOME STATE TRANSFORMATIONS.

In Fig. S1(a), we show the setup for the state preparation, where a pure state of the spatial modes
can be prepared. Figure S1(b) shows the device for the spatial tomography measurement. In
this stage, each of the spatial modes is appended with a polarization mode, which makes the
manipulation of the spatial modes convenient. By adjusting the HWPs and QWPs, the photons in
three modes can enter the same single-photon detector where we can analyze all the information of
the three spatial modes. With the help of BDs, the spatial modes can be coherently combined, i.e.,
the superpositions of the spatial modes can be mapped into the superpositions of polarizations.
Finally, the tomography of the spatial modes can be realized by polarization measurements.

For the input state

|ψ3〉 =
√

α|2〉+
√
(1− α)/2(|0〉+ |1〉), (S33)

in the region α ∈ (1/2, 1], the distillation fidelity becomes FO(|ψ3〉, |Φ2〉) = 1
2 (
√

α +
√

1− α)2,
which implies that the maximally coherent state |Φ2〉 cannot be reached. Instead, a possible target
state becomes |φ3→2〉 =

√
α|0〉+

√
1− α|1〉. Figure S1(c) can realize the state transformation

|ψ3〉 → |φ3→2〉, where only three input paths (|0〉, |1〉, |2〉) are needed to accomplish the conver-
sion. A beam displacer is employed to combine the spatial modes |0〉 and |1〉. The angle of the
HWP in the path of |2〉 is adjusted according to the initial superposition coefficients of |0〉 and |1〉.
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Fig. S1. Experimental implementation of the state preparation, spatial tomography, and some
state transformations. (a) Device for preparing the input pure states. (b) Setup for the spatial
tomography measurement on 3D states. (c) and (d) show the operations combining two paths
into one path, which accomplish the dimension reductions. The devices are quarter-wave
plates (QWP), phase compensators (PC), and interference filters (IF).

All the operations, performed on the spatial modes belong to SIO, which can be verified by their
Kraus-operator representation in the Eq. (S29).

For the 4D input state (for α ∈ [0, 1/2])

|ψ4〉 =
√

α(|0〉+ |1〉) +
√

1/2− α(|2〉+ |3〉), (S34)

to extract the 2D maximally coherent resource |Φ2〉, the distillation fidelity FO(|ψ4〉, |Φ2〉) is
proven to be 1 over the entire range α ∈ [0, 1/2]. Thus a reasonable target state is |Φ2〉 =

(|2〉+ |3〉)/
√

2. The general proposal (shown in the Figure 1 in the main text) can be employed to
reach the target state. While, due to the special structure of |ψ4〉, a simplified device in Fig. S1(d)
is designed by using a BD to combine the paths |0〉 and |1〉 into the paths |2〉 and |3〉, respectively.
This completes the state transformation.

To extract the 3D coherent resource state |Φ3〉, the distillation fidelity is FO(|ψ4〉, |Φ3〉) =
2
3 (
√

α +
√

1− 2α)2 in the region of α ∈ [0, 1/6] ∪ [1/3, 1/2]. Therefore, a reasonable target state
is |φ4→3〉 =

√
2α|1〉+

√
(1/2− α)(|2〉+ |3〉). While, in the region α ∈ [1/6, 1/3], the fidelity is

FO(|ψ4〉, |Φ3〉) = 1. Thus, the maximally coherent state |Φ3〉 is the target state.
The device in Fig. S1(c) with four input paths can realize the conversion |ψ4〉 → |φ4→3〉 (in the

region α ∈ [0, 1/6]∪ [1/3, 1/2]), where the path |0〉 and |1〉 are combined to realize the dimension
reduction.
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