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Here, we present more technical details on quantum-squeezing-enhanced quadratic optomechanical sensing, including: (1)
detailed derivations of the linearized Hamiltonian; (2) degenerate optical parametric oscillations; (3) discussions on stability
conditions; (4) noise spectrum and mechanical response characterizations; (5) signal-to-noise ratio and the optimal variance of
the rotated field quadrature; (6) main classical hurdles to quantum-noise-limited measurements; (7) the effect of the fluctuations
of the pump mode; (8) extended applications to the state-of-the-art quantum sensors.

S1. DERIVATION OF THE LINEARIZED HAMILTONIAN

In our cavity optomechanical (COM) system, the pump laser with frequency ωp has twice the frequency of the signal laser
(ωs). Each laser tone (pump and signal) is quasi-resonant with a particular optical normal mode of the a Fabry-Pérot cavity,
thus we refer to these optical modes as pump and signal mode, respectively [S1]. The flexible dielectric membrane is placed
at a location of q0 = jλp/4 = kλs/4 (j, k integers) [S2], i.e., the common node (or antinode) of the intracavity standing
waves [S3], where λp and λs are the resonant wavelengths for the pump and signal modes, respectively. We then form a realistic
description incorporating intrinsic losses and the coupling of the mechanical resonator to the optical modes, which yields the
total Hamiltonian in a rotating frame [S4, S5]:

Ĥ = ℏ∆câ
†â+ ℏ∆pâ

†
pâp +

ℏ
2
Ωm

(
q̂2m + p̂2m

)
− ℏq̂2m

(
g0â

†â+ gpâ
†
pâp
)

+ iℏχ(2)
(
â†2âpe

iθ − â2â†pe
−iθ
)
+ iℏ

(
Ecâ† + Epâ†p −H.C.

)
, (S1)

where we wrote in a frame where the pump and signal modes phase space rotate at frequency ωp and ωs, respectively, and the
driving amplitudes are |Ec| =

√
κηcPc/(ℏωs), |Ep| =

√
κpηpPp/(ℏωp). The detunings of the optical modes are ∆c = Ωc−ωs,

∆p = Ωp − ωp, with g0 and gp the COM coupling strength of the signal and pump modes, respectively.
Thus, the equations of motion can be given by

˙̂a = −
(
i∆c +

κ

2

)
â+ ig0âq̂

2
m + 2χ(2)â†âpe

iθ + Ec,

˙̂ap = −
(
i∆p +

κp

2

)
âp + igpâpq̂

2
m − χ(2)â2e−iθ + Ep,

˙̂qm = Ωmp̂m,

˙̂pm = −Ωmq̂m − Γmp̂m + 2q̂m
(
g0â

†â+ gpâ
†
pâp
)
. (S2)

To proceed, we derive the classical equations for the steady-state values under the condition of strong optical driving

−
(
i∆+

κ

2

)
α+ 2χ(2)eiθααp + |Ec| eiΦ = 0,

−
(
i∆′ +

κ+ p

2

)
αp − χ(2)e−iθα2 + |Ep| eiφ = 0,

−Ωm + 2g0α
∗α+ 2gpα

∗
pαp = 0, (S3)
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where Φ (φ) is the phase of the pump (signal) laser. Herein, we choose κ
2 =

κp

2 = κ
2 , g0 = g0 =

gp
4 , then the steady-state

solutions are

2g0α
∗
cαc = Ωm − 2gpα

∗
pαp,

α∗
cαc =

Ωm − 2gpα
∗
pαp

2g0
=

Ωm − 8g0α
∗
pαp

2g0
=

Ωm

2g0
− 4α∗

pαp,

−
(
i∆+

κ

2

)
αc + 2χ(2)eiθαcαp + |Ec| eiΦ = 0,

−
(
i∆′ +

κ

2

)
αp − χ(2)e−iθ

(
Ωm

2g0
− 4 |αp|2

)
+ |Ep| eiΨ = 0

−
√
∆′2 +

κ2

4
αp − χ(2)

(
Ωm

2g0
− 4α2

p

)
+ |Ep| = 0,

4χ(2)α2
p −

√
∆′2 +

κ2

4
αp + |Ep| −

χ(2)Ωm

2g0
= 0.

(S4)

Thus,

αp =

√
∆′2 + κ2

4 −
√
∆′2 + κ2

4 − 16χ(2)
(
|Ep| − χ(2)Ωm

2g0

)
8χ(2)

,

=

√
∆′2 + κ2

4

8χ(2)
−

√
∆′2 + κ2

4 − 16χ(2)
(
|Ep| − χ(2)Ωm

2g0

)
8χ(2)

,

=
1

8χ(2)

√
κ2 + 4∆′2

4
− 1

8χ(2)

√
κ2 + 4∆′2

4
− 16χ(2)

(
|Ep| −

χ(2)Ωm

2g0

)
,

=
1

16χ(2)

√
κ2 + 4∆′2 −

√
κ2 + 4∆′2

4× 64χ(2)2
− 16χ(2)

64χ(2)2

(
|Ep| −

χ(2)Ωm

2g0

)
,

=
1

16χ(2)

√
κ2 + 4∆′2 −

√
κ2 + 4∆′2

16× 16χ(2)2
− 1

4χ(2)

(
|Ep| −

χ(2)Ωm

2g0

)
. (S5)

The external force is described as F̂in = F̂th + F̂sig, where F̂th = F̂th

/√
2ℏmeffΓmΩm and F̂sig = F̂sig

/√
2ℏmeffΓmΩm

are the scaled thermal force and the detected force signal with dimension Hz 1/2 , respectively. The variables δâin and δâ
0

represent the fluctuations at the coupling port and the port modelling internal losses, respectively. The single-photon coupling
rate is denoted by g0 = gomq

2
zp, and the quadratic coupling strength is written as gom = 8π2c

√
R/(1−R)/

(
λ2
sL
)

[S2],
which can reach 1.54THz/nm2 in experiment [S6]. Here we define the dimensionless mechanical quadratures as q̂m = q̂/qzp
and p̂m = p̂/pzp , where qzp =

√
ℏ/(meffΩm), pzp =

√
ℏmeffΩm are the standard deviations of the zero-point motion and

momentum, respectively. Besides, the signal mode is characterized by a total loss rate κ = κ0 + κex with the efficiency defines
as ηc = κex/(κ0 + κex) describing the contribution of the input coupling loss rate to the total cavity loss rate. We note that in
a very recent experiment [S7], the second-order nonlinearity was demonstrated with a value of χ(2)/2π = 80 kHz. Thus, it is
possible to generate a nonlinear gain coefficient where αp denotes the amplitude of the pump mode.

For simplicity, we choose αp ∈ R > 0 and take intracavity field as the phase reference, i.e., α ∈ R > 0 [S1]. The solutions of
the steady-state values can thus be expressed as

cos θ =
1

4G

(
κ−

∣∣∣∣ 2Ec√
nc

∣∣∣∣ cosΦ) ,

q̄2m =
1

g0

(
∆c −

∣∣∣∣ Ec√
nc

∣∣∣∣ sinΦ− 2G sin θ

)
, (S6)

where nc = Ωm/(2g0), and he parametric phase depends on the phase Φ of the signal laser. Then, the displacement of the
oscillator is directly proportional to the input force signal:

δq̂[Ω] = χ
(2)
eff [Ω]δF̂sig[Ω], (S7)
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where χ
(2)
eff [Ω] denotes the effective mechanical susceptibility:

χ
(2)
eff [Ω] =

1

meffΩm

(
χ−1
m +Σ

) ,
Σ[Ω] =

16g2(Ω−∆− 2G sin θ)

κ2 − 16G2 + 4(Ω−∆)
2 . (S8)

For the resonance case without intracavity squeezing, the additional term Σ[Ω] is negligible. The effective susceptibility can
be written at the simplest level as

χ
(2)
eff [Ω] = − 1

meff(Ω2 + iΩΓm)
. (S9)

Here, we consider the effect of the fluctuations of the pump mode. For a strong pump field, this mode can be eliminated
adiabatically, which yields the shifts of the cavity linewidth, the COM coupling rate, and the mechanical resonance frequency:

κeff
s = κs +

16ν2ns

κp + 2i∆′ , Ωeff
m = −

16G2
p∆

′

κ2
p + 4∆′2 , G±

s = Gs ±
4ναsGpe

±iθ

κp + 2i∆′ , (S10)

where ∆ = ∆c−gsq̄
2
m, ∆′ = ∆p−gpq̄

2
m, Gs = gsq̄m

√
2ns, and Gp = gpq̄m

√
2np. Thus, the optical losses are slightly modified

by the pump mode due to the photon up-conversion [S1]. The additional COM coupling and the mechanical eigenfrequency
indicate the contributions of the photon-phonon coupling for the pump mode [S1]. Then, the fluctuations of the pump mode can
be neglected under a large detuning and a small second-order nonlinearity [S1].

S2. THE OUTPUT QUADRATURES

After introducing phenomenologically the various dissipation mechanisms and associated input noise, the Hamiltonian yields
readily the quantum Langevin equations

˙̂a = −
(
i∆c +

κ

2

)
â+ ig0âq̂

2
m + 2Geiθâ†

+ Ec +
√
ηcκf̂a,in +

√
(1− ηc)κf̂a,0 ,

˙̂qm = Ωmp̂m ,

˙̂pm = −Ωmq̂m − Γmp̂m + 2g0q̂mâ†â+
√
2ΓmF̂in , (S11)

where f̂a,in and f̂a,0 are the noise operators associated with the input cavity mirror and internal losses, respectively. The noise
forces acting on the mechanical membrane are

F̂in = F̂th + F̂sig , (S12)

where F̂th and F̂sig are the scaled thermal force and the force signal to be detected, respectively, with dimension Hz 1/2 , respec-
tively. All noise operators have zero mean values

⟨f̂a,in⟩ = ⟨f̂a,0⟩ = ⟨F̂th⟩ = ⟨F̂sig⟩ = 0. (S13)

Because of the nonlinear COM interaction, Eqs. (S11) do not form a closed set of operator equations. We proceed by
considering the situation of a strong driving, and expand each operator as the sum of its classical mean value and a small
quantum fluctuation, i.e. â = α + δâ, q̂m = q̄m + δq̂m, and p̂m = p̄m + δp̂m, with ⟨δâ⟩ = ⟨δq̂m⟩ = ⟨δp̂m⟩ = 0 . This yields
the classical mean value equations of motion

α̇ = −
(
i∆ +

κ

2

)
|α|+ 2Geiθ |α|+ |εc| eΦ,

˙̄pm = −Ωmq̄m − Γmp̄m + 2g0q̄m|α|2 ,
˙̄qm = p̄m, (S14)
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where the effective optical detuning is ∆ = ∆c − g0q̄
2
m and Φ describes the phase of the driving field. Here we take intracavity

field as the phase reference, i.e., α ∈ R > 0, in which case the steady-state mean values become: |α|2 = Ωm/2g0, p̄m = 0, and

|q̄m|2 =
1

g0

(
∆c −

∣∣∣∣Ecα
∣∣∣∣ sinΦ− 2G sin θ

)
. (S15)

We now introduce the ‘position’ and ‘momentum’-like operators of the optical field,

q̂ =
1√
2

(
â† + â

)
,

p̂ =
i√
2

(
â† − â

)
, (S16)

and the associated optical noise operators

f̂q,in =
1√
2

(
f̂†
a,in + f̂a,in

)
, f̂p,in =

i√
2

(
f̂†
a,in − f̂a,in

)
;

f̂q,0 =
1√
2

(
f̂†
a,0 + f̂a,0

)
, f̂p,0 =

i√
2

(
f̂†
a,0 − f̂a,0

)
. (S17)

In the Fourier domain expressions for the output quadratures:

q̂out [Ω] = (κ/2− 2G cos θ − iΩ)−1
[√

ηcκ
(
∆c − 2G sin θ − g0q̂

2
m

)
p̂+ (ηcκ− 1) f̂q,in + κ

√
(1− ηc)ηcf̂q,0

]
,

p̂out [Ω] = (κ/2 + 2G cos θ − iΩ)−1
[
−√

ηcκ
(
∆c − 2G sin θ − g0q̂

2
m

)
q̂ + (ηcκ− 1) f̂p,in + κ

√
(1− ηc)ηcf̂p,0

]
. (S18)

The essential step in quantum sensing is to observe the output fluctuations of physical quantities to be measured in the Fourier
domain, i.e.,

(
δq̂out
δp̂out

)
=

(
A− B− C− D− N−
−B+ A+ −D+ C+ N+

)(
f̂q,in f̂p,in f̂q,0 f̂p,0 F̂in

)T
. (S19)

where

A±[Ω] = ρκ(κ/2± 2G cos θ − iΩ)−1ηc − 1,

B+[Ω] = ρκ(∆− 2G sin θ − 4g2χm)(κ/2− 2G cos θ − iΩ)−1(κ/2 + 2G cos θ − iΩ)−1ηc

B−[Ω] = ρκ(∆ + 2G sin θ)(κ/2− 2G cos θ − iΩ)−1(κ/2 + 2G cos θ − iΩ)−1ηc,

C±[Ω] = ρκ(κ/2± 2G cos θ − iΩ)−1
√
(1− ηc)ηc,

D+[Ω] = ρκ(∆− 2G sin θ − 4g2χm)(κ/2− 2G cos θ − iΩ)−1(κ/2 + 2G cos θ − iΩ)−1
√
(1− ηc)ηc,

D−[Ω] = ρκ(∆ + 2G sin θ)(κ/2− 2G cos θ − iΩ)−1(κ/2 + 2G cos θ − iΩ)−1
√

(1− ηc)ηc,

N+[Ω] = 2gρ(κ/2 + 2G cos θ − iΩ)−1χm

√
2κηcΓm,

N−[Ω] = 2gρ(∆ + 2G sin θ)(κ/2 + 2G cos θ − iΩ)−1(κ/2− 2G cos θ − iΩ)−1χm

√
2κηcΓm

ρ =
[
1 + (κ/2− 2G cos θ − iΩ)−1(κ/2 + 2G cos θ − iΩ)−1(∆ + 2G sin θ)

(
∆− 2G sin θ − 4g2χm

)]−1
, (S20)

and χm = −Ωm/
(
Ω2 + iΩΓm

)
is the mechanical susceptibility of the system, which quantifies the response of the oscillator

to external forces. For the case without intracavity squeezing (G = 0, θ = 0), the above coefficients related to the quadratic
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coupling are

A
′

±[Ω] = ρκ(κ/2− iΩ)−1ηc − 1,

B
′

+[Ω] = ρκ(∆− 4g2χm)(κ/2− iΩ)−2ηc

B
′

−[Ω] = ρκ∆(κ/2− iΩ)−2ηc,

C
′

±[Ω] = ρκ(κ/2− iΩ)−1
√

(1− ηc)ηc,

D
′

+[Ω] = ρκ(∆− 4g2χm)(κ/2− iΩ)−2
√
(1− ηc)ηc,

D
′

−[Ω] = ρκ∆(κ/2− iΩ)−2
√
(1− ηc)ηc,

N
′

+[Ω] = 2gρ(κ/2− iΩ)−1χm

√
2κηcΓm,

N
′

−[Ω] = 2gρ∆(κ/2− iΩ)−2χm

√
2κηcΓm

ρ
′
=
[
1 + (κ/2− iΩ)−2∆

(
∆− 4g2χm

)]−1
. (S21)

S3. SECOND-ORDER NONLINEAR PROCESSES

In the case of strong optical drives, the nonlinear gain coefficient is derived from the steady-state equations:

G = χ(2)

(
τ −

√
τ2 +

Ωm

8g0
− |Ep|

4χ(2)

)
, (S22)

where τ =
√

κ2 + 4∆2
p/
(
16χ(2)

)
, |Ep| =

√
κηcPp/(ℏωp), and Pp quantifies the pump power for the χ(2) crystal. The nonlinear

gain coefficient is enhanced with the increase of the power of the pump laser and the second-order nonlinearity [Fig. S1(a), left
panel], following the characteristic optical parametric oscillation (OPO) power curves [S7]. However, the photons circulating
in the cavity is reduced when increasing the detuning of the pump field, which results in the suppression of the nonlinear gain
coefficient [Fig. S1(a), right panel]. Figure S1(b) schematically illustrates the χ(2) nonlinear process, where the OPO model can
be treated as two coupled cavities with spontaneous parametric down-conversion [S7]. The visible pump laser at frequency ωp

drives the χ(2) crystal, producing a pair of infrared signal and idler lights at frequencies ωs and ωi, which satisfies the energy-
matching condition ωp = ωs + ωi. For degenerate OPOs (ωs = ωi = ωp/2), a single parametric oscillation is realized at half
the frequency of the pump laser. Whereas for non-degenerate cases (ωs ̸= ωi), the OPO process is operated at two distinct
resonances centered about the pump.

S4. STABILITY CONDITIONS

The stability or instability of the system is determined by the signs of the real parts of the eigenvalues of the dynamical
evolution matrix M. To find the eigenvalues λ, it is necessary to solve the characteristic equation det(M− λI) = 0, which is
reduced to an algebraic equation of the 4th degree: λ4+M3λ

3+M2λ
2+M1λ+M0 = 0. Applying the Routh-Hurwtiz method,

we obtain the necessary and sufficient conditions for the system stability:

0 < M3, 0 < M3M2 −M1,

0 < M0, 0 < M3M2M1 −
(
M2

1 +M2
3M0

)
. (S23)

These conditions allow to determine whether all the roots in the characteristic equation have negative real parts. Thus, we can
use them to justify the system stability without solving the characteristic equation itself. Herein, we focus on the resonance case
(∆ ≈ ∆c = 0), thereby the first three inequalities in Eq. (S23) yield the first two stability conditions: G/κ < 0.25 , −π < θ < 0.
To proceed, by exploiting the last inequality in Eq. (S23), we formulate the stability criterion functions Θ as

Θ = M3M2M1 −
(
M2

1 +M2
3M0

)
. (S24)

Then, the signs of Θ provide the remaining stability requirements:

sgn (Θ) =

{
1, implies stability,
otherwise, implies instability.

(S25)
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FIG. S1: Degenerate OPO process. (a) The parametric gain versus the pump power for the parametric oscillation process. The
evolutions are shown at a red detuning of the pump field with ∆p = 0.5GHz (left panel) [S1] and a second-order nonlinearity
of χ(2) = 300Hz (right panel) [S7]. The theoretical pump power threshold is tens of milliwatts, which is in agreement with the
recent OPO experiment [S7]. (b) Schematic representation of the OPO model using two Fabry–Pérot cavities.

As shown in main text, the parameters used in our numerical calculations are chosen truly in the stable region. In particular, the
required signal power can be derived from Eq. (S15):

Pc =
ℏΩlnc

4κηc

[
(κ− 4G)

2
+ 8Gκ(1− cos θ)

]
, (S26)

which is tens of microwatts and can be attained with accessible experimental conditions [S8]. In principle, a system tends to be
sensitive to external perturbations in the unstable region. Then, the sensitive region in the stable realm locates near the dividing
line between stability and instability.

S5. SIGNAL-TO-NOISE RATIO AND THE OPTIMAL VARIANCE
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FIG. S2: Signal-to-noise ratio (snr) and the optimal variance. (a) Power spectral density (PSD) as a function of cooperativity and
θ. The solid and dashed curves denote the PSD in the stable or unstable region, respectively, and the circles give the minimum
PSD in the stable region. The bath temperature T =10mK. (b) SNR for quadratic COM sensors. The reference phase is chosen
as ϕ0 = −98◦. The bath temperature T = 0.2 K. (c)-(d) The variance of the optimal quadrature. The multi-photon cooperativity
is C/CSQL = 0.5, and the signal force spectrum is chosens (0.1 aN)

2
/Hz [S9].
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The performance of the state-of-the-art sensors is commonly quantified by the signal-to-noise ratio (SNR). In our system, the
spectral density and the SNR of the signal force are respectively estimated by [S10]

S̄est,ϕ
FF [Ω] = S̄sig

FF + S̄ϕ
FF, SNϕ [Ω] =

S̄est,ϕ
FF

S̄est,ϕ
FF − S̄sig

FF

. (S27)

The spectral density of the apparent force experienced by the oscillator is described as S̄est,ϕ
FF , and the spectral density of the

signal force is described as S̄sig
FF. As shown in Fig. S2(a), the SNR can reach 1.14 at the temperature of 0.2 K.

Figure S2(b)-(c) characterizes the variance of the generalized rotated field quadrature, which is given by [S11]

V ϕ
qq[Ω] =

∫ ∞

−∞
Re
{
S̄ϕ,out
qq

}dΩ
2π

, (S28)

where the optical output spectrum is expressed as [S10]

S̄ϕ,out
qq [Ω] = S̄out

qq [Ω] cos2 ϕ+ S̄out
pp [Ω] sin2 ϕ+ S̄out

pq [Ω] sin (2ϕ) . (S29)

Such a variance reaches its lowest value when choosing proper cooperativity and homodyne angle.

S6. EXTENDED APPLICATIONS TO PRECISION MEASUREMENTS

Table S1 provides a comparison of performance metrics for recently reported COM sensors including the force sensor de-
scribed in this work.

Experiment Mean phonon Equivalent force

Sensors (Y/N) Temperature occupations Reported sensitivity sensitivity References

Magnetometer Y 300K 1.1× 106 (400 nT)2Hz (2.4 pN)2Hz [S12]

Magnetometer Y 300K 1.2× 106 (200 pT)2Hz (1.2 fN)2Hz [S13]

Magnetometer Y 300K ∼ 1.0× 106 (5 nT)2Hz (0.75 nN)2Hz [S14]

Torque sensor Y ∼ 1mK ∼ 2.8 (1.3 zNm)2Hz (0.43 fN)2Hz [S15]

Ultrasound sensor Y 300K 1.3× 108 (8 µPa)2Hz ∼ (370 fN)2Hz [S16]

This work N

300K 6.2× 106 (10.2 aN)2Hz

10K 2.1× 105 (1.86 aN)2Hz

0.2K 4.2× 103 (0.26 aN)2Hz

TABLE S1: Extended applications to the state-of-the-art COM sensors. The resolution of the accelerometers is quantified by
noise-equivalent acceleration in units of g2Hz, where 1 g = 9.81m/s2.
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