
222 Vol. 2, No. 4 / 25 August 2024 / Optica Quantum Research Article

Squeezing-enhanced quantum sensing with
quadratic optomechanics
Sheng-Dian Zhang,1,† Jie Wang,1,† Qian Zhang,1,† Ya-Feng Jiao,1 Yun-Lan Zuo,1
Şahin K. Özdemir,2 Cheng-Wei Qiu,3 Franco Nori,4,5 AND Hui Jing1,∗
1Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and
Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
2Department of Engineering Science and Mechanics, and Materials Research Institute, Pennsylvania State University, University Park, State
College, Pennsylvania 16802, USA
3Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
4Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
5Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
†The authors contributed equally to this work
*jinghui73@foxmail.com

Received 11 March 2024; revised 3 June 2024; accepted 5 June 2024; published 2 August 2024

Cavity optomechanical (COM) sensors, enhanced by quantum squeezing or entanglement, have become powerful
tools for measuring ultra-weak forces with high precision and sensitivity. However, these sensors usually rely on
linear COM couplings, a fundamental limitation when measurements of the mechanical energy are desired. Very
recently, a giant enhancement of the signal-to-noise ratio was predicted in a quadratic COM system. Here we
show that the performance of such a system can be further improved surpassing the standard quantum limit by
using quantum squeezed light. Our approach is compatible with available engineering techniques of advanced
COM sensors and provides new opportunities for using COM sensors in tests of fundamental laws of physics and
quantum metrology applications.
© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION
The development of quantum-enhanced sensors aimed at the
sensitive measurement of time, temperature, pressure, or elec-
tromagnetic fields has witnessed considerable progress in recent
years [1,2], with a broad spectrum of approaches including
the use of elementary particles [3–6], superconducting cir-
cuits [7–9], optical systems [10–12], and solid-state mechanical
devices [13,14]. In particular, cavity optomechanical (COM)
[15–17] and electromechanical sensors [18–20] are remarkably
well suited for the measurement of weak forces or very small
displacements [21]. Importantly, their standard quantum limit
(SQL), which results from the combined effects of backaction
noise and photon shot noise, can be broken by the use of optical
fields with appropriate quantum correlations (see e.g. [22,23]).
For example, in an impressive recent experiment, the sub-SQL
displacement measurement in a COM system with a macro-
scopic 40 kg mirror was achieved by injecting squeezed light in
the otherwise empty port of the system [24].

COM displacement sensors typically rely on the linear cou-
pling between the displacement of the mechanical element and
the electromagnetic field. However, such a coupling is not
appropriate for energy or phonon number measurements, which
require instead an optomechanical coupling that is quadratic in
the mechanical displacement [25]. This coupling also allows

for applications such as two-phonon cooling [26], and a vari-
ety of quantum non-demolition (QND) measurements [27–32].
Quadratic COM systems (where the cavity detuning is pro-
portional to the square of the mechanical displacement, i.e.,
ωcav(x) ∝ x2 [33]) have been demonstrated using, e.g., levitated
nanospheres [34], membrane-in-the-middle cavities [33,35–37],
photonic crystals [38,39], and atomic gases [40]. Also, selective
linear or quadratic COM coupling was achieved via homodyne
measurements and utilized to create non-Gaussian mechanical
states [41,42]. However one known issue of quadratic coupling
is the linear dissipative coupling typically associated with it
and there has been significant interest in exploiting quantum
noise interference to cancel the residual linear backaction in the
bad-cavity limit, allowing one to make QND measurements of
mechanical energy using a quadratic COM system [43]. A recent
publication proposed a novel geometry that significantly solves
this problem and results in a dramatic reduction of backaction
noise [44].

In this paper we expand on the study of quadratic optome-
chanical sensors [28,43,44] and demonstrate theoretically that
the inclusion of intracavity optical squeezing [48–50] can result
in a remarkable improvement in their sensitivity. Our proposed
scheme, which is compatible with other available techniques of
fabricating and engineering advanced COM sensors, provides
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a way to further enhance the power of quadratic COM sensors
for applications ranging from quantum metrology to tests of
fundamental laws of physics.

2. SQUEEZED QUADRATIC OPTOMECHANICS
We consider an ideal membrane-in-the-middle (MIM) Fabry-
Pérot cavity with a thin dielectric membrane located either at
a node or antinode of the standing wave mode and coupled
quadratically to the field [33,51], allowing for quantum non-
demolition readout of the membrane’s phonon numbers [35].
An additional nonlinear χ(2) medium, coupled quadratically to
the cavity field, induces intracavity squeezing, integrated with
an intracavity. It is driven by a pump field of frequency ωp at
twice the signal frequency ωs [52], see Fig. 1(a). We limit our
considerations to the case where the membrane has a low enough
reflection that it will not split the cavity into two sub-cavities
[53,54].
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Fig. 1. Squeezing-enhanced quadratic COM sensing. (a)
Schematic representation of the generation of intracavity squeezing
within a Fabry-Pérot cavity. A thin dielectric membrane, at a node
or antinode of the standing waves of the cavity, is coupled quadrat-
ically with the cavity field, allowing for quantum non-demolition
readout of the membrane’s phonon numbers [35]. The nonlinear
χ(2) medium induces intracavity squeezing. (b) The parametric gain
G/κ versus the pump power and the detuning of the pump mode.
Here, we focus on a red detuning of the pump to generate the
required parametric gain [45]. Thus, G/κ is decreased at zero-pump
detuning, which does not follow the Lorentzian response of the
cavity.

The intracavity second-order nonlinear optical process is
described by the Hamiltonian [55]

Ĥχ(2) = ℏ∆câ†â + ℏ∆pâ†

pâp + iℏχ(2)(â†2âpeiθ − â2â†

pe
−iθ ) , (1)

where âp and â are the boson operators of pump and signal
modes, of frequencies ωp = 2ωs; ∆p is the detuning between
the pump drive and the nearest cavity mode frequencies; ∆c is
the detuning between the signal and the nearest cavity mode
frequencies, and θ is the associated phase of χ(2).

We assume that the pump field is strong enough that it can be
treated classically, and characterized by a large mean ‘photon
number’ np. Eliminating the associated optomechanical inter-
action adiabatically and including the driving Ec of the signal
mode, we obtain the effective model Hamiltonian at its simplest
level [33,45]:

Ĥ = ℏ∆câ†â +
ℏ
2
Ωm(q̂2

m + p̂2
m) − ℏg0â†âq̂2

m

+ iℏG(â†2eiθ − â2e−iθ ) + iℏ(Ecâ† − E∗

c â),
(2)

where q̂m and p̂m are the position and momentum operators
of mechanical mode at frequency Ωm; g0 represents single-
photon COM coupling strength, which quantifies the interaction
between a single phonon and a single photon; G = χ(2)√np is the
nonlinear gain coefficient, and Ec is the driving amplitude. We
stress that both the quadratic COM coupling and the squeezing-
enhanced COM systems were already well-established in experi-
ments. For examples, a high-finesse MIM system was utilized for
direct measurements of the membrane’s displacement [33] and,
by tuning the suitable position of the membrane, the quadratic
coupling strength can be greatly enhanced for 3 orders of mag-
nitude, indeed reaching a purely quadratic COM system [35,56].
Such a quadratic COM system was also experimentally demon-
strated by levitating a nanosphere in a suitable potential [34].
We also note that in a recent experiment, by using an intra-cavity
parametric amplifier, phase-sensitive manipulations of an input
squeezed vacuum were demonstrated [57]. Similarly, loss sup-
pressions and thus giant enhancement of sensitivities were also
demonstrated in experiments by inserting such optical ampli-
fiers into interferometers [58,59]. Indeed, the merits of quantum
squeezing in enhancing linear COM sensors have already been
confirmed in experiments, and the main purpose of our present
work is to confirm that such a merit also exists for a quadratic
COM system. Hence it is reasonable to expect that even for a
hybrid COM system with both linear and quadratic couplings,
the positive effects of quantum squeezing will still exist, which
we plan to further study in our future work (we note that in
a very recent work, the linear coupling was confirmed to be
not detrimental for quantum entanglement emerging in such a
hybrid COM system [60]).

Here we use the experimentally feasible parameter values,
i.e., the cavity quality factor Q = 1 × 107 [61], the total optical
decay rate κ/2π = 3 MHz [61], including both the decay rate
κex at the input mirror and the intra-cavity decay rate κ0, with
‘efficiency’ ηc = κex/(κ0 + κex), and the mechanical quality factor
Qm = 5 × 108, with the mechanical frequency Ωm/2π = 1 MHz
[61], the effective mass meff = 1 ng [61], and the associated
decay rate Γm [61]. We note that a second-order nonlinearity of
χ(2)/2π = 80 kHz was realized [52], confirming the feasibility
of G = 0.246κ. Very recently, a new optomechanical experi-
ment using an optical crystal with third-order nonlinearity has
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Fig. 2. (a) System stability versus multi-photon cooperativity and parametric gain (see Supplement 1 [46] for the details of calculations).
The parameters chosen in this paper are confirmed to be within the stable region. The stable and unstable regions can be tuned by altering
the parametric gain or the cooperativity, while the optimally sensitive case is close to the border between the stable and unstable regimes. (b)
Flow chart representation of Eq. (3), as done in Ref. [47]. δq̂ and δp̂ are the ‘position’ and ‘momentum’-like operators of the optical field,
respectively, and δq̂in and δp̂in are the associated input noise, respectively. The coefficient from δq̂m to δp̂m is zero (indicated by a Red ‘×’).
The original backaction noise in path 1 is eliminated by introducing intracavity squeezing in the antinoise path 2. The path from δq̂m to δp̂m
is canceled in quadratic COM systems, which results in the enhancement of the destructive interference in the backaction noise. Compared
with no squeezing case, the correlation between δq̂ and δp̂ results in the destructive interference, achieving the suppression of the backaction
noise. The experimental parameters are chosen as Ωm/2π = 1 MHz, meff = 1 ng, Qm = 5 × 108, κ/2π = 3 MHz.

demonstrated that with this nonlinearity-assisted system, opti-
cal spring effect can be enhanced [62]. Figure 1(b) shows that
the nonlinear gain coefficient G increases with the pump laser
power and the second-order nonlinearity, indicating the required
parametric gain occurs at large pump detunings [45].

Neglecting the higher-order nonlinear terms [63] in the
quantum fluctuations results in coupled linear equations

δ ̇̂a = −

(︂
i∆ +

κ

2

)︂
δâ + 2gδq̂m + 2Geiθ â†

+
√
ηcκδf̂a,in +

√︁
(1 − ηc) κδf̂a,0 ,

δ ̇̂qm = Ωmδp̂m,

δ ̇̂pm = −Γmδp̂m + 2gδq̂ +
√︁

2ΓmF̂in ,

(3)

where g = g0q̄m |α | is the effective optomechanical coupling con-
stant (see Supplement 1 for the detailed classical mean value
equations of motion); f̂a,in and f̂a,0 are the noise operators asso-
ciated with the input cavity mirror and the internal losses, and
∆ = ∆c − g0q̄2

m is the effective optical detuning. The flowchart of
Fig. 2(b) illustrates the various couplings involved in Eq. (3) .
A variable on the right-hand side of an equation of motion is
connected to a variable on the left-hand side by arrows, showing
that δ ̇̂pm is indeed independent of δq̂m, a consequence of the
cancellation of the associated coefficient, i.e., −Ωm + 2g0nc = 0,
where nc = Ωm/(2g0).

Direct measurements of intracavity fields are typically chal-
lenging, and one often measures the field that escapes the
resonator instead. The relationship between the input field and
the output field is given by the input-output relation âout =√
ηcκâ − âin [63]. As illustrated in Fig. 2(a-b), the parameters

used in our work are indeed in the optimally sensitive regime at
the border between the stable and unstable regions. Figure 2(b)
shows that in the quadratic COM system under consideration

the flow of signal and noise between δq̂m and δp̂m is unidirec-
tional, in contrast to the situation for linear COM systems. This
causes the mechanical susceptibility of the quadratic COM sen-
sor to differ from the expression Ωm/(Ω

2
m −Ω2 − iΩΓm) of those

systems [63].
One way to measure the frequency-dependent force noise is

homodyne detection [64], whereby the output signal is mixed
at a 50:50 beam splitter with a local oscillator, with a phase ϕ
between the signal and the reference field. The photocurrent Îφ
at the output of the balanced detector is then proportional to a
rotated field quadrature

δq̂φ
out[Ω] = δq̂out cos ϕ + δp̂out sin ϕ. (4)

Introducing the correlation functions [65]

⟨δq̂u [ω] δq̂u [Ω]⟩ = ⟨δp̂u [ω] δp̂u [Ω]⟩ =
1
2
δ (ω +Ω) ,

⟨δq̂u [ω] δp̂u [Ω]⟩ = − ⟨δp̂u [ω] δq̂u [Ω]⟩ =
i
2
δ (ω +Ω) ,⟨︁

δF̂th [ω] δF̂th [Ω]
⟩︁
= n̄mδ (ω +Ω) ,

(5)

where u = in, 0 and n̄m = [exp(ℏΩm/kBT) − 1]−1 denotes the
thermal phonon occupancy. The output amplitude and phase
quadrature spectrum can be expressed as [64]

S̄out
qq [Ω] =

1
2
⟨{δq̂out[Ω]δq̂out[−Ω]}⟩

=
1
2
K−[Ω] + n̄m |N−[Ω]|

2,

S̄out
pp [Ω] =

1
2
⟨{δp̂out[Ω]δp̂out[−Ω]}⟩

=
1
2
K+[Ω] + n̄m |N+[Ω]|

2,

(6)
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in the above two equations, we introduced the following
definitions

K− = |A− |
2 + |B− |

2 + |C− |
2 + |D− |

2,
K+ = |A+ |

2 + |B+ |
2 + |C+ |

2 + |D+ |
2.

(7)

The parameters A±, B±, C±, D±, and N± can be derived
through straightforward algebraic calculations (see Supple-
ment 1 [46] for their lengthy expressions). K± denotes the
contributions of shot noise and backaction noise to the output
amplitude or phase quadrature spectrum S̄out

qq,pp, while N± is from
the noise imprinted by mechanical motion. The symmetrized
cross-correlation spectrum is then written as

S̄out
pq [Ω] =

1
2
⟨{δq̂out[Ω]δp̂out[−Ω]}⟩

= ℜ

{︃
1
2
Kco[Ω] + n̄mN[Ω]

}︃
,

(8)

with Kcr =B−A
∗
+ −A−B

∗
+ +D−C

∗
+ −C−D

∗
+, and Ksi =A−A

∗
+ +

B−B
∗
+ + C−C

∗
+ +D−D

∗
+. Here Kco = Kcr + iKsi, which contains

the squeezed-dependent correlations between shot noise and
backaction noise, and N = N ∗

+N− [66]. The output spectrum
thus contains amplitude or phase vacuum noises, thermal
occupations, and quantum correlations [64], viz.,

S̄II[Ω] =
1
2
⟨{δq̂φ

out[Ω]δq̂
φ
out[−Ω]}⟩

= S̄out
qq cos2 ϕ + S̄out

pp sin2 ϕ + S̄out
pq sin(2ϕ)

= Rm[Ω](n̄m + n̄add[Ω]).

(9)

By tuning the squeezed parameters G and θ, the cross termKco in
S̄out

pq can become negative, allowing for cancellation of backaction
noise and shot noise. The mechanical response of our quadratic
COM sensor to the detected force signal is derived as

Rm = |N− |
2 cos2 ϕ + |N+ |

2 sin2 ϕ +ℜN sin(2ϕ). (10)

The value of Rm can be tuned with the squeezing parameters G
and θ, leading to effective amplification of the force signal when
Rm>1 [67]. The added noise is

n̄add =
K− cos2 ϕ +K+ sin2 ϕ +ℜKco sin(2ϕ)

2Rm
. (11)

The added noise includes both the shot noise and the backac-
tion noise, contributing to the total force noise spectrum for
quantifying the sensitivity of the force measurement

S̄FF[Ω] = 2ℏmeffΓmΩm(n̄m + n̄add). (12)

As detailed in Ref. [23], quantum correlations, arranging
destructive interference of the imprecision noise and the quan-
tum backaction noise, can be observed in the measured spectrum
by detecting rotated quadratures, including amplitude and phase
fluctuations, as opposed to standard phase measurements. Also,
the thermal noise, subtracted to reveal quantum noise, can be
suppressed by considering a feasible bath temperature of 0.2 K
with a cavity placed inside a dilution refrigerator [68].

3. SQUEEZING-ENHANCED SENSING
Quantum squeezing is known to be capable of increasing the
COM sensitivity [11]. In the absence of a χ(2) medium (or with
θ = 0), the force sensitivity is limited by the SQL where in

the limit of κ ≫ Ω the symmetrized noise spectrum takes the
simplified form

n̄add[Ω] = C +
1

16ηcCΓ2
m |χm |

2 , (13)

where the multi-photon cooperativity is defined as

C =
4g2

κΓm
. (14)

It is minimized to

n̄SQL
add [Ω] =

1
2√ηcΓm |χm |

, (15)

for

C ≡ CSQL =
1

4√ηcΓm |χm |
, (16)

where χm = −Ωm/(Ω
2 + iΩΓm) is the mechanical susceptibility

of the system, which quantifies the response of the oscillator to

Fig. 3. Performance of the squeezing-enhanced quadratic COM
sensor. (a) Power spectral density (PSD) as a function of coop-
erativity and θ. The solid and dashed curves denote the PSD in
the stable or unstable region, respectively, and the circles give
the minimum PSD in the stable region. The mechanical parame-
ters are Ωm/2π = 1 MHz, meff = 1 ng, Qm = 5 × 108. (b) Quantum
noise below the SQL, with suitable squeezed parameters. The white
dashed curve denotes the mechanical response of Rm[Ω] = 1. The
signal is amplified except for the marked region (‘×’). Added noise
n̄add/n̄SQL

add as a function of the phase of the local oscillator ϕ and the
parametric phase θ, and the remaining parameters are G/κ = 0.246,
C/CSQL = 0.5.
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external forces. So that in the absence of squeezing the minimum
output force noise is given by

S̄SQL
FF [Ω] = 2ℏmeffΓmΩm(n̄m + n̄SQL

add ). (17)

It is clear from Fig. 2(b) that a direct way to counter the effect
of the backaction noise is to introduce another path from δq̂
to δp̂ using intracavity squeezing [47]. Then, without standard
phase detection, the imprecision and backaction noises can be
correlated by tuning the parametric phase of χ(2) medium. Thus,
a decreased parametric phase corresponds to a lower detection
sensitivity in the stable region because of the narrower range for
the multi-photon cooperativity [Fig. 3(a)].

To simultaneously achieve quantum noise suppression and
force signal amplification, the values of the scaled cooperativity
(C/CSQL) and the squeezed parameters should be chosen within
the stable region [Fig. 3(b)]. For the parameters of our numerical
examples it yields the quantum noise that is 3.5 decibels below
the SQL [see Fig. 3(b)]. We note that in a very recent experiment,
using a linear COM system assisted by quantum correlations
[24], a joint quantum uncertainty that is 3 decibels below the
SQL was shown after subtracting thermal noises. Here, we define
the degree of the squeezing as

σ = lg
(︁
SFF/SSQL

)︁
. (18)

Quantum-enhanced force measurement can be simply charac-
terized by the enhancement factor due to the squeezing

ζ =
min S̄FF (G = 0, θ = 0)
min S̄FF (G ≠ 0, θ ≠ 0)

. (19)

When the thermal noise of the system has been significantly
reduced, for instance by utilizing dilution refrigeration or pre-
cooling, further enhancement could be further improved by
injecting squeezed vacuum into the optical cavity [48,69].

Notably, the mechanical susceptibility can transduce force
into the displacement of the membrane and quantify the response
of the mechanical resonator to the detected force [63]. In
the quadratic COM system, the mechanical response [derived
from Eq. (10)] to the detected force is significantly enhanced
[Fig. 4(a)] due to the larger mechanical susceptibility, enabling

a remarkable amplification of the force signal and corresponding
to a low quantum noise given by Eq. (11). Hence, the enhanced
mechanical response is important to achieve better measure-
ment sensitivity. As shown in Fig. 4(a), the optimal mechanical
response derived from Eq. (10) for the quadratic COM sensor
can be further enhanced by introducing intracavity squeezing.
Therefore, from the analyses made above, according to Eq. (19),
combined with the additional merit of quantum squeezing, the
quadratic COM systems can be more beneficial by incorporating
the additional merit of quantum squeezing [Fig. 4(b)].

The advantage of the quadratic COM system is mainly man-
ifested in quantum-noise-dominated situations, which becomes
marginal with increasing thermal noises. The high sensitivity is
predicted close to the boundary between the stable and unsta-
ble regimes [70], as shown in Fig. 2(a). The sensitivity of force
measurements is mainly limited by the thermal Langevin force,
with the PSD given by [71]

S̄th
FF = 2meffkBT

Ωm

Qm
, (20)

where kB is Boltzmann’s constant, and T is the bath temperature.
In practice, thermal noise can lower the measurement sensitiv-
ity. Nevertheless, we estimate that under realistic conditions, the
force sensitivity can still reach (10.2 aN)2/Hz even at room tem-
perature (which can be optimized as (0.26 aN)2/Hz at cryogenic
temperatures), approaching the level of the state-of-the-art sen-
sors with force noises in the range of 10 – 100 aN Hz−1/2 at room
temperature (or less than 1 aN Hz−1/2 at cryogenic temperatures)
[72]. We estimate that by using the state-of-the-art membrane
[73], the force noise even can be reduced to (9.9 zN)2/Hz at the
temperature of 0.2 K.

For a highly reflective membrane, another practical con-
cern is the backaction arising from the underlying linearity
of hybridized modes [28,43,44]. However, this technical chal-
lenge has not prevented the advances in quadratic COM systems
[28,43,44]. In fact, linear backaction can be effectively sup-
pressed in practice through structural design or active feedback
[42,44], or by using highly tunable COM systems such as lev-
itated particles, photonic crystals, electromechanical devices,
and cold atoms [34,39,40,74,75]. Indeed, the merits of quantum
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squeezing in enhancing linear COM sensors have already been
confirmed in experiments, and the main purpose of our present
work is to confirm that such a merit also exists for a quadratic
COM system. Hence it is reasonable to expect that even for a
hybrid COM system with both linear and quadratic couplings,
the positive effects of quantum squeezing will still exist—a spe-
cific topic we plan to further calculate and verify in our next
work.

4. CONCLUSION
In summary, we have shown that the performance of quadratic
COM sensors can be significantly enhanced by intracavity
squeezing. We find that the mechanical response to weak force
signals can be significantly amplified with considerably reduced
quantum noise in these systems, promising sub-SQL force
measurements with experimentally accessible parameters. We
expect that by combining it with other existing techniques of
fabricating and operating COM-based sensors, such as those
involving feedback control [15,76] or advanced materials with
much higher mechanical Q factors [73,77], it is possible to fur-
ther improve its performance in practice. Such an improved
COM sensor can be useful for a wide range of applications
requiring ultrahigh sensitivity [78–83]. It is our hope that these
results will stimulate further efforts toward building and utilizing
quantum-squeezing-enhanced sensors, such as those based on
levitated spheres [34], cold atoms [40], dissipative or near-field
COM systems [42].
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