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In this Supplementary Material, we present detailed calculations demonstrating the exceptional
refrigeration of vibrations beyond their mass and temperature limitations. Concretely, this
document consists of four sections describing : (i) our model Hamiltonian and the analysis of an
exceptional point; (ii) the Langevin equations and their solutions for optomechanical networks; (iii)
numerical and analytical results of the steady-state mean residual occupation numbers, effective
susceptibilities, cooling rates, and noise spectra; and (iv) cooling performance of optomechanical
networks.

I. PHYSICAL MODEL AND ITS EXCEPTIONAL POINT

In this section, we introduce a physical model of optomechanical networks and analyze its exceptional point (EP).
Specifically, we consider an EP-assisted optomechanical network, where N vibrational modes are optomechanically
coupled to a common passive cavity, which is linked to an active cavity via a photon-tunneling interaction. A driving
laser, with frequency wy, and amplitude |e| = \/2k.Pr/hwy (given in terms of the laser power P, and the optical
decay rate k), is injected into the loss cavity. The Hamiltonian of the physical system, which is considered in the
main text, reads (with i =1)

N
H = wecle+ weala + hJ(cfa + cal) + Z[wjb;bj + gchc(b; +b;)] + e (cle@rt — ceiwrty, (S1)
j=1

In the rotating frame, which is defined by the unitary transformation operator exp[—iwr, (cfc+a'a)t], the Hamiltonian
of our optomechanical-network system in Eq. (S1) becomes
N

H;=Accle+ Agaa+ J(cTa+ cal) + Z[wjb}bj + gchc(bj- +b;)] +iep(ch —¢), (S2)

Jj=1

where the operators af (a), ¢! (¢), and b;{ (bj) are, respectively, the creation (annihilation) operators of the gain
(active) optical cavity (with resonance frequency w, ), the loss (passive) cavity (with resonance frequency w..), and the
jth vibrational mode (with resonance frequency w;). The g; terms describe the light-motion interactions between the
passive optical mode ¢ and the jth motional mode b;. Cooling the mechanical resonators to their motional quantum
ground states crucially depends on the driving-field strength. The single-photon coupling strength between a single
excitation and the jth vibrational mode scales as g; = 7;xzpm,;, Where the parameter n; quantifies the coupling
strength to the resonator’s position z;(t), and xzpm,; ~ /h/(2mjw;) is the zero-point motion of the resonator in
the trap, with w; being the vibrational-mode frequency of the center-of-mass. For a large-mass mechanical resonator,
a greatly reduced strength g; of the light-motion coupling is resulting from the decrease in the zero-point motion
TzpM,; With increasing the resonator mass m;, and this makes its motional quantum ground-state cooling hard to
achieve. The photon-tunneling interaction between the loss (passive) and gain (active) optical modes is described by
the J term. The 7, term describes the cavity-field driving, with the parameter A.,) = weq) — wr being the driving
detuning for the loss (gain) cavity.
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In order to study the EP effect of our optomechanical networks, we here only consider an active-passive optical-
cavity configuration, and the dissipation rate k. of the passive cavity ¢ and the gain rate k, of the active cavity a
are considered simultaneously. In this case, the effective Hamiltonian of the loss-gain optical-cavity system can be
expressed as

Heoupl = weele +wopata —ikecle +irgata + J(cTa + caT). (S3)

Note that Heoupt = HfT is satisfied if and only if both optical cavities are degenerate (i.e., w. = w, = wp), and when
the gain rate of the active cavity and decay rate of the passive cavity are balanced (i.e., k. = Kk,), there exists the
parity-time (PT)-symmetry [S1-525].

Specifically, by considering the two degenerate optical modes:

We = We = wo, (S4)
and introducing the two supermodes:
AL = (c£a)/V2, (S5)
we then obtain
Heoupt = »_wr AL As, (S6)
+

where the corresponding complex eigenvalues are

wi =wo —ix— /I = x%, (S7)

with
X+ = (Ke £ Ka)/2. (S8)

We note that the real and imaginary parts of wy are the eigenfrequencies and linewidths, respectively. The system
is PT-symmetric when this Hamiltonian remains unchanged under both parity-reversal (P) and time-reversal (7))
transformations. In this case, a phase transition from the PT-symmetric to the broken-P7-symmetric regimes occurs
at the EP [S1-525].

Specifically, we see from Fig. S1 that, when J > k., the eigenfrequencies have an identical imaginary part and two
different real parts. This indicates that the system possesses PT symmetry (i.e., the unbroken-P7 symmetry) with
an identical linewidth and two different frequencies, as shown in the right-hand side of Fig. S1(a).

In addition, Fig. S1 shows that when J < k., the eigenfrequencies have an identical real part and two different
imaginary parts. This means that the linewidths are different and the frequencies of the supermodes are the same,
and then the broken-P7-symmetry occurs i.e., the PT symmetry of the system is broken, as shown on the left-hand
side of Fig. S1(b).

In particular, it is seen that the phase transition of the PT symmetry is clearly exhibited around the border point
J = K., which is an EP (see the yellow stars in Fig. S1). Here we note that it is a semiclassical EP, corresponding to
a spectral degeneracy of a non-Hermitian Hamiltonian. However, for the prediction of a quantum EP, it requires the
inclusion of quantum noise by finding degeneracies of, e.g., a Liouvillian, as proposed in Refs. [S4-S6].

II. LANGEVIN EQUATIONS AND THEIR SOLUTIONS

Based on the Hamiltonian in Eq. (S2), the quantum Langevin equations for the annihilation operators of the two
cavity-field modes and N motional modes can be obtained by phenomenologically adding the dissipation (gain) and
quantum noise terms into the Heisenberg equations of motion:

a =(—iAq + Kq)a —iJc + V2K4ain, (S9a)
N

¢ =(—1A, — Ke)e—iJa — Z igjc(b§ +bj) +er + V2EcCin, (S9Db)
j=1

b; =(—iw; —;)b; — ig;cte + \/2vbjm, for j=1,2,--- N, (S9c)
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FIG. S1: (a) Real and (b) imaginary parts of [w+ — wo]/kc versus the normalized photon-tunneling coupling coefficient J/k..
Note that the yellow stars denote the EP. Other parameters are: v1/wi1 = v2/w1 = 1075, Kewi = 1/57, ke/w1 = 1/57, and
w1 /27 = 20 MHz.

where k. (kq) and +; are, respectively, the decay (gain) rates of the passive (active) optical modes and the jth
vibrational mode, while ¢i, (ain) and b i, are, respectively, the zero-mean input noise operators for the two optical
modes and the jth motional modes, characterized by the following correlation functions:

(cm(t)e, () = o(t =), (S10a)
(el (®)em(t)) =0, (S10b)
(bj.in (D] 3 () = (Anj + 1)3(t — 1), (S10¢)
<b;,in(t)bj,in(t/)> = i 0(t—t), for j=1,2,--- N, (S10d)
where
A = {explhw;/(kpTy)] — 1} (S11)

is the mean thermal occupation numbers, which are associated with the heat bath of the jth motional mode, with
the parameters T; and kp being the bath temperature of the jth vibration and the Boltzmann constant, respectively.
In our work, we consider a vacuum bath (N. = 0) for the passive cavity field and a heat bath (with 7gn ; > 1) for
the each mechanical motion. The vacuum bath of the passive cavity field provides the cooling reservoir to absorb
the thermal excitations from these mechanical vibrations. But for the active cavity-field mode, the intrinsic quantum



noise is described by the noise operators a;, and afm which satisfy the following correlation functions:
<a1n(t)ain(t/)> =0, (S12a)
(af,(Dam(t)) = 3t —t). (S12b)

In order to cool the mechanical vibrations of the optomechanical networks, the strong-driving regime of the passive
cavity is considered, such that the mean photon number in this passive cavity is sufficiently large. Then, we can use
a linearization procedure to simplify the physical model of the optomechanical networks. Specifically, the operators
in Eq. (S9) can be expressed as the sums of their steady-state mean values and quantum fluctuations, i.e.,

a =a1 + da, (S13a)
¢ =ag + de, (S13b)
bj :Bj +(5bJ for 7=1,2,---,N. (813(3)

By separating the steady-state mean values from quantum fluctuations, and ignoring all the higher-order terms of
quantum fluctuations, the linearized equations of motion of quantum fluctuations and the steady-state equations of
the quantum Langevin equations can be obtained, respectively. Thus, we obtain the linearized equations of motion
of quantum fluctuations, which are given by

%6@ =(—1iAg + Kq)0a — iJoc + V2K a4, (S14a)
N
d . . . i
%60 =(—iA; — ke)oc —iJda — i Z Gj(6b] + 8b;) + V/2kcCin, (S14b)
Jj=1
%5@ =(—iwj — 7;)8b; — iG6c — iGoct + \/2y;bjm for j=1,2,--- N, (S14c)
where
N
Ar=Ac+ ) g8 +B;) (S15)
j=1

and As = A, are, respectively, the effective detunings of the passive and active optical cavities, and the parameter
G = gjas denotes the effective optomechanical-coupling strength between the jth vibrational mode and the passive
cavity. For simplicity, in the following discussions, we consider the case where as is real, which can be experimentally
done by choosing a proper driving amplitude ez. Thus, the linearized optomechanical coupling strengths G; are real.
Hereafter, we consider the case of A; =~ Ay ~ A.

Meanwhile, we obtain the equations of motion for the classical motion variables:

d

gl =(—1Ay + ko)1 — iJ g, (S16a)
d N

702 =(=ilc — Ke)az —iJay — Z;igjaz(ﬂ}‘ + B;) + e, (S16b)
d . . " )

=B =(=iw; —5)Bj —igjapas, for j=1,2,--- N. (S16¢)

In our work, we focus only on the steady state of the quantum system and, thus, we set all the left-hand sides of
Eq. (S16) equal to zero:

0 =(—ilAy + ko)1 — iJ g, (S17a)
N
0 =(=ile — Ke)ay —iJar — Y _igjoa(B] + ;) +er, (S17b)

j=1
0 =(—iw; —v;)B; —igjasas, for j=1,2,--- N. (S17c)



Then the steady-state average values of the dynamical variables of quantum optomechanical networks are obtained
as:

—iJOZQ

= - = S18
N TlA, — ka)’ (S18a)
0y — —zJajV—k €L _ o -ZEL’ (S18b)
Ke+1 AC+ijlgj(B;+6j):| Fe 181
—1g;05 09 .
- 2 =1.92...-. N S18
B.l ’L(JJ] _’_,yj ) or .7 < ) ) ( C)

where the parameter A; = A, + Z;V:l gj(ﬁ;‘ + Bj). In order to study the refrigeration performance of the
optomechanical networks, we need to evaluate the steady-state mean occupation numbers in the N mechanical
motions. To this end, the linearized quantum Langevin equations in (S14) can be safely written in the following
compact form:

u(t) = Au(t) + N(1), (S19)

where the fluctuation-operator vector u(t), the noise operator vector N(t), and the coefficient matrix A are,
respectively, defined as:

u(t) = (d¢, 8¢, 6a, 6at, 6y, b1, 6by, 6b, - -, by _1,8b%_, by, bI)T, (S20)

N(t) = V2(/FcCin, /EeChys v/Falin, v/Faly, 101, \/VlbLn,\/’Yzbz,im\/wb;im aE 7\/’YNbN,in7\/7Nb}Lv,in)T, (S21)

and
—iA — Ke 0 —iJ 0 —iGy —iGy —iGo —iGo —iG3 —iG3 - —iGN —iG N
0 A — Ke 0 iJ 1GT 1G] 1G5 1G5 1G5 Gy e iGNy ess:
—iJ 0 —iA + Kq 0 0 0 0 0 0 0 e 0 0
0 iJ 0 A+ Kq 0 0 0 0 0 0 0 0
—i1GY —iGh 0 0 —wi1 — M1 0 0 0 0 0 0 0
1G7 iG1 0 0 0 w1 — 0 0 0 0 0 0
A= —1G5 —iGo 0 0 0 0 —iw2 — VY2 0 0 0 0 0
1G5 iGa 0 0 0 0 0 w2 — Y2 0 0 0 0
—iG3 —iGs 0 0 0 0 0 0 —iw3 — V3 0 0 0
1G5 iG3 0 0 0 0 0 0 0 w3 — 3 0 0
—iGy —iGnN 0 0 0 0 0 0 0 0 co —IWN — YN 0
iGNy iGN 0 0 0 0 0 0 0 0 0 IWN — YN
(S22)

Then, we can write the formal solution of the linearized Langevin equation (S19) as
t
u(t) = M(£)u(0) + / M(t — 5)N(s)ds, (523)
0

where the matrix M(t) is defined as:
M(t) = exp(At), (S24)

with the coefficient matrix A given in Eq. (S22).

III. NUMERICAL AND ANALYTICAL RESULTS FOR THE FINAL MEAN RESIDUAL OCCUPATION
NUMBERS, EFFECTIVE SUSCEPTIBILITIES, COOLING RATES, AND NOISE SPECTRA

In this section, we focus on finding both numerical and analytical expressions of the final mean occupation numbers
of the N mechanical vibrations, and deriving analytical expressions of the effective susceptibilities, cooling rates, and
noise spectra.




A. Numerical results for the final mean residual thermal occupation numbers

Based on the formal solution of the linearized Langevin equation shown in Sec. II, we can calculate the steady-state
average thermal occupation numbers of the N mechanical vibrations by solving the Lyapunov equation. Here we
need to emphasize that all the parameters, used in the following calculations, satisfy the stability conditions derived
from the Routh-Hurwitz criterion [S26]; namely, the real parts of all the eigenvalues of the coefficient matrix A are
negative.

For studying quantum optomechanical refrigeration of the N motional modes, we focus on the steady-state average
thermal occupation numbers in the N mechanical vibrations, by calculating the steady-state value of the covariance
matrix V, with the elements:

1

Zl(ui(o0)uy(00)) + {uj(c0)ui(c0))],  for 4,5 =1,---, (2N +4). (525)

In our linearized optomechanical system, the covariance matrix V satisfies the Lyapunov equation,

Vij =

AV + VAT = —Q, (S26)
where the superscript 7' is the matrix transpose operation, and the matrix Q is defined as
Q=,(C+Ch), (527)
with C being the noise correlation matrix, with the elements:
(Nk(s)Ny(s")) = Cgid(s — §'). (S528)

For the Markovian baths considered in our work, we obtain the constant matrix C, given by

02k 0 0 0 0 0 0 0 0 0 0
00 00 O 0 0 0 0 0 0 0
00 00 O 0 0 0 0 0 0 0
00 26,0 0 0 0 0 0 0 0 0
00 00 0 2y(i+1) 0 0 0 0 0 0
00 0 02y 0 0 0 0 0 0 0
c_|0o0o 00 0 0 0 29(i2+1) 0 0 0 0 (829)
00 00 O 0 22712 0 0 0 0 0
00 00 O 0 0 0 0 2w(z+1)--- 0 0
00 00 0 0 0 0 23 0 0 0
00 00 0 0 0 0 0 0 o0 2yn(An +1)
00 00 O 0 0 0 0 0 S 2yNTIN 0

By applying the covariance matrix V, we derive the final residual mean number of thermal quanta in the jth mechanical
vibration:

1
! _ _
Nen,n) = Vei+aei+s) — 5 for j=1,2---, N, (S30)

where V(a;44)(2j+3) can be obtained by solving the Lyapunov equation in Eq. (526).

B. Analytical results for the effective susceptibilities, cooling rates, and noise spectra

In order to study the refrigeration performance of all the mechanical vibrations, we need to obtain the effective
susceptibilities, cooling rates, and noise spectra in the optomechanical system. For convenience, we introduce the
position and momentum operators of the jth vibrational mode:

[ I oy

L — J . 1

x; Sy (bj +b;), (S31a)
L Imihw;

Pa, =i\ =52 (0] = by), (S31b)




which satisfy the bosonic commutation relation: i.e., [,’Ej,pmj] = th, where m; and w; are its mass and resonance
frequency. Then, by using the presentation of the position and momentum operators of the mechanical vibrations,
the Hamiltonian of our quantum system becomes (A = 1)

2 2,2
Pz, m;jw5Ts

2
Hy =wecle +weala + Zl <2mj + 23]> + J(c'a + cal)
=

2
+ Z Njclex; 4 iep (cle™™rt — cetwrt), (S32)

j=1

where ¢ (c') and a (a) represent the annihilation (creation) operators of the passive and active cavity-field modes
with the optical resonance frequencies w. and w,, respectively. The ); term describes the radiation-pressure coupling
between the jth mechanical oscillator and the optical cavity ¢, and the J term denotes the photon-hopping interaction
between the two optical cavities. The e, = \/2Ppk./wy, term is the optical driving of the system, with Pj, being the
driving laser power, and k. being the decay rate of the lossy cavity c.

For convenience, we below introduce the dimensionless coordinate operator

q; = J/mjw;z;, (S33)

and the dimensionless momentum operator

pj =\ 1/(mjw;) pe;, (S34)

with [g;,p;] = 4. By defining the unitary transformation operator

U(t) = exp|—iwr(c'e 4+ a'a)t], (S35)
the Hamiltonian of the system becomes
2
Hy =A.cfe+ A aTa—i—Z{&( 24 %) + Mojeteqs| + T(cfa+ cal) +iep(ct —¢) (S36)
1 =4 a 5 P+ 0;c'cg; c'a+ ca iep(c' —¢),
j=1

where

Aoj = Aj /M5 (S37)
is the dimensionless optomechanical-coupling strength, and

A, = w, —wr, (S38)
Ay = wg — wr, (S39)

denote the effective detunings of the lossy-cavity and gain-cavity fields, respectively.

By phenomenologically adding the damping (gain) and noise terms into the Heisenberg equations obtained using
the Hamiltonian in Eq. (S36), the quantum Langevin equations for the operators of all the optical and mechanical
modes can be obtained as:

i = (kg +iAq)a —iJc + V2Kain, (S40a)
¢=—[Ke +i(Ac + Xo1q1 + Mo2q2)] ¢ — iJa + L + 2k Cin, (S40Db)
Py = —w;ig; — Aojcle —vp; + &5, (S40¢c)
G; = w;pj, (S404)

where k. (k) and ; are the loss (gain) rate of the lossy (gain) optical cavity and the decay rate of the two mechanical
oscillators, respectively. The operators ci, and ai, denote the input noise operators of the two cavity fields, and &;
denotes the Brownian noise operator generated by the corresponding vibrational modes coupled to the thermal bath,



which have zero average value and are represented by the following correlation functions:

{cin(t)e, () =0t — 1), (S41a)
(cl,(Dem(t)) =0, (S41b)
(a(t)a, (1)) = 0, (S41c)
(al,(Dawm(t)) = 3t =), (S41d)

(& ME ) = Zf / ;Zi;e*iw(t g {lJrcoth (2}(2@)} (S4le)

Here, we consider the lossy cavity ¢ driven by a strong driving laser, and, thus, by using the standard linearization
method of quantum optics, all the variables of the system can be expressed as the sums of the steady-state average
and the quantum fluctuation, i.e.,

A= (A)y, + A, (S42)

where A =¢, ¢f, a, af, gj,and, p;. In order to derive analytical expressions of the final mean phonon numbers and
net-cooling rates, we here need to introduce the orthogonal operators, defined as:

6X, = (o' + 80)/V2, (S43a)
8Y, = i(do" — 60)/V/2, (S43b)
for the operators o = a and ¢. In Eq. (S40), by separating the steady states from the quantum fluctuations and after

ignoring all the high-order terms, the equations of motion of the quantum fluctuations can be linearized and expressed
as

0Xo =Ka0X, — +A20Yy + JOYe + V2ko Xain, (S44a)
6Yy =Ka0Ya 4+ A20 Xy — JOXe + V2Ra Ya in, (S44b)
5X. = — ko6X. + ASY, + JSY, + f( — G1)dqy + i( — G2)0s + V2o Xoin, (S44c)

8Y, = — kedY, — AX, — J6 X, — Q(GT + G1)dq1 — ?(G; + G2)0q2 + V2K Y in, (S444)
) V2 Z\f
Sp; = — w;dq; — (GT +G)0Xe — (Gl — G})8Ye — 7;0p; + &5, (Sdde)
3q; =w;0p;, (S44f)
where
2
A=Ac+ ) Xoj(d))es (545)

Jj=1

represents the effective driving detuning after performing the linearization, and we here assume A, = A,. The
parameters G1 = Ao1(c)ss and Go = Apa2(c)ss are, respectively, the linearized optomechanical-coupling intensities of
the passive optical mode and the two mechanical modes. The operators

Xo,in 7( 0,in + 0, m) (8463')
Yo.in :L(Ol’in — 0p,in), for o=a,c, (S46b)

are the corresponding Hermitian input-noise orthogonal operators. In addition, we obtain the steady-state solution



of the quantum Langevin equation, given by

(a)ss = % (S47a)
(c)os = % (S47b)
(q1)ss = W (S47¢)
(g2)ss = _A°2<izss<c>“, (847d)
(p1)ss = (P2)ss = 0. (S47¢)

In the next step, we derive the analytical expressions of the effective mechanical susceptibilities, net-refrigeration
rates, and noise spectra, and study the cooling performance of these vibrational modes. To this end, we obtain the
fluctuation spectra of the position and momentum of these mechanical motions, defined by

So(w) = /700 e T (So(t + 7)00(t))ssdT, (S48)

for o = ¢; and p;. Here () is taken over the steady state of the system. In addition, the fluctuation spectra of the
system can be expressed in the frequency domain as

(06(w)do(w'))ss = So(w)d(w + '), (0=g;, p;). (549)

By using the results given in Eqs. (S44) and (S48), and the correlation functions in Eq. (S49) in the frequency
domain, we obtain the position fluctuation spectra of these vibrational modes as:

Sg; (W) = |X.et(W)[*[Sep, (w) + Senj(w) + Sep.;(w)]. (S50)

Based on the position-fluctuation spectra shown in Eq. (S50), the effective susceptibilities of the jth motional mode
can be obtained as

Xjeft (W) = wj[QF (W) — w? — il em(w)] ™, (S51)

where the parameter I'; ¢ (w) denotes the effective mechanical decay rate of the jth vibrational mode, defined as:
Lje(w) =75 +75.0W), (S52)

and the parameter Q; .g(w) is the effective mechanical resonance frequency of the jth motional mode, defined as

Qj7eﬁ(W) = Wy + 5Wj (UJ) (853)

In Eq. (S52), the parameter -, ¢ denotes the net-refrigeration rate of the jth motional mode, which is given by

D)
1~ B) + B o
Ls(w) (S54b)

Y2,C =715, N, =2/ -
FZ(w) + F§(w)

In cavity optomechanics, the optomechanical-cooling rate can be obtained by calculating: (i) the anti-Stokes/Stokes
scattering rates [S28, S29], and (ii) the effective mechanical decay rate [S30]. In our work, we use the second method to
obtain the effective mechanical susceptibility, and then to find the frequency-dependent effective mechanical damping,
corresponding to the sum of the net-cooling rate and the mechanical decay rate (the coupling rate with the thermal
reservoir). It has been confirmed that the optimal Fourier frequency w is located around the resonance w ~ wy,
corresponding to an optimal cooling net. In fact, the cooling rates are evaluated by considering the Fourier frequency
w close to the bare mechanical-mode resonance wy, and this is often done in cavity optomechanics.

Here we show an intuitive picture and to facilitate the comparison with the recent perturbation treatments of
Refs. [S28, S29], where photons are simultaneously scattered by the mechanical vibration with the emission (with
an anti-Stokes-scattering rate) or the absorption (with a Stokes-scattering rate) of phonons. As a result, the net-
cooling rate based on Refs. [S28, S29] is equal to the difference between the antiStokes- and Stokes-scattering rates.



10

Correspondingly, the net-cooling rate in our method corresponds to the difference of the effective mechanical decay
rate and the mechanical damping rate, in agreement with Eq. (S52). The quantum ground-state cooling can be
achieved, when +; (the coupling rate with the thermal reservoir) is significantly smaller than the net-cooling rate ; ¢,
representing the coupling rate of the mechanical resonator with the effective reservoir provided by the damped cavity
mode.

The parameter dw,;(w) in Eq. (S53) is the mechanical frequency shift of the jth motional mode, which is caused by
the optical spring effect and given by

D1 w
6&11 :\/wf — Bg(uj)i_ég(w) — Wi, (8553)

- L1 (Ld)
(50}2 —\/wg — M — Wy, (S55b)

where the parameters A;_; ... 19 are defined as:

Ay = JHw? —w?), Ay = yowJ?,

Az = A2+ kK2 — W Ay = 2K4w,

As = —2yakw? — 2G3Awy — (K2 — w?)(w? — w?) + A% (w2 — w?),

g = w(—m(A% + k2 — ) + 2 (P — wd),

A7 = W (AAy — yakie + (Yo + Ke)ka + w?) + GaAgws,

Ag = Yo(AAy + kcka)w + (Y2 + Ke — Ko )w?,

Ag = (AAg + kickq +wWws,  Ajg = (Ke — Kq)wws, (S56)

the parameters B;_i ... ¢ are:

By = A3As — AyAs, DBy = A4A5+ Az,
By = 2J%(A; — Ag), By =2J%(Ag — Ay),
Bs = A1+ By +Bs, Bg=DBy+ By— Ay, (S57)

the parameters Cj_; ... ¢ take the form:

Cy = 2G?(J2A2 — A(A% + Hi - w2)),

Cy = —4G3ARw, Cs = (W? — wd)ws,
Cy = mowwr, Cs = C1C3 — CoCy,
Cs = 203+ C1CYy, (S58)

the parameters Dj—; 23, Fj—1,.. 9, and Fj_; ... ¢ are:

Dy = BsCs + BsCs, Dy = B5Cs+ BgCs,
By = JYw}—w?), Ey = ywJ4,
By = A2+ k2 —w?  Ey=2k.w,
Es = —2yikew?® — 2G2Aw; — (k2 — w?)(w? — w?) + A?(w? — w?),
By = w(—m(A2 4+ k2 — ) + 2n.(w? — wd),
E; = W AAy — y1kc + (71 + Ke)ka + w?) + GTAswy,
Es = v (AAg + Kekg)w + (71 + ke — K2)w?,
Ey = (ke — kq)ww?, F) = E3F5— E,F,
Fy = E,Es + E3Es, F3=2J*(F; — Ey),
Fy = 2J%(Es — Ey), Fs=FE,+ F, + F3,
Dy

s = Ih+Fy,—FEy, Dz= o (S59)
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and the rest parameters are given by,

Hy = 2G%[J?As — A(A + k2 —w?)],

Hy, = —4G3ArR,w, H3 = (w? — w¥)wa,

Hs = H1H3 — HaHy, Hg = HyH3+ H1Hy,
L

L2 = F5H6 — P’6I’157 L3 = 727 H4 = Y1Wwa. (860)
w

We note that the parameter Sy, ; in Eq. (S50) denotes the radiation-pressure noise spectra of the jth vibration defined
as:

GEW1 (w)[ Z1 (w)[”

Sep,1(w) = NWE (S61a)
_ GEWL(w)]Z2(w) |
Sip2(w) = ASE (S61b)

while the parameter Si, ; in Eq. (S50) represents the thermal noise spectrum of the jth mechanical motion which is
defined as,

Tw w _
Stn,1(w) w0 cot (2kBT1> Y1 (2701 + 1), (S62a)

Sth’g(w) = 722 th (

w

w _
2kBT2> ~ Y2 (27ign,2 + 1), (S62b)

and the parameter Sgp ; in Eq. (S50) is the EP-induced noise spectra of the jth mechanical vibration, which is defined
as,

Ny (w)
Sep,1(w) = @)’ (S63a)
M (w)
Sep2(w) = AOE (S63b)
where
71 = ipow+w? —ws, Zy=imw+w? —wl K =A%+ (ke +iw)?,
Ky = A2+ (kg —iw)?, Th = ADg + (—ike + w)(ikq + W),
Ny = JH(ivow — w? + w3) + Ko(w(ive — w) K — 2G3Aw; + Kw3)
+2J%(w(—iy2 + w)Ty + GaAswy — Thw?),
My, = J*imw —w? +w?) + Koy (w(im — w) K1 — 2G2Aw; + K1w?)
4272 (w(—iy +w)T) + G3 Agwy — Thw?),
Wi = (2(J%a + JH(f1 + (ke — 284)w?) + T2 (f2(A3 + K2) + (242(A + Ag)k,
Fhike — 26ek2 + K3)w? + (Ko — 2ke)w?) + ke (A% + K2 + W?)
X (A3 4 2032 (kg — W) (kg + W) + K2 + w?)?)),
hi = A2 +4AA, + A% — K‘,z, f1 = —2A0Ask, + A%HC Keka,
fo = —2AAgk. + ARy — K2ka, Ny = 403G3G3Y %,
My, = 4iGEG2Y ], Y = J2Ay — A(A2 4 (kg +iw)?),
(S64)

We should note that in Eq. (S62), we have considered the high-temperature limit kpT; > fuw,;. Here we consider the
case of N = 2 and k(,) = ko, and then, the net refrigeration rate of the jth mechanical resonator is derived as:

vi.c = 4G7 1+ x;(J, A)] /ro, (S65)
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FIG. S2: Effective mechanical decay rates (a) I'i s [based on Eq. (S52)] of the first mechanical resonator and (b) I'seq of
the second mechanical resonator versus the Fourier frequency w for the cases of the standard cooling (blue curves) and the
EP cooling (yellow curves). Effective mechanical resonance frequency (c) Q1 ¢ [based on Eq. (S53)] and (d) Qg,es versus w
in the standard-cooling (blue curves) and the EP-cooling (yellow curves) cases. Other parameters are: w;/(27) = 20 MHz,
wa2 /w1 = 0.7, v /w1 = 1077 kefwr = 1/(57), Gj/ke = 0.05, J/ke = 0.999, and A = wy.

where x;(J,A) = A;/E; is the cooling-enhancement factor induced by the EP effect. The parameters A; and Z; are,
respectively, described by:

Ay = W A[(AYA + 2r0-) + A5 | [mo(1w® +wi?) + Gy Awalio + Aw; o [2(—Ro A (vhw? + w;°)
— G2 AA_w;) + T2 (ko (VR w? + w2) + GPymAw;)] — w2 ym (J2(J? = 2A4) + k_ky) + AG? Akow;]?

— [k (W — w?) = 2GPAA_w; + JX(2(G? Aw; + A%w, + koyw;) — J2w))]?, (S66a)
Zj = Wy (J2(J? = 2A4) + koky) + 4G? Akow;]® + [k- ki (w? — w?) — 2GPAA _w;
+ J2(2(G?Aw; + A%w, + koyw,;) — J2w;)]?, (S66b)

with Ky = k3 + (A £ w)?, Ap = A + Koy, kot = KE £ w?, and w; = w? —wjz fori=3-—7j.

In the above sections, the effective mechanical damping rate I'; . and the effective mechanical resonance frequency
Q; e of the jth mechanical vibration are analytically derived [see Eqgs. (S52) and (S53)]. In addition, we obtained the
numerical results of the final mean thermal excitation numbers in the mechanical vibrations [see Eq. (S30)]. Now, we
study how the EP mechanism affects the optomechanical-refrigeration performance by analyzing the dependence of
the effective mechanical decay rate I';j o and the effective mechanical resonance frequency €2; i of the jth mechanical
oscillator on the Fourier frequency w.

In Fig. S2, we show the effective mechanical decay rates I'; . and I's o5 of the two mechanical vibrations versus
the Fourier frequency w for the cases of the standard cooling (blue curves) and the EP cooling (yellow curves). We
see that in these two cases, the maximum effective mechanical decay rates I'; ¢ of the jth mechanical resonators are
located around w ~ w;. In addition, we find that in the EP-cooling case, the maximum value of I'; . of the jth
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FIG. S3: Net cooling rates (a,b,c) v1,c [based on Eq. (S54a)] of the first mechanical resonator and (d,e,f) ~v2,c [based on
Eq. (S54b)] of the second mechanical resonator versus the cavity-field driving detuning A for the cases of (a,d) the standard
cooling (black curves), (b,e) the loss-loss (LL) cooling (blue curves), and (c,f) the EP cooling (red curves). Other parameters
are: w1 /(2m) = 20 MHz, w2 /w1 = 0.7, v; /w1 = 107, ke /w1 = 1/(57), G;/ke = 0.05, w/wi = 0.99, and J/k. = 0.999.

mechanical resonator near A = w; is much larger than that in the standard-cooling cases [see Figs. S2(a,b)]. Note
that T's o splits into two peaks of the same height near w = w; [see Fig. S2(b)]. Physically, the effective mechanical
decay rates I';.g¢ can be greatly increased by employing the EP mechanism, which leads to a giant enhancement
for the cooling performance and its limit. Specifically, Figs. S2 (a,b) show that in the EP-cooling case, the effective
mechanical decay rates I'; o close the EP are dramatically amplified by at least three orders of magnitude compared
with the cases without the EP, and that in these two cases, the maximum value of I'y o is always much larger than
that of F27eff.

Furthermore, the effect of the EP-cooling mechanism on the effective mechanical resonance frequency 2; .g of the
jth mechanical resonator is studied in detail. Specifically, we plot §2; . as a function of the Fourier frequency w in the
standard-cooling (blue curves) and EP-cooling (yellow curves) cases, as shown in Figs. S2 (c,d). We see that in the
standard-cooling case, €); . changes slightly near the resonance point w = wy, while it can be significantly changed
in the EP-cooling case. Physically, this significant change of the effective mechanical resonance frequency is due to
the EP effect.

We have obtained the analytical expressions on the net refrigeration rates v; ¢ [see Egs. (S54)] and the shifts dw;,
of the mechanical resonance frequencies [see Egs. (S55)] of the jth mechanical resonator. Below, we show how the EP
mechanism affects the cooling performance by analyzing the dependence of the net refrigeration rates v;c and the
shifts dw; of the mechanical resonance frequencies on the system parameters.

Specifically, in Fig. S3, the net refrigeration rates v;,c and v ¢ of the two mechanical vibrations are plotted as a
function of the cavity-field driving detuning A in the three cases when:

(i) only one lossy optical cavity is coupled to the two mechanical motions (i.e., the standard-cooling case, see
Figs. S3(a) and S3(d), shown by the black solid curves);

(ii) the loss-loss cavity is linked with the two mechanical resonators (i.e., the loss-loss cooling case, see Figs. S3(b)
and S3(e), indicated by the blue solid curves);

and (iii) the gain-loss cavity is connected to the two mechanical resonators (i.e., the EP cooling case, see Figs. S3(c)
and S3(f), shown by the red solid curves).

We see from Fig. S3 that in all these three cases, the maximum net refrigeration rates of the mechanical resonators
are located around A ~ w;. For the loss-loss cooling case [see Figs. S3(a) and S3(b)], the optomechanically induced
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FIG. S4: Net-cooling rates 71,c (blue dashed curves) and v2,¢ (red solid curves) versus the effective driving detuning A in the
EP cooling. Other parameters are the same as those in Fig. S3.

optical net-damping rate 7; ¢ of the jth mechanical vibration splits into two peaks of the same height near A = wy,
and the maximum value of the net-refrigeration rates of these mechanical resonators at A = w; is much smaller than
those in both EP- and standard-cooling cases. These findings are quite different from that in the EP-based cooling
case [see Figs. S3(c) and S3(f)]. This is because the EP effect greatly increases the net refrigeration rates of the
mechanical vibrations, and it corresponds to a giant improvement in the refrigeration performance and its limit. In
particular, it is shown in Fig. S3 that in the EP-based cooling case, the net cooling rates at the EP point are giantly
amplified by at least four orders of magnitude compared with the cases without the EP, and that in these three
cases, the maximum net-refrigeration rates of the first mechanical vibration is much larger than that of the second
mechanical motion.

To further demonstrate these phenomena, we plot in Fig. S4 the net cooling rates v1 ¢ (see the blue curves) and
va,c (red curves) of the two vibrations versus the effective driving detuning A, when the system operates in the EP
cooling. It shows that the maximum net cooling rates of the two mechanical vibrations emerge around A = w,
and the refrigeration rate of the first vibrational mode is larger than that of the second mode. Physically, the first
resonator satisfies the resonance condition A = w; (i.e., the anti-Stokes sideband resonant with the cavity), which
is optimal for cooling, while the second vibrational mode is far from that, because its frequency is not equal to that
of the first mode. This means that our EP cooling can work for multiple mechanical resonators with the different
resonance frequencies.

In addition, we study in detail the dependence of the effective mechanical resonance frequencies of the mechanical
resonators on the EP-cooling mechanism. Concretely, in Fig. S5, the shifts of the mechanical resonance frequencies
dw; are plotted as a function of the cavity-field driving detuning A in the three cases:

(i) the standard-cooling case [see Figs. S5(a) and S5(d), shown by the black solid curves];

(ii) the loss-loss cooling case [see Figs. S5(b) and S5(e), indicated by the blue solid curves];

and (iii) the EP-cooling case [see Figs. S5(c) and S5(f), shown by the red solid curves].

It is shown in Figs. S5(a,d) and S5(b,e) that, at the resonance points A = +w;, the resonance frequencies of the
mechanical resonators change slightly [dw;(+w;)/w1 &~ £107°] in the standard-cooling and loss-loss cooling cases, while
the resonance frequencies of these resonators in the EP-cooling case are significantly changed [0w; (+w;)/w; ~ £1072].
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FIG. S5: Mechanical frequency shifts (a,b,c) dw; [based on Eq. (S55a)] of the first mechanical resonator and (d,e,f) dwa [based
on Eq. (S55b)] of the second mechanical resonator versus the cavity-field driving detuning A in (a,d) standard cooling (black
curves), (b,e) loss-loss (LL) cooling (blue curves), and (c,f) EP-based cooling (red curves) cases. Other parameters are the
same as those in Fig. S3.

Physically, this giant enhancement of the mechanical-resonance frequencies is caused by the EP effect.

In fact, by using the noise spectra [based on Egs. (S61), (S62), and (S63)] of the two mechanical vibrations, the
effective optomechanical refrigeration of these mechanical resonators can be well explained. In Fig. S6, the noise
spectra of the two mechanical motions are plotted as a function of the frequency w. Specifically, it is shown that
for the first motional mode, at the resonance points w = tws, the contribution from the EP-induced noise Sgp 1(w)
is much smaller than those from both radiation-pressure noise S;p1(w) and thermal noise Sin1(w), as shown in
Fig. S6(a).

We can also see that for the second mechanical resonator, at the resonance points w = +wy, the contribution from the
radiation-pressure noise S,p, 2(w) is much larger than that from the thermal noise Syp, 2(w), which is approximately equal
to that from the EP-induced noise Sgp 2(w) [see Fig. S6(b)]. In this way, a giant improvement in the optomechanical-
refrigeration performance of these mechanical motions can be realized, because the thermal noise stored in them
is significantly suppressed by utilizing the EP-based cooling mechanism. Note that the additional spectral terms,
associated to the coupling with the gain cavity, include the EP-induced noise spectral term (Sgp ;), which is at most
comparable to that of usual radiation pressure (S;p ;). If starting far away from the quantum regime, a much stronger
effect from thermal noise can happen, as shown in Fig. S7.

To further illustrate this point, we plot in Fig. S7 the radiation-pressure noise spectra S,p, j, thermal noise spectra
Stn,j, and EP-induced noise spectra Sgp ; as functions of the initial thermal occupancies fitn ;. We see from Fig. S7
and Egs. (S61-563) that the thermal-noise spectra Sin; are governed by the initial thermal phonon numbers 7, j,
whereas both the radiation-pressure noise spectra Sy, ; and the EP-induced noise spectra Sgp,; are independent of
the initial thermal occupancies 74y, ;. Close to the classical regime, the contribution from the thermal-noise spectra is
enhanced and then, the cooling-improved performance resulted from the EP mechanism deteriorates. This indicates
that, far away from the classical regime, the EP mechanism leads to a much better cooling performance for the
mechanical resonator; while close to the classical regime, thermal noise is detrimental to refrigeration and tends to
cancel the important dependence of the refrigeration enhancement on the EP.
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FIG. S6: Radiation-pressure noise spectrum S ; [see Eq. (S61)], the thermal noise spectrum Sin,; [see Eq. (S62)], and the
EP-induced noise spectra Sgp,; [see Eq. (S63)] for the jth mechanical oscillator are plotted as functions of the frequency w.
Here we set ni¢n,; = 100, and other parameters are the same as those in Fig. S3.

C. Analytical expressions of the final average thermal phonon numbers

For the purpose of studying quantum cooling, we need to derive the fluctuation spectra of both momentum and
position operators of the mechanical resonators, and then the steady-state mean thermal occupation numbers in
these resonators can be obtained, as based on integrating the corresponding fluctuation spectra. Mathematically, the
analytical results of the steady-state average phonon numbers in these mechanical resonators can be calculated by
using the relation:

nl = SO + (6) — 1], (s67)

where the variances 5p? and 5qu of the momentum and coordinate operators of the jth mechanical resonator can be
obtained by solving Eq. (S44) in the frequency domain and integrating the corresponding fluctuation spectra,

1 o0
(0g5) =5 [ _Say(@)dw, (S68a)
<52>—i/w5()d _ ! /Oo 25, (w)d (S68b)
pj —27_(_ - pj w)aw = 27”'03 _Oow q; w)aw.

Now, we present in detail the calculations of the final average thermal phonon numbers in the mechanical resonators.
The exact analytical expressions of the steady-state mean thermal phonon numbers in these mechanical resonators
can be obtained by calculating the integral in Eq. (S68) for the position and momentum fluctuation spectra. Below,
we consider the high-temperature limit kg7 > hw;, then it is safe to perform the approximation:

w _
52 coth () 252+ 1) (569)
Here the integral kernel used in Eq. (S68) has the form:
In(w)
—_— S70
P (W)hy (—w)’ (570)
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FIG. S7: Radiation-pressure noise spectra Syp; [Eq. (S61)], thermal noise spectra Sy ; [Eq. (S62)], and EP-induced noise
spectra Sgp,; [Eq. (S63)] as functions of the initial thermal occupancies 7ity,;. Here we set w = w1, and other parameters are
the same as those in Fig. S3.

and this kind of integral can be exactly calculated by the formula [S27]:

e gn(w) i M,
— 2 dw=—— S71
/m hon (@)hn (—w) " ag Fn (S71)
where
gn(w) = bow?™ 2 4+ byt b, (S72)
ho(w) = aqw™ + a1w" "+ ay, (S73)
with the parameters ag1,2,... and by 1,2... being the coeflicients specified below.
The variables F,, and M, in Eq. (S71) are, respectively, defined by the following determinants [S27]:
ar a3 as -+ 0 bo b1 by -+ bp_g
ag Qo Gy 0 ag Qs Gy 0
Fo= |0 @a 00 D=0 @ma 0 (874)
0 0 O an 0 0 O an

We can exactly calculate the integral in Eq. (S68) by applying the above formula, and then, the steady-state average
thermal phonon numbers in the two mechanical resonators can be obtained as (n = 8 for our four-mode system):

iD$® M
ni_i,= é(ﬁs + =57 —1>, (S75)
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where Fg, Dés), and Més) shown in Eq. (S74) are, respectively, given by:

Fs = — ajas + ag(ar(—a3a2 + a2(agasas — adar + 2asasar) — az(azaias + as(—azaq + 3apag)ar + (a3 — 2apas)a?)
+ ap(adag — agaiar + azasa? — apad)) + (—apas + aza(azas + 4apar) + aj(asag + 2asa7) — az(asa? + 3asasar
+ 2a0a?))ag — azai) + a1 (ar(ag(as(—asazas + a3as — 2apasas) + az(azaz + 3agas)ag) + (apas(2asas — azag)
— a3(asas + 2aza6) + az(aza? + aopasag))ar + (a5 — 3apazay + 3a2ag)a?) + (—as(as(—azazay + aias — 2apa4as)
+ as(azas + 3agas)ag) — (—3a2azas + a2(2a§a4 + aoag) + apas(4aqgas + azag))ar + ao(bazas — 4a0a5)a$)a8
+ a2(agas + 4agas)a?) + a(adar — ag(asag + 3asar)as + (2asas + azag + 3azar)a?) + a3 (ar(ag(azas — asasap
— 2azasag) — (a3 — 3agasas + 3apal)ar) + (as(—atas + azasas + 2asasa6) + (2aza3 — asasas + azazag

+ bagasag)ar — 3(a3 — a0a4)a$)ag - (a§a4 + 3aqgasas + 2aoa§ + 4a0a3a7)a§, (S76)

1
s 33 2 3 2 2 3 2 2 2
Dé ) :a—((ag(—a2a7 + az(—ajag + a1 (—ajasas + asasag + ajar + 2apagar) — ap(—asazae + azasar
8

+ ag(azasas + apa?))) + (as(atag + ayas(asas — azag) + agas(—asas + azag)) + (a1aq4 — apas)
(—2azay + 3ayag)ay + ao(—2a1a4 + agas)a?)ag + (—agaias — a3(2a4as + azag) + a1 (a3as + aga?

+ 2a0a§a7))a§ + ai’ag + ag(—a7(a§a?5 + apar(asag — 2a4a7) + asas(—asas + asar) + arag(—2asap

+ 3agar)) + (a3(asag + 2a4a7) + as(—2a1asa6 + aragar + apasar) — az(asa? + ar(ajag + 2apa7)))as

— (a3 — 3ajasas + 3aiar)ai) + a3(—alagar + asag + a2(2azae + 3aias) + asar(asar — 3a3a8))))bés)

+ (aoas(a7(ag(—azagas + asas + as(azas — ayag)) + (—azagas + ayasae + agasag + az(ai — 2asa6)ar
+ (a3 — apag)a?) + (azasai + ai(aras — apar) + azar(3azas + arag + apar) — a3(asag + 2aqaz)

— as(ai 4 2a1a2))ag + (a3 — 2a1a3a5 + a%aﬁaé)))bgs) + (apag(a?ag(—agar + asag) + ai (a7 (asasap

— alay + ag(—asag + axar)) + (—aga? + azasag + 2aza4a7 — azasar + apat)ag — azaz) + ag(—azagar
+ a?(aga(; —agar) + agag + asar(aqar — 2a3a8))))bés) + (apas(arar(—azasas + azasar — 2apagar)

+ a1 (2apasar + az(a? — aszar))ag + at(a2ar — (asag + asar)ag + aza?) + ao(apad + as(asagar; — alag
+ a7(—aqar + agag)))))b:(;) + (—agag(apar(a3as — azazar + agasar) + a1ar(—azazas + asar — ao(asag
+ asar)) — apaiasas + ai(azazas + ag(a? + 2azar))ag + aia3 + ai(asasar — asasag — 2a2a7a8)))bff)

+ (apas(a1a7(—asasay + aas — 2apasas + agasag + agasar) + aras(azas + 2apas)ag + a3agag

— ag(—ajasar — apaiar + azar(azas + apar) + asag) + a3 ((aj — azag)ay — (azay + azas + aoa7)a8)))bé‘s)
+ (fagag(ao(agag — agaﬁ — azas(agas + 2apar) + a%(a4a5 + agar)) + a?(a% — agag) + a3(alas — asasag
— 2asasa6 + asasar — 2apasa7 + asasag + apasasg) + al(ag(ag — asay) + az(—asaqas + a§a6 + apasar)
+ ap(—2a4a2 + 3azasag + aga? — agag))))bés) + (ao(ad(ad — 2a4agas + azal) + a?(—ajar — 2a3a7ag
+ asag(—2asa6 + azag) + a3 (asag + asag) + a4(—a3a§ + 3agagar + 2aparag) — a0(3a§a7 — 2asagas
+ asa?)) — ag(ag(—adag + asaZar — asasa? + agad) + a3(ak — agag) + a3(—asasag + atar — 2asa6a7
+ asasag + aparag) + az(a3a2 + asas(asas — asar) — ao(—3asasar + 2a402 + aag))) + a1 (ada? + a3
(aZag — asasar — 2azagar + azasag) — ap(—2a3asar; — 3ag(azasas + apa?) + (a3ag + 2apasar)ag + ay
(2a§a6 + asagar + 2azasas)) + az(apar(asag — 3agar) + ag(ag — agag) + az(—agasag + alay

+ 3agazag))))bs), (S77)
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(s) 3 3 2 3 2 2 3 2 2 2
Mg” =— —((as(—a3azr + ar(—ajag + a1(—ajasae + azasag + ayar + 2apagar) — ao(—asazas + ajasar + ag

(azasag + apa?))) + (as(atag + ayaq(asas — azag) + agas(—asas + asag)) + (a1aq — aoas)(—2azaq

+ 3a1a6)ar + ag(—2a1a4 + apas)a?)ag + (—apazas — ai(2asas + azag) + a1 (a3aq + apai + 2apazar))a;

+ adad + as(—ar(atal + apar(asas — 2a4a7) + azas(—asag + asar) + arag(—2asas + 3aqaz)) + (a3

(asag + 2a4a7) + as(—2a1asa6 + aragar + apasar) — az(asa? + ar(aiag + 2apar)))ag — (a3 — 3ayasas

+ 3atar)a?) + a3(—atasar + adag + a?(2azas + 3aiag) + asar(agar — 3&3&8))))1)(()3) + (apas(ar(ag
(—asaqas + a§a6 + as(agas — arag)) + (—azaqas + a1agae + apasag + ag(ai — 2asa¢))ar + (a% — apay)
a2) + (azasa? + a2(aras — apar) + azar(3asas + ajag + apar) — a3(asag + 2a4a7) — as(ai + 2a1a2))ag

+ (a3 — 2a1a3a5 + alar)ad)b{" + (aoas(atas(—asar + asas) + ai(ar(asasas — ajay + ag(—asag + asar))
+ (—a4a? + azasag + 2azaqa7 — azasay + aga?)ag — a3a3) + ag(—alagar + a2(azag — azar) + adag

+ asar(aqar — 2a3a8))))bgs) + (apas(ajar(—azasas + asasar — 2apagar) + a1(2apasar + ag(ag — asar))as
+ a3(aiar — (asag + agar)ag + azai) + ap(agas + az(asagar — aZag + ar(—agar + agas)))))bg‘s)

+ (faoag(a0a7(a§a6 — agasay + apasay) + arar(—asasag + atar — ag(asag + agar)) — a0a§a5a8

+ ay(azaszas + ap(a? + 2azar))ag + ala? + ai(asasar — asasag — 2a2a7ag)))bff) + (apag(arar(—azasay
+ a3as — 2apagas + agasag + apazar) + aas(asas + 2apas)ag + adagag — ao(—a§a4a7 - a0a§a7

+ azar(azas + agar) + agag) + a%((ai — agag)ay — (azaq + azas + &0@7)@8)))bé8) + (—aoag(ao(aoag

— a3ag — azas(agas + 2apar) + ai(asas + azar)) + ai(ai — asag) + ai(ajas — azasas — 2azasa6

+ agaqar — 2apasar + asasag + agasag) + al(ag(ag — asay) + az(—asaqsas + agaﬁ + apasar)

+ ao(—2a4a3 + 3azasag + aga? — a%as))))bé‘s) + (ao(a3(ag — 2a4a6as + azai) + ai(—ajay — 2a3arag

+ agag(—2asag + asag) + a3 (asag + azag) + a4(fa3a§ + 3asagar + 2aparag) — a0(3a§a7 — 2asagas

+ aza?)) — ap(ao(—aias + asaiar — azasa? + agad) + a3(ai — asag) + ai(—asasa + ataz

— 2apaga7 + asasag + aparag) + as(aza2 + asas(asag — asar) — ag(—3asagar + 2a4a2 + azag)))

+ ay(ada? + a3(alas — asasar — 2azagar + azasag) — ao(—2arasar — 3ag(azasag + apa?) + (azas

+ 2apasar)ag + as(2aza6 + azagar + 2azasag)) + as(apar(asas — 3asar) + a3(ai — asag)

+ az(—aqasag + aia7 + 3aoa7a8)))))bgs))7 (S78)

with @ 1,2,... and by 1 2... being coefficients, which are defined as:

ap=—1,
ay =i(y1 + v2 + 2ke — 2K,),
az =2J% + 172 + A% + AF + 291k + K2 — 2(71 + 72 + 26e)Ka + Ko + Wi + WS,
ag = — (2% + 7923 + 203K + Y2k + 207 (71 + Y2 + Ke — Ka) — 28% K4 — dyakicka — 2K2Ka + Yok + 2Kcky
+ Yow? 4 26.wi — 2kqwi + 2(Ke — Fa)ws 4+ Y1 (A% 4+ AL+ Ke(272 + Ke) — 2(Y2 + 2K ) kg + K2 4 w3),
ag =—J* — A2A§ — Q'yQA%/{C — A%ni + 272A2na + 272113/@1 — AQH?I — 272/%/12 — /@3/{3 + 2G%Aw1 — Azwf
— A20? — 279k W} — KEWE 4+ 2y9kaw? + Ak Kawi — K2WE + 2G5 AWy — (A% + A2 + K2 — dKekg + K2
+ wiwi — 277 (1172 — A + Ay + wike + wakie — (W1 + wa + Ke)ka + Wi +w3) — w1 (—24%K, + wa(A?
+ A3+ K2 — dkickg + K2) + 26(A% 4 Ka(—Fe + Ka)) 4 2(Ke — Ka)ws),
(S79)
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as = — i(=J (71 + 72 — 1RA%A2 — 1AK% — 1 A%K2 — k22 4 2G2 Awowr — AG2 Ak Wy — waA2W? — Wy AZW?
— 2A2HCUJ1 72/{ wl + 2A2maw1 + 472,%6/{@4;.)1 + 2K2 Hawl ’}/Qli wl 2k ok wl 4G2AI€QQJ2 + 2(—A21~€c
+ A%k + (Ke — Ka(Keka — W))ws 4+ 71 (—A3(A% 4 K280 + Ke)) + 272 (A% + k) kg — (A% + Ke(272 + Ke))K2
+ 2G5 AWy — (A% + A3 4 K2 — dkekig + K2)w3) + 2% (12(AAg + Kekg — wP) + Y1 (AA2 — yoke + (V2 + Fe)ka
—wB) — (e — ka2 + ),

ag :wl(—2G% (A2 — 2v3kq + K2) + (AZ(A% + 299k + K2) — 272(A% + K2 kg + (A? + 2v2k + K2)K2)wy) — 2G2A
(A2 + K2 + whws + (A% + K2)(A2 + K2) — 2G2, Aw; + (A% + A2 + k2 — dkekg + £2)wP)w?E + JH(wiws + w?
+ W) + 2T (=172 (AL + Kekia) + w1 (G3 Ay — (AAg — wokie + (wo 4 Ke)ka)wi) + Galows + 71 (Ke — Fq)ws

+ (—AAg — Kekig +wWws) + 71 (72(A% 4+ K2 (A3 + K£2) 4 2we (G3AK A3k ews — Ko (A% + K2 — Kekig)ws)),

a7 = — i(yaw1 (2G3(J? Ay — A(A2 + K2)) + (J* = 2J%(AA, + Kekig))wi + 2G2(J2 1182 — 1 A(AZ 4 K2) + 2AkK,w?)
wo + (71 (J* = 2T (AAg + Kekia) + (A% 4 £2)(A2 + K2)) + 4G Akgwr + 2((J? + A ke — (J? + A% + K2)kq
+ Kk Jwi)ws ),

ag = — w1w2(2G2(J*Ag — A(A2 + K2))wy + (2G3(J? Ay — A(AZ + K2)) + (J* = 2T2(AAg + kieky) + (A% + K2)
(A3 + Kg))wi)wa), (S80)

b —g

b\" (1 + 201 )t
b5 =w?(2G3k + (14 271 )y (—4J% + 72 — 2(A% + A3 — k2 — k2 4+ w2))),
b =W} (6% (v + 211m) + 263k (43 + A2 — 2A3 + k2 + 252 — 2w3) — 2J(G3 (26 — Ka) + 2(1 + 201) M (73
— A% AAy — A2+ K2+ Rekg + K2 —2w3)) + (14 Qﬁl)yl(A‘* + A3 — 4AZR% 4 K1 4 2A§;<;2 + 4r2K2
+ K2+ 292(—A? — A2+ K2+ K2) — 4G2Aws + 4(A2 — K2 — K2)w2 +wh + 2A%(2A2 + K2 — 2K2 + 2w2)))
0 =W (674 (71 + 201m) + 2GR (73 + A% = 243 + K2 + 212 — 203) — 27%(GR (2 — ko) + 2(1 + 200)m (13
— A% 4 ADg — A2 4 K2 4 Kekg + K82 —202)) + (14 271)71 (AT + A3 — 44262 + K2 4+ 2A2K2 4 4k2K2
+ K4+ 292 (—A% — A2+ K2+ K2) — 4G5 Aws + 4(A2 — K2 — K2)wE +ws + 2A%(2A2 + K2 — 2K2 4 2w2))),
(S81)

bfll) :w2(—4J6(71 +2n171) + QG%KC(—2A2A2 + A — 2A2K% + 2A%K2 + 2A2K2 4+ 26262 + K2 4 42(A% - 2A2
+ k24 262) — 2(A? — 2A3 4 K2+ 282 w3 4+ wi) + 2J4(G2(mc —2G3kK,) + (14 201)71 (375 — A +4AA,
— A2 4 K2 4 dRekg + K2 — 6w3)) 4 (1 + 271) 71 (V5 (A + AF 4 k2 4 4k2K2 + K2+ 2A%(2A2 + K2 — 22)
+2A2(=2K2 + K2)) + 8GEya Akows + 2(K2 (A3 — A2(K2 — 262) 4 K2 (K2 + K2)) + 2G3A3wy — (A3 + K2
+AkZKE + Kp + 203 (=22 4+ K2))w3 + (—A3 + K2 + K2)ws + 2G3Awe(2A3 + K2 — 2k2 + w3) — AY (A3
— K2 wd) — AZ(A4 + RE —4R2W2 4 Wi 262 (— K2 4+ W) 4 205 (K2 4 K2+ 2w2)))) + 2T (G2 (2A2kK,
+ A?kg + Adkg — K2Rq — 26eR2 + K3+ 75 (—2ke + Kq) + 2009 (ke 4 264) + dkews — 2kqw3) 4+ 2(1 + 274)
Y1 (A% Ag + 73 (A% — AAg + A3 — K2 — kieka — K2) — Ke(A3 (=Ko + Ka) + Ka(K2 + Keka + K2)) — G AWy
+ 2(=A% + K2+ Kekig + K2 ws — wy — A%(A2 + (Ke — Fa)ka 4 203) + A(AS + 2G%ws + Ao (k2 — dkickq
2 1 2ud))),

(S82)



BV =w?(J8 (71 + 2m171) — (14 201) 71 (— (A2 + £2)2(A2 4 £2)? + 292 (AZ(A* — A2k + k2 + A2(A2 4 2k2))
— (AT = 2A%A2 +2(A% + ADK? + KHEZ + (A = Fe) (A + Ke)kD) + 16G2y2 Ak (Ag — ko) (Ao + Fq)ws
+4G3A(AS(2A% + AS + 2k2) — 2(A? — A + k2)K2 + Kibwa — 4(G3A% + AS(AS — ASk2 + ki + A% (A3
+2r2)) — (A —2A%A2 + 2(A? + AQ)KZ + EDE2 4 (A = Ke) (A + ko)D) w2 + 4G2A(A% + 242 4 K2
— 262 w3 — (A* + AY — 4A2K2 + K2+ 2(A2 + 26D K2 4 KE +2A%(2A2 + K2 — 262))w)) — 2J5 (=G K,
+2(1 + 271 )71 (73 + Ay + Kekg — 2w3)) + 2J3(GH((—2A0gke + A%y — K2ka) (A + K2) +73(202(A
+ Do)k + (A2 +4AAy + A2 — £2) kg — 2kck2 + K3) — 2(2A0(A + Ag)ke 4+ (A% +4AA + A2 — K2k,
— 2K k2 + KD )ws 4 (—2ke + Ka)ws) + 2(1 + 27171 (— (A2 + K2)(AAg + Kekg) (A3 + K2) + 75 (AA
(A% — AAg + A3) + Ag(A 4 Ag)k? — K2(A% + 4AA + AZ + K2 kg + (A(A 4 Ag) — K2)KE — Kekd)
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— QGQ’}/Q((A — AQ)HC (A + AQ)KZG)WQ + Gz(A2(3A2 — QAAQ + AQ + K ) — Q(A + ZAQ)HCI{a + (QA + AQ)
K/a)WQ — 2(AA2(A2 AAQ + A2) + AQ(A + AQ)I{ — HC(Az + 4AA2 + AQ + K ) (A(A + Ag) — Hg)lﬁlz

— Rk ws 4+ G2(—2A 4 Ag)ws 4+ (A% — AAy + A2 — K2 — kieky — K2)wh)) + 2G2 (vake(AZ(—2A2
+ A2 — 262) + 2(A% + A2 + K22 + k) + 2G2(1 + 270) 12 A%W2 + k(A% + K2 (A2 + K2)2 — 2(A2
(—2A% + AZ — 262) + 2(A% + A2 + K2)K2 + kDw? 4 (A% — 242 + K2 + 262 ws)) + JH(2G3 (A2ke + 92

(Ke — 2kq) — 20 Mgk, — Kok — 2(Ke — 264)w3) — 2(1 + 201)71 (V2 (A% — 4AA, + A2 — K2 — dKkoky — K2)
— K2(A3 + 3K2) — 4G2Asws + 2(— A% + K2 + dkokig + K2)ws — 3wy — A%(3A2 + K2 + 2w3) + A(—4Azk,

+ 2G§w2 + 8A2w§)))),

b(l) =wi(J¥(1 + 201)71 (73 — 2w3) 4+ 2G3 (Vake(A? + K2) (A3 + K2)? — 4G3(1 + 2n2) 12 A% (Ag — ko) (Ag + Ko)ws

Ka

(S83)

— 20c(A? + K2) (A2 4 K£2)2w2 + ko (AZ(—2A% + A2 — 2K2%) + 2(A? + A2 + £2)k2 + kD)wy) + (1 + 271)y1 (4
A2+ k2)2(A2 + k2)2 4+ 4G2A(A? + k(272 + Ke)) (A2 + 12) 2wy — 2(4GAA2(Ag — ko) (A + Ka) + (A2 + K2)2
K2 ws 4+ 4GAA(AZ(2A% 4+ A2 + 2k2) — 2(A? — A2 + K2)R2 4 KDws — 2(A2(A* — A2K? 4 K2 + A?

(
(A3
(A2 + 2k2)) — (AT = 2A%A2 + 2(A% + A2)k2 + KDE2 4+ (A = ) (A + ko) rD)ws) + 2T (1 + 271) 1 (12
(

AA Ak ek + A2 (BA3 4 K2) + k2(A3 + 3k2)) + 2G3(3AA, — 279 Aok + 200 (72 + Ke)ka + Aka (272 + Ka))wa
— 2(4A Aok kg + AZ(BAS + K2) + K2(AZ 4 3k2))wE + 2G5 (A — 2A0)w3 + (—A2 + 4AA; — A2 + K2 + dKekg

+ Iia)LUQ) + G%(vg (Ag,‘ic —2A Aok, — Iiclia) + w2(—2A§/§c + 4AAsky + 2/€CI€§ + (ke — 2/€a)w§)))

— 2J6(—G%/<;a(7§ — 2w§) +2(1 4+ 271)71 ('YS(AAQ + Keka) + wg(GgAg —2(AAS + Kekg)wa + wg’))) — 2J2(—G%

(V3 (—2AA00k. + A%k — K2ka) (A3 + K2) + 4G3(1 + 272) Y2 Alows — 2(—2A0sk. + A2k, — K2k ) (A3 + K2 )w3

2

+ (282(A + Ag)ke + (A2 + 4AAy + A2 — K2) ko — 2kek2 4+ 12)ws) + 2(1 + 271 )71 (V2 (A2 + K2)(AAg + Kekig)
(A2 + K2) + 2G272(AZ(—A + A) ke + Aa(A(A + Ag) — £k + (A + Ag)kek? + AR )wy + wa(—2G5AAgwsy
— 2(A? 4+ K2)(AAg + Keka) (A2 4 62wy + (—AAL (AT — AAy 4+ A2) — Ag(A + A)K2 + k(A% + 4AAy + A2
+ 63 ke — A(A + Ag) k2 4 K2R 4 ek )ws 4+ G2((BA%Ag 4 Agk? 4 2AKeka ) (A2 + K2) + (A2 (3A% — 2AA,

+AF 4 £2) = 2(A + 200)Keka + (24 4 Ag)KZ)w3))))),

B =2w2(AGA(1 + 271 )y (J2 A0 — A(A2 + £2))2 + (J* — 2J2(AD + Kera) + (A% + K2)(A2 + K2))
(J*(1 +2n1)m + (2G ke + (14 201) 71 (A% + £2))(AF + £2) — 2 (=GRkq + (1 + 201) 71 (AA,
+ Kekig)))wW3 + 4G2(J? Ay — A(A2 + K2)(GE(1 4 272) Y2 (J? Ag — A(A2 + K2)) + (1 + 271 )y (J*
—2T2(AAg + Kekia) + (A2 + K2)(AZ + £2))ws)),

(S84)
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bs? =0,

b(2) =(1 + 272)y2w3,

b =w3(2G3ke + (1 + 272)y2(—4J2 + 73 — 2(A? + A3 — k2 — K2 + w3))),

b2 =w2(6J% (v + 2nm) + 2GQKC(A2 —2A2 4 K2+ 262) + (14 2n) 2 (A + AL — 4A§l€2 + k4 2A2K2
+4k2K2 + K2 4 2A%(2A2 4 K2 - 2K2)) + 27%(6'%/@0 — (14 209)72(A% + A2 — k2 — K2)) — 4G2 (1 + 2ny)
YoAwy — 4(Gake — (14 202) 72 (A% + A3 — k2 — K2))w? 4 (1 4 202)yow] — 2J%(G3(2ke — Kq) + 2(1 + 2022)
Yo (vs = A% + ADg — A + K2 + Keka + Ko — 2w1)))w3,

b\ =2 (—4T5 (s + 2097) + V2 (2G3ke(A? — 2A% + k2 + 2k2) + (1 4 20212 (A* + AL — 4A2K2 + k2 + 2(A2
+ 262)K2 + K2+ 2A%(2A2 + K2 — 2K2))) + 8G2(1 4 272) V172 AKewr + 2JH(GA(Ke — 2K4) + (1 + 27ig)yaws
(372 — A% —4AAy — A2+ K2 + dkickag + K2 — 6wD)) — 2(G2ke(—AS — K2 (262 + K2) + 2(k2 + 262 W} — wi
+ 2A3(K2 — K2 — 2w?) + 2A% (A3 — K2 + w?)) + (1 + 272)y2 (—K2 (A3 — A3 (K2 — 2K2) + K2 (K2 + K2))
— 2G3A3 W + (A + K2+ 4r2KE + K2+ 203 (—K2 4+ 82))wi + (A3 — K2 — K2)wi2GT Aw; (243 + K2 — 2k2
+wi) + AYAS = kg + wf) + A%(AL + Ky — ARGw] + Wi+ 260 (—kG + wf) + 285(KE + KRG 4 207))))
+ QJQ(*}/%(GZ(—QRC + Ka) +2(1 4 209)72 (A% — AAy + A3 — K2 — Kekg — K2)) + G3(A%kg — K2ka — 2kck2
+ /<; + A2(2/<;c + Ka) + 2005 (ke + 2K4) + 4/<;Cw1 2/<;aw1) +2(1+ 2TL2)")/2(A3A2 - ﬂc(Az( Ke + Ka) + Ka
(K2 + Kekig + K2)) — GIAgwy + 2(—=A3 + K2 + Kok + K2)w? — wi — A2(A + (Ke — Kaq)Ra + 203) + A(AS
+2G2w1 + Ao (K2 — dkickq + K2+ 20))))),

(S85)

b2 =w2(J8(1 + 201 )y + (A2 + £2)(2G2kc + (14 271 )72 (A2 + £2))(A2 + 1 ) 1 292(G2ko(AZ(—2A2 + A2
—26%) + 2(A% + AZ + KHK2 4+ 1) 4+ (1 + 202) 72 (—AZ(A* — AZK2 + k2 + A2(A2 +262)) + (A* — 2A%A2
+ 2(A% + AKZ + k2K + (A2 + K2)ky)) — AGT(1 + 202) 12 A(A3(2A% + A3 + 2k2) — 2(A% — A3 + K2)k2
+ k1w + 4G (1 + 272) 72 A% + Gake(AZ(2A% — A2 4 262) — 2(A% + A2 + k2)K2 — K2) + (1 + 272) 72 (A2
(A* — A2k + K2+ AZ(AZ 4 2k7)) — (AT = 2A2%A2 + 2(A% + A2)KZ2 + KDE2 4+ (A — Ke) (A + Ke)kd) )w?
—4G3(1+ 2n2)72A(A2 + 202 + K2 — 262 w? + (2G2kK(A% — 2A2 4 K2 4 2k2) + (1 4 272) Y2 (A* + A)
—AA2K? + KE 4+ 2(A3 4 262 K2+ KE + 2A%(2A3 + K2 — 262)))wi + 4Gy Aw (—4(1 4 202)Yake(Ag — Ka)
(Ag + ko) + GE(1 4 2n2)Aw;) — 2J%(=G3ka + 2(1 + 2022)y2 (7 + AAg + Kekia — 2w3)) + 2T (V3 (G3 (ke — 2k4)
— (14 202)72 (A% —4AAy + A2 — K2 — dbickig — K2)) + GE(Adke — 2AAskg — Kek2 — 2(Ke — 2Kq)w?)
+ (14 272) 72 (3BA%A3 4+ AZK2 + 4AAgkicky + A%K2 + 3k2K2 — 2G3 (A — 200)wy + 2(A? — 4AA; + AZ — K2
— Akekg — K2)w? 4 3w])) — 2J2(’yl( G2(202(A + Ag)kie + (A2 + 4AAy + A2 — K2) kg — 2KcK2 4 KD)
+2(1 + 202)72(—AAR (A% — AAg + AZ) — Ag(A + Ag)k2 + k(A% + 4AAs + A2 + K)kg — A(A + Ag)K2
+ K262 4 kekD)) + 4G (1 + 272) Y172 (Ao (—Ke + Ka) + A(kie + ko) )wr + Go(—(—2A0sk. + A2k, — K2 kq)
(A2 + K2) 4+ 2(2082(A + Ag) ke + (A% +4AAy + A2 — k) kg — 2kek2 + K2)w? 4 (2Ke — Ka)wi) + 2(1 + 2722) Y2
(A% + K2)(AAg + Kekig) (A3 + K2) — (G3(A2(3A% — 2AA; + A% + K2) — 2(A 4 2A0)kckq + (2A + Ag)kZw;
+2(AA(A? — AAg + A2) + Ag(A + Ag)k? — k(A% + 4AAy + A2 + K£2) ko + (A(A + Ag) — K2)K2 — Kekd)
Wi + GF(2A — Ag)w} + (=A% + ADg — A3 + K2 + Kekia + K2)))wi))), (S86)
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b5 =w3(VF(A? + K2)(2G3ke + (14 2m2)72(A2 + £2)) (A3 + £2)2 + 8GN Awi (1 + 27i0)Y2ke(AF + £2)?
— G3(1 4 2m2) A(Ag — ko) (Ao + Ka)wi) + 81 + 272)72 (77 — 2w7) — 2J% (73 (= G3ka + 2(1 + 272)
Y2 (A(Ag + Keka)) + 2w1 (G214 202) 72 A 4+ Gokqwr + (1 + 202)Yow1 (—2A0s — 2kckq + w?))) + 2T (7
(G3(A%ke — 2AAskg — Fek2) 4 (14 209) 12 (4AAgkcky + A% (3A2 + k2) + K2) (A3 + 3k2))) — 4G3(1 + 27z)
Y1Y2(Agke — (A 4 Ag)kg)wr + w1 (2G5 (1 + 272) 72 (BAAS + 2Agk kg + AkZ + (A — 2A5)w]) + Gaw; (—2A3k,
+ 4A A kg + 26cK2 4 (Ko — 260)wE) + (1 + 272)yowr (—2A2(3A% + k%) — 8AAgkckg — 2(A% + 3k2)K2
+ (=A% +4AAy — A2+ K2+ dkeka + K2)w))) — 2w1 (4G (1 + 209)12 A% (Ag — ko) (Ao + ke )wy + 2G3
14 270) 2 A(—(A? 4+ k) (A3 + k2)? — (A2(2A% 4+ A2 + 2k2) — 2(A? — A2 + K2)R2 4 KDw?) + w1 (G2ke
(A2 + k2)(A2 + k2)2 + (AZ(—2A2 + A2 — 262) + 2(A% + A2 + k)2 + £D)w?) 4 (1 4 2712)72((A? + K2)?
A2+ k2?4 (AZ(AY — AZK? + K2+ AZ(AZ 4 2k2)) — (AT = 2A%A2 + 2(A? + A2)k2 + KDK2 + (A — k)
A+ ko)EDw)) — 2T (VR (A2 + K2)(2(1 + 272) Y2 (A% + K2)(AAg + Kekig) + Ga(2AAzk. — A%kg + K2ky))
+ 4G y1w1 (1 + 272)72 (A3 (—A + Ag) ke + Ag(A(A + Ag) — k) kg + (A + Ag)ker? + Akd) — G5(1 + 272)
AAswy) — w1 (AGT(1 + 272) Y2 Alow; + 2G3 (1 + 272) Yo (—(3A% Ao + Agk? + 20k kg ) (A3 4 K2)
— (A2(BA% — 2AA; + A% + K2) — 2(A + 200 kicka + (2A + Ag)k2)w?) + w1 (G (—2(—2AA2k, + Ak,
— 126a) (A2 + K2) + (282(A + Ap)ke + (A% + 4AAy + A2 — k) kg — 26ek2 + K2)w?) + 2(1 + 272)72(2(A?
K2 (AAg + Kekia) (A2 + K2) 4+ (AAS (A% — AAy + A2) + Ag(A + Ag)k? — ke(A? +4AAy + A2 + K2 )kq
+(AA + Do) = w2)Kg — kekig)w?))))),
b(z) =wiwi (4GT(1 + 2R2) Y2 (J2Ag — A(A2 + K2))? + (J* = 2J3(AA + Keka) + (A% + k2)(A3 + K2))
(J*H1 + 272)y2 + (2G3kc + (1 + 202)y2 (A% + £2)) (A + K2) — 2J%(—G2ka + (1 + 272)72(AA,
+ Kekia)))wi +4G3(J? Ay — A(AS 4+ £2)(GE(1 + 271) 71 (J2Ag — A(A2 + K2)) + (1 + 279) Y2 (J*
—2J%(AAs + Kekia) + (A + K2) (A2 + K2))wr)). (S87)
Both analytical and numerical methods are based on the same set of the linearized Langevin equations without
further approximations. In our analytical calculations, we use a version based on momentum-damped-mechanical
model. However, in the numerical approach, we utilize another version of the model which is based on a rotating-
wave-approximation, wherein the loss and damping terms appear symmetrically in the equations of motion for the
position and momentum operators. There are physical and mathematical reasons for using both versions. By using
the version based on the momentum-damped-mechanical model, we can easily obtain the analytical expressions for

effective susceptibilities, cooling rates, and noise spectra. We show that in the high-quality limit, both analytical and
numerical results are matched well with each other.

~—~ ~ —~~

IV. GROUND-STATE REFRIGERATION VIA THE EP

In this section, we further study the refrigeration performance of the mechanical resonator, based on both numerical
and analytical results of the steady-state average thermal occupation numbers in the vibration for the three cases of:
(i) standard cooling; (ii) loss-loss (LL) cooling; (iii) EP cooling.

In Figs. S8(a) and S8(b), we plot the final mean thermal phonon numbers n{ and ng of the two mechanical resonators
as a function of the environmental thermal occupations 7y ;, under standard-cooling (see the black curves), LL-cooling
(see the blue curves), and EP-cooling (see the red curves) cases. Here we can see that with the increase of thermal
noise 7y, j, the motional degree of freedom in the EP-cooling case can be effectively cooled; and especially, its cooling
performance can be improved up to three orders of magnitude, compared with both standard- and LL-cooling cases. In
addition, we find that the cooling performance in the LL-cooling case is much smaller than that in the standard-cooling
case, and this confirms that the introduction of an auxiliary passive (active) optical mode can weaken (strengthen)
the cooling efficiency of the mechanical resonator.

Physically, our EP system can induce a field-localization effect, which dramatically enhances the absorption rate of
the anti-Stokes photons and, meanwhile, extremely reduces the heat-exchange rate between the mechanical vibration
and its heat bath [S21-S25]. These results provide the means to protect fragile quantum setups from environmental
thermal noise, and pave a way towards noise-tolerant quantum networks.
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FIG. S8: Final average thermal phonon numbers: (a) n of the first mechanical resonator and (b) n} of the second one versus
the environmental thermal occupancies 7itn,; in the standard-cooling (see the orange curves), loss-loss (LL)-cooling (the blue
curves), and EP-cooling (the red curves) cases, when m; = 100 ng and G, /k. = 0.05. (c) nJ and (d) n} versus the mechanical-
resonator mass ratio m;/mo in the standard-cooling (see the orange curves), LL-cooling (see the blue curves), and EP-cooling
(see the red curves) cases, when fign,; = 10%, mo = 100 ng, and G;/kc = 0.1. The solid curves show the numerical predictions
[see Eq. (S30)], while the symbols correspond to our analytical results [see Eq. (S67)]. Clearly, there is an excellent agreement
between the numerical and analytical results. Here we set: A = w; and J/ke = 0.999, and other parameters are the same as

those in Fig. S3.

For the sake of showing the immunity of the EP-cooling mechanism against the mass of the mechanical resonator,
we make a detailed comparison between the standard optomechanical cooling and the EP cooling as a function of the
resonator mass, by using both numerical and analytical results of the steady-state average thermal phonon number in
the mechanical resonator, as shown in Figs. S8(c) and S8(d). Here, the solid curves are plotted using the numerical
results [see Eq. (S30)], while the symbols are based on the analytical predictions [see Eq. (S67)]. Clearly, the numerical
results and analytical predictions are matched well with each other, as shown in Figs. S8(c) and S8(d).

In addition, we find that in the standard-cooling case, the optomechanical refrigeration becomes much worse by
increasing the resonator mass m; (see the upper blue symbols); while in the EP-cooling case, the optomechanical
cooling of the mechanical resonator is almost immune to the mass of the mechanical resonator (see the lower symbols).
In addition, the EP-cooling technique allows us to reach its quantum ground state, which is very challenging with the
standard-cooling schemes. Specifically, in the EP-cooling case, the threshold mass for preserving quantum ground-
state cooling has been observed to be more than three orders of magnitude stronger than that in the standard-cooling
case. Physically, the net cooling rate is reduced due to the decrease in the light-motion coupling when increasing the
mass of the mechanical resonator, while it can be giantly compensated or even amplified by employing the EP-cooling
mechanism.
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(the red curves) cases, when the effective driving detuning takes A = w; and G;/k. = 0.1. Other parameters are the same as
those in Fig. S3.

To better understand the proposed EP-refrigeration mechanism of the system, we also investigate the influence of
the cavity-field decay rate x on the cooling efficiency of the mechanical resonator in the standard-cooling, LL cooling,
and EP-cooling cases. Specifically, we consider the case of k. = kK, = k, and then, we plot the final average thermal
phonon numbers n{ and ng of the two mechanical resonators as a function of the scaled cavity-field decay rate x/w; in
the standard-cooling, LL cooling, and EP-cooling cases, as shown in Fig. S9. It is shown that, the cooling performance
in the EP-cooling case is much better than those in both standard-cooling and LL-cooling cases. This is because the
field localization induced by our EP system dramatically enhances the generation rate of the anti-Stokes photons, and
meanwhile extremely reduces the heat-exchange rate between the mechanical resonator and its heat reservoir [S21-
S25]. These results indicate that, in general, by simply employing the EP, the cooling rate of the mechanical resonator
can be giantly amplified and engineered.

In particular, we find that in EP-cooling case, the quantum ground-state refrigeration of the mechanical resonator
can be achieved when the system operates in the resolved-sideband regime (i.e., k/w; < 1, please see Fig. S9), and
this is consistent with a typical resolved-sideband cooling (corresponding to anti-stokes Raman scattering) [S28—S34].
When the phonon sidebands cannot be resolved, the quantum ground-state refrigeration of the vibration is unaccessible
in this system (see x/wy > 1 in Fig. S9). Especially, the cooling performance of the mechanical resonator in the EP-
cooling case can be enhanced to be up to nearly ten times, compared with both standard-cooling and LL-cooling
cases. In addition, we reveal that in the EP-cooling case, the optimal working parameter of the cavity-field decay rate
(corresponding to the minimal value of the final mean thermal phonon numbers) is around x/w; & 0.07. This optimal
value is reached under the combined competition between the optomechanical-cooling rate (i.e., the excitation-energy
extraction efficiency through the cavity-field decay channel) and the phonon-sideband resolution condition.

In the quantum refrigeration of our system, the thermal excitations in the mechanical vibration can be effectively
extracted by the cooling channels, which are provided by the optomechanical cavity and its vacuum bath. Here, the
mechanical motions are thermalized by their thermal baths through the mechanical dissipation channels. As a result,

the final average phonon numbers n{ and ng in the two mechanical resonators depend on their mechanical decay rates

~v1 and 5. In Fig. S10, we show the final average thermal phonon numbers nf as a function of the mechanical decay

rate 7; of the jth mechanical motion, when the system works in the standard-, LL-, and EP-cooling cases. We can

see that in these three cases, the final mean thermal phonon numbers n{ and ng in the two mechanical vibrations

increase with increasing the mechanical-motion decay rates ;. This is because the thermal energy-exchange rate
between the mechanical resonator and its heat baths is faster for a larger value of the mechanical decay rate, and
then, the thermal excitations in the heat bath raise the total thermal phonon numbers in the mechanical vibration.
Remarkably, we reveal that the cooling performance of the vibration in the EP-cooling case is much better than
those in both standard- and LL-cooling cases, as shown in Fig. S10. Physically, the net-cooling rate is largely reduced
due to the increase in the mechanical dissipation strength between the resonator and its thermal bath, while it can
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the black curves), loss-loss (LL)-cooling (see the blue curves), and EP-cooling (see the red curves) cases, when the effective
driving detuning takes A = w;, G;/kc = 0.1, and v, /w1 = 107°. Other parameters are the same as those in Fig. S3.

be giantly compensated or even amplified by utilizing the EP-cooling mechanism. Our findings of the EP-cooling
mechanism can pave a route to exploiting quantum ground-state cooling, immune to the mechanical dissipation.

V. COOLING OPTOMECHANICAL NETWORKS VIA THE EP

Finally, we study in detail the quantum refrigeration performance of optomechanical networks. Specifically, we
generalize the EP-cooling mechanism to the ground-state refrigeration of N-vibration optomechanical networks, which
are coupled to a common lossy cavity-field mode c. For convenience, all the mechanical vibrations are assumed to have
the same mechanical decay rates (v; = v, for j = 1-N), light-vibration coupling strengths (G; = G for j = 1-N),
mechanical masses [m; = m for j = 1-N], and bath temperatures [T; = T for j = 1-N]. In order to seek refrigeration
rules for optomechanical networks, we here only consider the case of N = 7. To explain and visualize the refrigeration
performance of the optomechanical networks more clearly, we compare the refrigeration results in the absence of the
EP with the cooling results corresponding to the presence of the EP. Figure S11 shows the final mean thermal phonon
numbers n’ in these mechanical vibrations as a function of the jth mechanical motion in both the standard-cooling
and EP-cooling cases. We can clearly see that the quantum ground-state refrigeration cannot be realized when the
EP is absent (J = 0, i.e., the standard-cooling case) [see the green columns in Fig. S11]. But in stark contrast to this,
the quantum ground-state refrigeration becomes feasible [see lower red columns in Fig. S11] by introducing the EP
mechanism (J # 0). This is because the introduced EP leads to compensating and amplifying the net-cooling rate,
and makes a giant enhancement for the cooling performance. These results not only open the possibility of further
largely suppressing thermal noise in the mechanical-resonator networks, but also pave a route towards the preparation
of nonclassical states of motions, e.g., large spatial superpositions or non-Gaussian states (e.g., Schrodinger cat-like
states).

In contrast to the previously established demonstrations investigating the exceptional cooling in single-vibration
optomechanical platforms [S24, S25], we here focus on the EP-intensive cooling using multi-vibration optomechanical
networks showing much richer and more general properties. In particular, our intrinsic motivations are not limited
to studying the exceptional refrigeration of the vibration networks by both fully analytical and numerical treatments,
but also to overcome a long-standing challenge that quantum ground-state cooling of motions in the regimes of both
large mass and high temperature is hard to achieve. This confirms that by simply employing an EP, an ultra-high
efficient collective refrigeration can be easily realized, which is robust against both environmental noise and resonator
mass, without the need of using any high-cost low-loss materials and noise filters. The resulting exceptional collective
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refrigeration properties have no counterpart in the previous schemes [S24, S25].
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