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We experimentally investigate the one-shot distillation of quantum coherence, which focuses on the transformations
from a single copy of a given state into maximally coherent states under various incoherent operations. We present a gen-
eral proposal to realize a type of strictly incoherent operations (SIOs) that can act on N-dimensional (N ≥ 2) states. This
proposal is suitable for a variety of quantum devices. Based on a linear optical setup, we experimentally demonstrate
that the proposed SIO successfully implements pure-to-pure state transformations, and thus the one-shot coherence
distillation process is accomplished. The experimental data agree well with the theoretical results and clearly indicate
the distillation fidelities, which bound the regions of different coherence distillation rates versus different superposition
parameters of input states and different distillation errors. ©2021Optical Society of America under the terms of theOSAOpen

Access Publishing Agreement
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1. INTRODUCTION

Quantum coherence, exhibiting the fundamental feature of quan-
tum superposition, marks a departure of quantum physics from
classical physics. Recently, problems of quantum coherence have
attracted considerable attention because these are essential for
quantum foundations [1–15] and could also have practical appli-
cations in a wide variety of fields, such as quantum cryptography,
quantum algorithms, quantum simulations, thermodynamics,
quantum metrology, transport theory, and quantum biology
[16–27]. To characterize quantum coherence in a mathemati-
cally rigorous and physically meaningful framework, the resource
theory of quantum coherence was developed [1,28–37]. In this
setting, coherence is regarded as a quantum resource that provides a
necessary cost in accomplishing useful tasks. For a chosen reference
basis {|i〉}, the class of the free states, i.e., the incoherent states,
consists of diagonal density matrices in terms of the reference basis,
i.e.,

∑
i pi |i〉〈i | ∈ I. Following this, free operations are incoherent

operations (IOs) that act unchangeably on the assemblage of all
incoherent states. Many different definitions of IOs are motivated
by various physical and mathematical requirements, e.g., maxi-
mally IOs (MIOs) [28], IOs [29], dephasing-covariant IOs (DIOs)

[30], and strictly IOs (SIOs) [31]. The relations between each of
these sets are SIO⊂ IO⊂MIO andSIO⊂DIO⊂MIO. There
exists a set of incoherent Kraus operators to describe IO, i.e., for
{Kn} satisfying

∑
n K †

n Kn = 1, every Kraus operator should satisfy
KnIK †

n ⊆ I. SIOs are operations for which both {Kn} and {K †
n }

are sets of incoherent operators.
SIO has a properly strict definition compared to other IOs

(e.g., MIO, IO, and DIO), and is easier to theoretically charac-
terize and experimentally implement. Therefore, SIO is widely
used in coherence resource theory [9,13,14,32,37]. SIO emerges
as a natural set of operations when quantifying the visibility in
interferometer experiments [38]. The maximally coherent states
can be transformed into any other states using SIO [29]. More
importantly, in the one-shot distillation process considered in
this paper, even the largest class of free operations, MIO, cannot
perform better than SIO [39].

One of the most significant aspects in coherence resource theory
is to implement IOs and accomplish state transformations. Much
effort has been devoted to the relevant conditions [14,40,41].
Compared to the rapid development of theoretical work, there is a
lack of experimental investigation on realizing different classes of
IOs. Quite recently, experimental work was reported [42], where
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a type of SIO in a two-dimensional (2D) space was realized in
an optical setup. However, that operation was based on polari-
zation modes and works only in 2D, i.e., it cannot be extended
to high-dimensional cases. It is known that it is quite difficult to
experimentally realize high-dimensional SIO. One reason is that to
manipulate multiple quantum levels collectively is a huge challenge
for current technology. To the best of our knowledge, there have
been no relevant experimental reports on this. This work fills this
gap by turning the difficult task into a simpler one: repeatedly imple-
menting 2D operations. Finally, we present a general proposal for
the implementation of a type of N-dimensional SIO and demonstrate
it experimentally in a linear optical setup. The SIO is experimentally
realized based on spatial modes, instead of polarization modes,
which allows an extension to higher dimensions.

SIOs do not create coherence, but they can distill the coherence
if they are provided an input state with coherence. Coherence
distillation stands out as one of the most significant ways to prac-
tically explore coherence resources [32,43,44], because it extracts
the best rate at which one can convert copies of an arbitrary state
ρ into copies of pure and maximally coherent states |8m〉 (of m-
dimension). It is known that |8m〉 are important resources and act
as the canonical unit resource in various quantum tasks. Coherence
distillation reveals the operational meaning in coherence resource
theory and introduces a basic coherence measure, i.e., distillable
coherence.

Note that the standard distillation proposal is at the asymptotic
limit [32], i.e., assuming an unbounded number of copies of the
system considered. In a realistic setting, only a finite supply of states
is available. Moreover, it is a huge challenge to collectively manipu-
late coherent states over a large number of systems. Therefore, it is
necessary to consider a more general scenario to distill maximally
coherent states from a finite number of state copies [39,45–47]. In
particular, [39] introduced a one-shot coherence distillation that
requires a single copy of a given state and adopts an ε-error fidelity
to extract the distillation rate, matching the realistic restrictions on
state transformations. This scenario facilitates precise characteriza-
tion of the experimentally feasible rates of coherence distillation.
There are several possible applications of one-shot coherence dis-
tillation. It can be treated as quantum extraction of the intrinsic
randomness of measurements [15]. Another promising application
is to prepare coherence resources for direct use in quantum key
distribution and quantum algorithms [16–18]. To our knowledge,
our work is the first to experimentally demonstrate one-shot coherence
distillation in a realistic setting. From our results, one can find how to
prepare coherent states, select the target states, and transform the state
via the proposed SIO.

2. ONE-SHOT COHERENCE DISTILLATION

In asymptotic coherence distillation [32], an unbounded num-
ber of state copies is needed, which is, however, quite difficult
to achieve in a realistic setting. To overcome this difficulty, [39]
introduced one-shot coherence distillation tolerating an error ε,
which is measured by

C (1),ε
d ,O (ρ) := log max{m ∈N|FO(ρ, |8m〉)≥ 1− ε}, (1)

where the superscript “ (1)” indicates that only a single
copy of the given state ρ (or pure state |ψ〉) and the m-
dimensional maximally coherent state |8m〉 ≡

∑m
i=1 |i〉/

√
m

are included. The asymptotic version is obtained in the limit

C∞,εd ,O (ρ)= lim
ε→0

lim
n→∞

C (1),ε
d ,O (ρ

⊗n)/n. The definition of the

distillation fidelity FO(ρ, |8m〉) is

FO(ρ, |8m〉)=max
3∈O
〈3(ρ), |8m〉〉, (2)

where O denotes a class of IOs, and 〈A, B〉 =Tr(A† B) is the
Hilbert–Schmidt inner product. This distillation fidelity describes
the maximal conversion rate from a given state to the maxi-
mally coherent state |8m〉 by optimizing the IOs. The value of
FO(ρ, |8m〉) depends on the chosen dimension m of |8m〉 and
the type of IOs. The error ε in Eq. (1) has various meanings. Note
that the definition of the concept of one-shot coherence distil-
lation in Eq. (1) is based on the concept of distillation fidelity,
i.e., FO(ρ, |8m〉), which characterizes the distinguishability
between the output state of the SIO and the perfect resource state.
The error ε provides a finite tolerance of distinguishability.

The key step in one-shot coherence distillation is to realize
proper IOs. In this work, only pure-to-pure state transformations
are studied because: (i) pure states are important resources in
quantum tasks and (ii) theoretical results are clear for pure states,
e.g., the one-shot distillable coherence of pure states under MIO,
DIO, IO, or SIO is exactly the same [39].

A. Proposal for SIO

Figure 1 shows a general proposal to realize SIO in N-dimensional
cases, where we divide the operations into several steps. The trans-
formation from the input state |ψ〉 to the target state |φ〉 can be
realized by n (n ≤ N − 1) steps. At each step, an IO (in fact, SIO
here) works on two components of the given state |ψ〉, and the
corresponding superposition parameters are changed as needed
(details in Supplement 1). Since the elementary operation belongs
to SIO, the following multi-step operations also belong to SIO
[40]. The reason that we choose accumulated 2D operations to
achieve N-dimensional operations is that manipulating two quan-
tum levels is much more stable and efficient than manipulating
multiple levels collectively using current technology. In Fig. 1, we
illustrate the experimental implementation of each step. In realistic
settings, IOs in a primary system are usually performed by intro-
ducing ancillary systems. In module S, two components |i〉 and
| j 〉 of the primary system should be coupled to the ancillary qubit
|q̃〉0 (q = 0, 1), which can be used repeatedly. Some designed
operations can be performed on the two-qubit space (details in
Supplement 1). Focusing on the primary modes, 2D SIOs are
realized. Module RS has two functions: (i) reset the ancillary modes
|q̃〉0 to the initial situations by employing another ancillary qubit
|q̃〉k (q = 0, 1 and k 6= 0) and (ii) repeat the operations of module
S working on a pair of primary components different from that in
the previous step. At the nth step, there are 2n−1 copies of the target
state corresponding to 2n−1 groups of ancillary modes. In addition,

an,1, an,2, . . ., and an,2n−1 satisfy
∑2n−1

k a2
nk = 1. One can obtain

the target state deterministically by performing tomography on all
the outputs, but probabilistically by reading part of the outputs.
Such a simple combination of two types of modules (modules S
and RS) provides a significant advantage of our proposal. This can
be conveniently applied in a variety of quantum controllable sys-
tems, where the correlations and manipulations between two-level
systems can be performed stably and efficiently. In the following
sections, we experimentally realize SIO in an optical setup.
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Fig. 1. Proposal for realizing the SIO in N-dimensional cases by multiple steps. It implements pure-to-pure state transformations, i.e., |ψ〉 =∑N−1
i=0 ψi |i〉→ |φ〉 =

∑N′−1
i=0 φi |i〉, with the dimensionality N′ ≤ N. At each step, only two components are manipulated (see the inset). Two types

of modules are needed in the experimental implementation. In module S, an ancillary qubit |q̃〉0 should be coupled to two components (e.g., |i〉 and | j 〉)
of the primary system, and the two-dimensional SIO is realized in this module. Module RS has two functions: (i) reset the ancillary modes |q̃〉0 to the
initial situation; (ii) repeat the operations of module S working on two primary components different from those in the previous step. At the nth step, the
superposition coefficientsφni carry the superposition information of the target stateφi .

B. SIO in Optics

Let us start with 2D SIO in optics. We employ the spatial modes
of the photons, |0〉 and |1〉, to describe the primary system state,
which makes possible the extension to high dimensions and has
essential differences in the basic design and motivation from
previous studies [42]. The polarization modes |V 〉 and |H〉
(i.e., vertical and horizontal modes) act as the ancillary qubit.
The experimental setup is shown in the S module in optics in
Fig. 2. Here, we change |i〉 and | j 〉 to |0〉 and |1〉 for simplicity.
The input state of the total system is |ψ〉|V 〉 = (α|0〉 + β|1〉)|V 〉
with real numbers α and β. The angles θ1 and θ2 of the half-
wave plates (HWPs) P ij

1,2 are adjusted as needed. Then, the map
3(|ψ〉〈ψ |)= K1|ψ〉〈ψ |K

†
1 + K2|ψ〉〈ψ |K

†
2 can be achieved

with the Kraus operators

K1 = cos 2θ1|0〉〈0| + sin 2θ2|1〉〈1|,

K2 = cos 2θ2|0〉〈1| + sin 2θ1|1〉〈0|. (3)

When the parameters satisfy |α|2 sin(4θ1)= |β|
2 sin(4θ2), one

can obtain the pure output state, i.e., 3(|ψ〉〈ψ |)= |φ〉〈φ|.

Fig. 2. S and module RS in optical setups. The devices are half-wave
plates (HWP), beam displacers (BD), and polarizing beam splitters (PBS).
The angles of the HWP P i, j

1 and P i, j
2 are adjusted as needed. All the

angles of the HWP Px are set to π/4, which performs the inversions
|H〉→ |V 〉 and |V 〉→ |H〉. The angle of P i, j

3 is adjusted according
to the outputs of the i, j paths. In the RS module in optics, a PBS is
employed to reset the ancillary polarization modes to the initial situations.
|0̃〉 and |1̃〉 label the new ancillary qubits encoded into the split path
groups.

According to the definition of SIO [14,40], the operations
described by the Kraus operators in Eq. (3) belong to SIO. For
more applications, if the operations at the output (S module in
Fig. 2) are changed, ensuring that the superposition state of polari-
zation modes in one path are orthogonal to that of another path,
other kinds of IOs will be realized (details in Supplement 1).

To realize the RS module, a polarization beam splitter (PBS) is
employed to introduce a new pair of spatial modes, i.e., |0̃〉k and
|1̃〉k(k 6= 0), coupled to the polarization modes. Along each mode
|q̃〉k , the polarization modes are reset into the initial situation of
|V 〉. Then, module S is applied again.

3. EXPERIMENTAL DEMONSTRATION OF
ONE-SHOT COHERENCE DISTILLATION

A single-photon source is produced by pumping a type I β-barium
borate crystal with ultraviolet pulses at a 405 nm centered wave-
length. One photon is directly detected as a trigger. The other one
is prepared in a pure state of the spatial modes |i〉 (i = 0, 1, 2, . . .).

A. Example 1: Three-Dimensional Distillation

The input state is chosen as

|ψ3
〉 =
√
α|2〉 +

√
(1− α)/2(|0〉 + |1〉), (4)

where α ∈ [0, 1]. Superscript “3” denotes the dimensionality.
Based on the distillation fidelity in Eq. (2), one should obtain
the target states closest to the maximally coherent states by per-
forming proper IOs. In the region α ∈ [0, 1/2], the distillation
fidelity FO(|ψ

3
〉, |82〉) is proved to be 1 (details in Supplement

1). Theoretically, |ψ3
〉 can be perfectly converted to the maximally

coherent state |82〉 = (|0〉 + |1〉)/
√

2.
Figure 3 shows an experimental setup to accomplish the trans-

formation from |ψ3
〉 to |82〉. It is a simplified two-step version

of the general proposal in Fig. 1. After the PBS, only one beam
displacer (BD) is needed to combine two paths into one, achiev-
ing dimension reduction. The initial state |ψ3

〉 can be prepared
based on the spatial modes. Parameters θ1,2,3,4,5, depending on
coefficient α (details in Supplement 1), can be adjusted as needed.
One obtains |82〉 by doing spatial tomography at the output
[measurement setup shown in Supplement 1, Fig. S1(b)]. The
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Fig. 3. Experimental implementation of the one-shot distillation proc-
esses for the 3D input state, i.e., an optical setup for the SIO converting
a 3D pure state into a 2D pure state. The angles of the HWPs P1,2,3,4,5

are adjusted as needed. All the angles of Px are set to π/4. The devices are
quarter-wave plates (QWP), phase compensators (PC), and interference
filters (IF).

photons are detected by single-photon detectors equipped with
10 nm interference filters. The extinction rate of our interferom-
eter can reach over 500:1, and the average fidelity between the
ideal states and actual states can reach higher than 99%. In fact, the
proposal in Fig. 3 provides a general SIO that can convert 3D pure
states to 2D pure states obeying the majorization condition (details
in Supplement 1).

In the region α ∈ (1/2, 1], the distillation fidelity becomes
FO(|ψ

3
〉, |82〉)=

1
2 (
√
α +
√

1− α)2, which implies that the
maximally coherent state |82〉 cannot be reached. Instead, a pos-
sible target state becomes |φ3→2〉 =

√
α|0〉 +

√
1− α|1〉. The

device to realize the transformation |ψ3
〉→ |φ3→2〉 is shown in

Supplement 1.
In Fig. 4(a), experimental data agree well with the theo-

retical results and show the errors of the distillation fidelities
FO(|ψ

3
〉, |83〉) (denoted by triangles) and FO(|ψ

3
〉, |82〉)

(denoted by rhombuses) versus the superposition coefficient α.
The distillation error ε≡ 1− FO. The 3D maximally coherent
state is defined as |83〉 = (|0〉 + |1〉 + |2〉)/

√
3. The data show

that in the region α ∈ [0, 1/2], FO(|ψ
3
〉, |82〉) approaches one,

while in the region α ∈ [1/2, 1], FO(|ψ
3
〉, |82〉) decreases to 1/2

for increasing values ofα.

According to the definition in Eq. (1), in Fig. 4(a), the
regions of different distillation rates are bounded by the fidel-
ities FO(|ψ

3
〉, |82〉) and FO(|ψ

3
〉, |83〉). If a zero error ε= 0

is strictly required, the distillable coherence will be measured as
C (1),ε=0

d ,O (|ψ3
〉)= log 2 in the region α ∈ [0, 1/2], except at the

point α = 1/3, where C (1),ε=0
d ,O (|ψ3

〉)= log 3. However, when
α > 1/2, the distillation fidelity cannot reach one any more, which
implies that the ideal coherence resource cannot be distilled from
state |ψ3

〉. However, in practical tasks, a finite tolerance ε 6= 0 is
usually accepted. For example, if an accepted error is ε= 0.1, the
distillable coherence will be C (1),ε=0.1

d ,O (|ψ3
〉)= log 3 in a larger

region about α ∈ [0.0838, 0.6495], and C (1),ε=0.1
d ,O (|ψ3

〉)= log 2
inα ∈ [0, 0.0838)∪ (0.6495, 0.8]. Such an example clearly shows
the fact that when a larger error is tolerated, (i.e., the requirement
for similarity between the input state and the target state is reduced
as a trade-off ), a higher distillation rate will be obtained.

B. Example 2: Four-Dimensional Distillation

We choose a 4D input state (forα ∈ [0, 1/2]):

|ψ4
〉 =
√
α(|0〉 + |1〉)+

√
1/2− α(|2〉 + |3〉). (5)

For the 2D maximally coherent state |82〉, the distilla-
tion fidelity FO(|ψ

4
〉, |82〉) is proven to be one over the

entire range of α ∈ [0, 1/2]. Thus, a reasonable target state is
|82〉 = (|2〉 + |3〉)/

√
2. The device to realize the transformation

from |ψ4
〉→ |82〉 is shown in Supplement 1.

For the 3D maximally coherent state |83〉, the distillation
fidelity is FO(|ψ

4
〉, |83〉)=

2
3 (
√
α +
√

1− 2α)2 in the region
α ∈ [0, 1/6] ∪ [1/3, 1/2]. Therefore, a reasonable target state is
|φ4→3〉 =

√
2α|1〉 +

√
(1/2− α)(|2〉 + |3〉), while in the region

α ∈ [1/6, 1/3], the fidelity is FO(|ψ
4
〉, |83〉)= 1. Thus, the

maximally coherent state |83〉 is the target.
The transformation |ψ4

〉→ |φ4→3〉 can be easily accomplished
(details in Supplement 1). However, to realize |ψ4

〉→ |83〉 is
much more complicated. It can be achieved by either the general
method (in Fig. 1) with three steps or the simplified proposal
in Fig. 3 with the extension to a four-path input and two more
module S’s at the outputs.

In Fig. 4(b), we show the experimental data of the errors of the
distillation fidelity FO(|ψ

4
〉, |82〉) (denoted by rhombuses) and

FO(|ψ
4
〉, |83〉) (denoted by triangles) versus the superposition

Fig. 4. Experimental data of the errors ε of the distillation fidelity versus the superposition coefficient α. The regions of different colors and fill patterns
correspond to different distillation rates defined in Eq. (1), with the values in the annotations (0, log 2, log 3) at the top of the figure. (a) Case of the 3D
input state |ψ3

〉 given in Eq. (4). The experimental data of the distillation fidelity FO(|ψ
3
〉, |83〉) are denoted by triangles, and the experimental data of

FO(|ψ
3
〉, |82〉) are denoted by rhombuses. Solid lines correspond to theoretical results. (b) Cases of the 4D input state |ψ4

〉 given in Eq. (5). The exper-
imental data of FO(|ψ

4
〉, |83〉) are denoted by triangles, and the experimental data of FO(|ψ

4
〉, |82〉) are denoted by rhombuses. |82〉 and |83〉 are the

maximally coherent states of 2D and 3D, respectively.
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coefficient α. In experiments, we test only the region α ∈ [0, 1/6],
where one can see that if the zero error is strictly defined, the
distillable coherence is measured by C (1),ε=0

d (|ψ4
〉)= log 2,

except at the point of α = 1/6, where C (1),ε=0
d (|ψ4

〉)= log 3.
If a finite error ε 6= 0 is allowed, one will obtain a higher rate
C (1),ε

d (|ψ4
〉)= log 3 in a wider region of α conditioned by

FO(|ψ
4
〉, |83〉)≥ (1− ε).

4. CONCLUSION

We have studied the problems of implementing IOs in a realistic
optical system and demonstrated the one-shot coherence distilla-
tion process experimentally. A general proposal was introduced to
realize an important SIO applicable to high dimensions. Two sets
of states were chosen as input states, and their distillation fidelities
were obtained analytically. We clearly demonstrate the process of
one-shot coherence distillation, i.e., the preparation of the resource
states, selection of the target states, and the state transformation
under the proposed SIO. Experimental data agree well with the
theoretical results and reveal the relation between coherence dis-
tillation rates and finite tolerance errors for different given states.
For extensions, additional unitary operations can be added at the
outputs to realize other kinds of IOs, i.e., some transformations of
pure-to-mixed state and mixed-to-mixed state can also be realized.

The experimental proposal of N-dimensional SIO is suitable
for other quantum systems. For example, in superconducting
circuit-QED systems [48, 49], one can employ a superconducting
qudit [50–52] with N levels to be the primary system and another
superconducting qubit as the ancillary system. By alternately per-
forming the coupling between the primary and ancillary systems
and the resonant pulses between the levels involved, one can realize
SIO.
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