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Cavity quantum-electrodynamics (QED) is a rich area of optical physics, where extreme light–matter coupling can
give rise to ultrastrong coupling. The ultrastrong coupling regime presents some fascinating uniquely quantum
mechanical effects, such as ground state virtual photons and vacuum squeezing. Focusing on the widely adopted
Hopfield model with cavity dissipation, we show how the linear spectrum of an ultrastrong coupled cavity and a
dipole can be described either classically or quantum mechanically, but only when the quantum model includes
(i) corrections to maintain gauge invariance, and (ii) a specific type of cavity bath coupling, which has so far not
been identified. We also show the impact of this bath model on the quantum Rabi model, which has no classical
analog in ultrastrong coupling. These results can be used to guide emerging experiments and significantly impact
current models and interpretations of ultrastrong coupling between light and matter.
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1. INTRODUCTION
Strong coupling between a single cavity mode and a dipole
or two-level system (TLS) [1–3] can be well explained quan-
tum mechanically or classically (or semiclassically) [4–6]. The
characteristic signature of strong coupling is a splitting in the
emitted spectrum by 2g, where g is the dipole–cavity coupling
rate, which exceeds any losses in the system, e.g., g2>κ2/16
[3] (or more strictly g2>κ2/8 [7]), with κ the cavity decay rate.
Quantum mechanically, this is referred to as vacuum Rabi split-
ting, or in classical physics as normal-mode splitting. Strong
coupling has been observed in atoms [2], molecules [8,9], quan-
tum dots [10,11], and circuit quantum-electrodynamics (QED)
[12,13], and is often considered a prerequisite for exploring
unique quantum effects when one moves beyond a weak exci-
tation approximation or linear response [14,15]. In a quantum
description of cavity-TLS coupling, multi-photon effects mani-
fest in an anharmonic response [16–19], which is not captured by
the physics of two coupled classical harmonic oscillators (HOs).
Nevertheless, a classical description of the emitted spectrum
under weak excitation is an adequate description of the system,
and one recovers a perfect quantum-to-classical correspondence
of the light–matter system, albeit with a different interpretation.
Indeed, the quantum interpretation of spontaneous emission can
be described in terms of radiation reaction, vacuum fluctuations,
or a mixture of both these effects [20,21].

Quantum and classical descriptions of certain light–matter
coupling have led to interesting interpretations and insights,
including the difference between quantum and classical oscilla-
tions in phase qubits [22], classical pseudo-Rabi oscillations in
flux qubits [22], and vacuum Rabi splitting as a manifestation
of linear-dispersion theory [4].

Beyond strong coupling, recent interest in cavity-QED has
turned to ultrastrong coupling (USC) [23–30], where one can-
not invoke a rotating wave approximation (RWA), typically when
g ≥ 0.1ωc, where ωc is the cavity resonance frequency. The
regime of USC presents some fascinating uniquely quantum
concepts such as virtual photons in the ground state [28–31].
Squeezed vacuum states, also with no classical analog, occur in
both bosonic and TLS emitter systems in the USC, which are
described using the Hopfield model and the quantum Rabi model
(QRM), respectively [29]. Exciton and many-emitter Dicke sys-
tems also take on the form of the Hopfield model, such as cavity
coupling to two-dimensional electron systems including Lan-
dau levels in terahertz cavities [32]. In the USC regime, these
systems exhibit spectral signatures that reflect the nature of the
quantum Hopfield model. On the other hand, the classical theory
of coupled oscillators (including collectively coupled TLSs in
the dilute thermodynamic limit) does not require a RWA either,
and it might be expected that certain observables in the USC
regime should also have a quantum-to-classical correspondence,
including the effects of cavity losses.
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In probing the Hopfield regime, the optical spectrum is typi-
cally measured, and most features are argued as being quantum
mechanical in nature, e.g., stemming from diamagnetic cou-
pling terms. Yet, the spectral locations of the upper and lower
polaritons can be matched with coupled classical HO theory
[23,33–35]. In the presence of dissipation, however, a quan-
tum–classical correspondence is generally not known. Although
there exists some quantum Langevin approaches for simpli-
fied geometries [23], these are not suitable for calculating
higher-order quantum correlation functions and arbitrary cav-
ity geometries. Furthermore, the physics of a cavity-coupled
TLS is often said to reduce to cavity-HO physics if one neglects
saturation effects [36,37]. However, this is not applicable in the
USC regime, even with linear response, since saturation effects
are unavoidable in the USC regime due to the virtual excitation
of the TLS, including the ground state.

The USC regime presents additional challenges for quantum
field models, including: (i) gauge corrections because of a trun-
cated Hilbert space [27,38,39], and (ii) the specific form of
the system–bath interaction for the cavity mode influences the
results [40,41]. Since a classically coupled HO model (expressed
entirely in terms of classical electromagnetic fields) has no issues
with gauge invariance, it is essential to seek out if and when such
a quantum–classical correspondence can be made. This is not
just motivated by fundamental physics reasons, but is practically
important since many of the emerging USC experiments require
some sort of modelling with classical Maxwell solvers [33,42].

In this work, we first show that, for a lossless system, the spec-
tral poles (resonances) of the Hopfield model precisely overlap a
classical HO solution, and these deviate from the QRM as soon
as one enters the USC regime. We then introduce a spectral the-
ory of the dissipative Hopfield model, using a gauge-invariant
master equation theory expressed in the multi-polar gauge (or
dipole-gauge in a dipole approximation), and show how it is
possible to identify a specific form of the system–bath coupling
that matches the classical solution. Identical spectra are obtained
in the Coulomb gauge, as must be the case for a gauge-invariant
model.

We choose a common and established classical theory, based
on a normal-mode expansion of the cavity Green function with
phenomenological decay; a more rigorous approach could use
quasinormal modes [43,44]. Additionally, we study the impact
of this model on both the dissipative Hopfield model and the
dissipative QRM, and show the striking differences between
these two models for different η ≡ g/ωc. Usually η>0.1 is the
criterion for the USC regime. Figure 1 illustrates a couple of
model cavity-QED systems.

Fig. 1. Simple schematic of two example systems in dissipative
cavity-QED that can realize USC, including (a) an atom inside a
cavity, which has a decay rate κ, and (b) a planar cavity coupled to
a collective emitter system. The emitters can be treated as a bosonic
(Hopfield model) or as a TLS (QRM).

2. THEORY
We first consider the interaction between a bosonic cavity
mode, with creation (annihilation) operator a†, a, and a bosonic
dipole, with creation (annihilation) operator b†, b. Neglecting
bath losses for now, in the multi-polar gauge, and with the dipole
approximation, the Hopfield model can be written as (ℏ = 1)

HHop = ωca†a + ω0b†b + ig(a† − a)(b + b†) + D(b + b†)2, (1)

where ω0 is the atom transition frequency, and D = ηg is the
diamagnetic amplitude [45]. Note that a naïve truncation of the
multi-polar gauge Hamiltonian would render this Hopfield D
term infinite, and one must account for the gauge invariance of
the truncated single-mode model to obtain physical and correct
results [39,46].

Using a Bogoliubov transformation, we rewrite this
Hamiltonian as HHop = ωca†a + ω̃0b̃†b̃ + ig̃(a† − a)(b̃ + b̃†) + D,
where ω̃0 = ω0(1 + 4η2)0.5 and g̃2 = g2/(1 + 4η2)0.5. Diagonal-
ization yields two polariton poles [47]: ω2

± =
1
2 [ω̃2

0 + ω
2
c ±√︁

(ω̃2
0 − ω2

c )2 + 16g̃2ω̃0ωc]. Assuming on resonance conditions
(ω0 = ωc), then

ω±=ω0

√︁
1 + 2η2 ± 2η(1 + η2)1/2. (2)

To lowest order in the counter-rotating wave effects, i.e., to order
η2 (Bloch–Siegert regime), we obtainω± |BS = ω0(1 + η2/2) ± g.
If one neglects the diamagnetic term, then ω0

± = ω0(1 ± 2η)0.5,
which is problematic for η ≥ 0.5, since the lower polariton res-
onance becomes complex (square root of a negative number). In
all our analysis and simulations below, this diamagnetic term is
fully included.

We can also compare this solution with the QRM, with

HQRM = ωca†a + ω0σ
+σ−+ig(a† − a)(σ++σ−), (3)

where σ+ (σ−) is the creation (annihilation) operator for the
TLS, which has important saturation effects. In this case, we
have no diamagnetic term to consider as the relevant TLS term
has no effect on energy differences with the TLS operators,
since it becomes proportional to the identity operator and only
contributes an overall energy shift to the entire system. For
the QRM, we have an infinite set of anharmonic eigenenergies,
which modifies the Jaynes–Cummings ladder states because of
counter-rotating wave terms. Considering again a Bloch–Siegert
regime (order η2 coupling) [30,41], we obtain the poles of the
lowest-order polaritons,ω± |QRM

BS = ω0 ± g(1 + η2/4)0.5 ≈ ω0 ± g.
These QRM pole resonances differ from the Hopfield model in
the Bloch–Siegert regime, even with a linear response.

Linear spectral shifts beyond those in the Jaynes–Cummings
model are often termed vacuum Bloch–Siegert shifts [48], but
below we quantify why there is nothing uniquely quantum about
such resonance shifts in a Hopfield model. This is in contrast
to the QRM, which becomes uniquely quantum in nature in the
USC regime.

In classical electromagnetism, the bare polarizability volume
of an oscillator is α0(ω) = A0ω0/(ω2

0 − ω2), with A0 = 2d2/ϵ0
and d the dipole moment. Considering the emitter position r0,
the photonic Green function, under a single mode expansion
(and assuming scalar fields) is [49]

Gc(r0, r0,ω) = Acω
2

ω2
c − ω2 , (4)
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where Ac = 1/Veffϵb, with Veff the effective mode volume and
ϵb the background dielectric constant. Using the Dyson equa-
tion, G = G0 + G0α0G = G0 + G0αG0, where G includes the
emitter, one can derive the exact polarizability from α = α0 +

G0α, where α now includes electromagnetic coupling to the
environment. With G0 = Gc, we obtain

α(ω) = A0ω0

ω2
0 − ω2 − (ω0/ωc)4g2ω2/(ω2

c − ω2) , (5)

where 4g2 = d2ωc/(2ϵ0Veffϵb). Since ω2/(ω2
c − ω2) = ω2

c/(ω2
c −

ω2) − 1, we can also write

α(ω) = A0ω0

ω2
0 − ω2 − 2ω0g2

ωc−ω − 2ω0g2

ωc+ω
+ 4ω0D

, (6)

with a co-rotating, counter-rotating, and a static term (∝ D =
g2/ωc) in the denominator. Note that if a RWA is applied to
Eq. (5), then neither the counter-rotating nor the static contribu-
tions remain, and so both terms are associated with USC effects,
similar to the arguments made from a quantized Hopfield model.
Note also that we can replace the atomic polarizability model
(α0) by a Drude–Lorentz model, and obtain classical expres-
sions for the quantum derived vacuum Bloch–Siegert shifts with
collective Landau polaritons [32]. In typical Hopfield regime
experiments, the interpretation of deviations from a typical RWA
Hamiltonian is given explicitly in terms of HCRTs (counter rotat-
ing terms) and Hdia (diamagnetic coupling), yet here we see a
completely classical analogy for both of these contributions, in
Eq. (6).

Considering the on-resonance case again, the classical poles
are ωG

± = ω± [as in Eq. (2)], so it is identical to the solution of
the lossless Hopfield model. This is consistent with experimen-
tal results on ultrastrong coupled molecular vibrational dipoles
in infrared (IR) cavities, where the same classical–quantum cor-
respondence was observed in the oscillator frequencies [50]. In
a quantum picture, the blueshift is caused by the polarization-
squared term (or the so-called A2 term in the Coulomb gauge).
However, in a classical picture, this blueshift is caused from
the poles of the cavity-renormalized polarizability; thus, there is
nothing uniquely quantum about this spectral blueshift. Indeed,
we have shown above that the classical solution can easily be
written to identify precisely the same diamagnetic contribution
[Eq. (6)], whose physical original is just a static contribution to
the mode sum (Green function).

This correspondence with the poles of the quantum Hopfield
model and classical electromagnetism is partly known [33,34],
yet sometimes not recovered in quantum models. Moreover, in a
linear optical material system, the classical Green function of the
hybrid system must have poles in the upper complex plane [51],
even with linear gain [52]. The classical correspondence does
not mean that there are no unique quantum effects in the Hopfield
model, since the ground and excited states are squeezed states
[31,53]. Indeed, for ωc = ω0, the quantum ground state, |0+0−⟩
has energy ω0,0 = (ω+ + ω−)/2−ω0 = ω0(1 + η2)0.5−ω0>0. The
ground state contains virtual photons and is an entangled state
[54]. Despite this, there appear to be no unique quantum effects
that affect the polariton eigenfrequencies.

What is less well known is to what degree the predicted opti-
cal spectra agree (or not) between the dissipative quantum and
classical coupled mode theories in the USC regime, and how
to describe such a regime with open-system master equations.
Since all cavity-QED systems have dissipation and input–output

channels, it is essential to model them as open quantum systems.
Within the RWA, the vacuum Rabi doublets are well described
classically or quantum mechanically [4], for both boson and TLS
emitters. However, in the USC regime, things are much more
subtle, and the quantum models have technical problems related
to how to properly include dissipation as well as gauge correction
terms (caused by material and cavity mode truncation).

In a classical light–matter model, we can include a heuristic
cavity decay rate, κ, in the cavity Green function, and derive the
cavity-emitted spectrum as

SClass(ω) = F(R)
|︁|︁|︁|︁ E0 g2ω2

(ω2 − ω2
c − iωκ)(ω2 − ω2

0) − 4g2ω2

|︁|︁|︁|︁2 , (7)

where E0 is the excitation field strength and F(R) is a geometric
factor that accounts for light propagation from the system to
the particular detection setup. The solution is non-Markovian,
causal, and contains no RWA [49]. Also, this phenomenological
approach to dissipation ensures a symmetric spectrum outside
of the USC regime for a resonant cavity and TLS.

In a quantum picture, to include cavity dissipation, we use
an open-system approach [41,55], at the level of a generalized
master equation (GME) [41,56–58],

d
dt
ρ = − i

ℏ
[HS, ρ] + LGρ +

Pc

2
D[X−]ρ, (8)

where HS is the system Hamiltonian (i.e., HHop or HQRM), and Pc

is an incoherent pump term, with D[O]ρ = 2OρO† − ρO†O −
O†Oρ. The GME cavity dissipator is

LGρ =
1
2

∑︂
ω,ω′>0

Γc(ω)[X+(ω)ρX−(ω′) − X−(ω′)X+(ω)ρ]

+ Γc(ω′)[X+(ω)ρX−(ω′) − ρX−(ω′)X+(ω)],
(9)

where dressed-state operators, X±, are defined from

X+(ω) = ⟨j |Πc |k⟩|j⟩⟨k|, (10)

withω = ωk − ωj>0, X− = (X+)†, andΠc is a cavity operator lin-
ear in the photon creation and destruction operators. We neglect
atom/emitter decay channels, since these are typically negligi-
ble. The cavity decay rates are obtained from Γc(ω) = 2πJc(ω),
where Jc(ω) is the spectral bath density. Below, we use Γc = κ,
and show that this is sufficient to recover the classical spectral
form if the appropriate Πc operator can be identified.

Recently, it has been shown that the precise form of Πc mat-
ters in the USC regime [41]. For example, one could choose
Πc = i(a† − a) ≡ P, or Πc = a† + a ≡ Q, and obtain significantly
different predictions, or any linear combination of these two.
This is not the case with a RWA. Furthermore, in the USC
regime, there a gauge ambiguity for the electric field oper-
ator [38], because P represents the Coulomb gauge electric
field, and we are using a system Hamiltonian in the dipole
gauge. For a restricted TLS subspace, this ambiguity is cor-
rected through the transformation a′ → UaU† = a + iησx [59],
where U = exp(−iη(a + a†)σx) is the projected unitary operator
[38,39,60], with σx = b + b† (Hopfield model) or σx = σ

+ + σ−

(QRM). Thus, one must use a′ and a′† in the computation of
the dissipators to ensure gauge invariance. The fact that the Πc

operator should consist only of bosonic a and a† operators in the
Coulomb gauge is a consequence of photon loss being associ-
ated only with electromagnetic degrees of freedom, and not the
emitter [39].
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In the USC regime, the system has transition operators |j⟩⟨k|
which cause transitions between the dressed eigenstates of the
system {|j⟩, |k⟩}. For the cavity mode operator, these transitions
are obtained from the dressed operators X±, and again these
must be gauge corrected. To make the notation clearer, we can
use X±

GC to indicate that we are applyingΠc operators with gauge
corrections. Thus, the correct cavity-emitted quantum spectrum
is obtained from

SQM(ω) ∝ Re
[︃∫ ∞

0
dτeiωτ

∫ ∞

0

⟨︁
X−

GC(t)X+GC(t + τ)
⟩︁

dt
]︃

, (11)

and calculations without gauge corrections simply use X±, i.e.,
without primed cavity operators in the computation of the
dissipators and cavity-mode observables. We will show both
solutions to better highlight the role of these gauge corrections,
and also show how they are required to recover classical cor-
respondence. In all GME calculations below, we use Pc ≪ κ,
to ensure weak excitation, and the numerical results are car-
ried out using Python and QuTiP [61,62]. Note this form of
time-independent pumping reduces Eq. (11) to a single time
integration, since t is evaluated in steady state.

It is important to stress that our gauge-corrected results are
necessary to ensure gauge invariance. For example, we could
also use a Hopfield model in the Coulomb gauge, where

HGC
Hop = ωca†a + ω0b†b − ig

ω0

ωc
(b† − b)(a + a†) + ω0

ωc
D(a + a†)2,

(12)
and then we could use unprimed operators for the cavity mode,
where indicated above, specifically in X± and P. Note also that
D must be the same in both gauges to ensure gauge invari-
ance, which has been proven also for a dilute Dicke model
[34]. For the QRM, the gauge-corrected system Hamiltonian in
the Coulomb gauge [38] is HGC

QRM = ωca†a + ω0
2 {σz cos(2η(a +

a†)) + σy sin(2η(a + a†))}, which contains field operators to all
orders. For simplicity, we use only the dipole gauge below,
but we have checked that all results below are identical in the
Coulomb gauge, as must be the case.

3. COMPUTED SPECTRA
Figure 2, shows the classical and quantum solutions for the
dissipative Hopfield model, with three types of bath cou-
pling models: (a) Πc = P; (b) Πc = Q; and (c) Πc = (P ±
Q)/

√
2, where primed cavity operators (discussed above) are

used for the gauge-corrected models. We first choose η =
0.5, which is well into the USC regime, with κ = 0.05g.
As recognized, we find very good agreement with the clas-
sical solution only when Πc = (P ± Q)/

√
2 and only with

gauge corrections. To the best of our knowledge, this is the
first time that such a solution and correspondence has been
made, and these results also demonstrate the significant prob-
lem with choosing an arbitrary system–bath interaction form
in the USC regime. It should be noted that such a cor-
respondence does not necessarily indicate that this is the
correct choice of dissipation model. Rather, this result allows
for unambiguous connection and comparison between quan-
tum and classical heuristic models of dissipation, and is
further evidence of the limitations of purely phenomeno-
logical approaches, when treating losses in open quantum
systems.
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Fig. 2. Hopfield GME results versus the classical model for
η = 0.5, and κ = 0.05g, with three different bath models, (a)Πc = P,
(b)Πc = Q, and (c)Πc = (P + Q)/

√
2 (Πc = (P − Q)/

√
2 gives iden-

tical results). Gauge-corrected results use X±
GC and primed cavity

operators for Πc. Only model (c), with gauge corrections (“GC”),
overlaps with the classical solution.

Next, we look at the role of this bath coupling model, for
different η, usingΠc = (P ± Q)/

√
2, for both the Hopfield model

and the QRM. The spectral calculations are shown in Fig. 3,
along with the classical solution. We see that the Hopfield model
and QRM differ substantially in all USC regimes, and the QRM
takes on multiple resonances when η is sufficiently large, even
for weak excitation, as well as pronounced spectral asymmetries.
Moreover, we find that the dissipative Hopfield model, withΠc =

(P + Q)/
√

2, agrees very well with the classical two-oscillator
model at all coupling regimes shown. This is clearly not the case
for the QRM.

To further support these numerical results, we have derived
analytical expressions for the spectral linewidths in the
Bloch–Siegert (small η) regime [49]. Specifically, the classi-
cal result in Eq. (7) gives linewidths of κ

2 [1 ± η], for the blue
(+) and red (−) peaks, respectively. Using a generic operator
Πc(θ) = cos θQ + sin θP, indexed by θ, gives linewidths of

Γ
Hop
± =

κ

2
[︁
1 ∓ 2η sin2 θ

]︁
,

Γ
Hop, GC
± =

κ

2
[︁
1 ± 2η sin2 θ

]︁
,

(13)

showing results without and with (“GC” superscript) gauge cor-
rections, where the latter is the correct result. This shows that
a classical correspondence is obtained only when employing
gauge corrections and Πc = (P ± Q)/

√
2 (θ = ±π/4). We stress

that the correspondence can only be found when using our
gauge-invariant construction, in contrast to other gauge-relative



Research Article Vol. 2, No. 3 / 25 June 2024 / Optica Quantum 137

0

0.5

1

S
(a

rb
.

u.
)

η = 0.5

(a) Πc = P

Hopfield-GC

Hopfield

Classical

0

0.5

1

S
(a

rb
.

u.
) (b) Πc = Q

0.50 0.75 1 1.25 1.50 1.75
ω/ωc

0

0.5

1

S
(a

rb
.

u.
)

(c) Πc = 1√
2
(P + Q)

Fig. 2. Hopfield GME results versus the classical model for 𝜂 = 0.5, and 𝜅 = 0.05𝑔,
with three different bath models, (a) Π𝑐 = 𝑃, (b) Π𝑐 = 𝑄, and (c) Π𝑐 = (𝑃 + 𝑄)/

√
2

(Π𝑐 = (𝑃 − 𝑄)/
√

2 gives identical results). Gauge-corrected results use 𝑋±
GC and

primed cavity operators for Π𝑐 . Only model (c), with gauge corrections (‘GC’), overlaps
with the classical solution.

0.8 1 1.2
0

0.5

1
S

(a
rb

.
u.

)
(a) η = 0.25

Πc = 1√
2
(P +Q)

Hopfield-GC

Hopfield

Classical

0.8 1 1.2
ω/ωc

0

0.5

1

S
(a

rb
.

u.
)

(d) η = 0.25

Πc = 1√
2
(P +Q)

QRM-GC

QRM

Classical

0.5 1 1.5

(b) η = 0.5, Hopfield

0.5 1 1.5
ω/ωc

(e) η = 0.5, QRM

0.5 1 1.5 2

(c) η = 0.6, Hopfield

0.5 1 1.5 2
ω/ωc

(f) η = 0.6, QRM

Fig. 3. Dissipative (GME) Hopfield model (a-c) and QRM (d-f) versus the classical
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√
2 bath modeland

show GME results, with and without gauge corrections. Once again, only the Hopfield
model with gauge corrections overlaps with the classical solution. At higher values of 𝜂,
the QRM also shows multiple resonances, and these are also substantially different with
gauge corrections. The QRM fails to recover the classical solution in the USC regime.

Fig. 3. (a)–(c) Dissipative (GME) Hopfield model and (d)–(f) QRM versus the classical solution, for three values of η. We only present
the Πc = (P + Q)/

√
2 bath model and show GME results, with and without gauge corrections. Once again, only the Hopfield model with

gauge corrections overlaps with the classical solution. At higher values of η, the QRM also shows multiple resonances, and these are also
substantially different with gauge corrections. The QRM fails to recover the classical solution in the USC regime.

approaches [63]. For the QRM, the linewidths are

Γ
QRM
± =

κ

2

[︃
1 ± η

(︃
1
2
− 2 sin2(θ)

)︃]︃
,

Γ
QRM, GC
± =

κ

2

[︃
1 ± η

(︃
1
2
+ 2 sin2(θ)

)︃]︃
.

(14)

In the Bloch–Siegert regime, these analytical decay rates, along
with the earlier frequency shifts [to order g2, ωHop

± ≈ ω0(1 +
η2/2) ± g and ωQRM

± ≈ ω0 ± g], could be used to help compare
with experiments with high spectral resolution and increasing η.
For sufficiently high η (or strong pumping), differences between
the QRM and Hopfield model become substantially different
via the emergence of multiple spectral peaks (beyond two) in
the spectra (cf. Figs. 2 and 3).

4. DISCUSSION AND CONCLUSIONS
We have shown how the optical spectra for a dissipative Hopfield
model in USC can be described quantum mechanically or clas-
sically. To achieve correspondence with the classical dissipative
result, quantum models must properly respect gauge invariance
and implement the appropriate bath coupling operator. Without
such a correspondence, any open-system master equations in this
regime with ad hoc system–bath interactions are ambiguous and
can predict wildly differing spectra.

We have also clarified how the dissipative Hopfield model
and QRM substantially differ, even for weak excitation, at all
USC regimes, including the perturbative Bloch–Siegert regime.
Thus, only the Hopfield model yields a classical correspondence
under linear response, and this correspondence only occurs with
a careful treatment of quantum dissipation and gauge correc-
tions. While we used a normal mode expansion with heuristic
broadening, this form is well established for high Q cavities
outside the USC regime, and future work could improve such
models using classical and quantized quasinormal mode theories
[43,44].

One possible clue as to the significance of theΠc ∝ P ± Q cou-
pling can be seen by noting that the classical phenomenological
loss model is phase-insensitive. In the quantum loss model, a
choice of P ± Q for the quadrature coupling to the bath is the only
choice which gives equal coupling magnitude to each quadra-
ture (i.e., is phase-insensitive in magnitude). Furthermore, we
also note that this linear combination of P and Q bath oper-
ators also ensures the same linear spectra for cavity pumping
or atom pumping (with the same quadrature input coupling for
atom pumping), which is not the case with either P or Q models.

Our results also show the different spectral trends of a QRM
or a Hopfield model, including cavity dissipation, from the
onset of the Bloch–Siegert regime (different linewidth and fre-
quency shifts of the polariton resonances) to USC and deep USC
regimes, even with weak, linear excitation fields. Furthermore,
they show that non-classical phenomena must be more carefully
probed in a Hopfield system, since the typical spectra, including
linear reflection and transmission, are exactly the same as a clas-
sical field solution. One possibility to explore uniquely quantum
field effects could be to excite the system with quantum sources
of light.

Broadly, these findings are important for a wide class of
light–matter systems now emerging to study the USC regime,
including lossy Landau systems and metallic systems [32,33].
Apart from showing a direct classical correspondence for dis-
sipative modes, our results can be used to guide open-system
quantum models that are needed when observations are uniquely
quantum in nature, e.g., in the QRM for any excitation includ-
ing coherent excitation, and the Hopfield model excited with
non-classical fields.
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