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Abstract
We propose and analyze a novel approach to implement ensemble qubits. The required
anharmonicity is provided by a simultaneous decay of two atoms (i.e. two-atom decay), which is
achieved by fully quantum degenerate parametric amplification. For an atomic ensemble, the
two-atom decay generates and stabilizes a 2D quantum manifold, which is spanned by the ground
and single-excited superradiant states. Moreover, this nonlinear decay process can strongly
suppress transitions to higher-excited superradiant states, and convert residual transitions into an
effective decay from the single-excitation superradiant state to the ground state. Our method does
not require Rydberg dipole blockade and, thus, strong atom-atom interactions, compared to
previous work. This indicates that it can be applied to typical atomic or spin ensembles in simple
experimental setups. Remarkably, our idea is compatible with the cavity protection mechanism,
and therefore spin dephasing due to inhomogeneous broadening can be strongly suppressed. The
presented ensemble qubit provides a new platform for quantum information processing, and also
extends the range of applications of atomic or spin ensembles.

1. Introduction

Ensembles of atoms or spins have been attracting considerable interest, because of their long coherence times
(even at room temperatures) and their ability to interface between the microwave and optical regimes.
Moreover, ensembles of atoms or spins have been used to, e.g. build quantum repeaters for long distance
quantum communication [1–4], design hybrid systems for powerful quantum computation [5–8], and
generate nonclassical states for high-precision quantum measurements [9–17]. Despite such considerable
developments, exploiting an ensemble as a single qubit remains a challenge, due to the requirement of a
strong anharmonicity. Previous approaches, which have been proposed to encode an ensemble qubit, usually
rely on the use of Rydberg atoms [18–27]. In these approaches, the strong anharmonicity is provided by
Rydberg blockade based on strong dipole–dipole interactions, which require atoms to be excited to their
highly excited states using multiphoton processes. For example, alkali atoms need to be excited to their states
with the principal quantum number n> 70 to achieve Rydberg dipole blockade. However, for typical
ensembles, it is much easier to control atoms in weakly excited states, rather than in highly excited states.
Furthermore, the interactions between atoms in weakly excited states are extremely weak, such that these
atoms are often considered to be effectively independent. Thus, a new mechanism, which can generate a
strong anharmonicity in ensembles of atoms in weakly excited states, is desirable for the formation of
ensemble qubits.

To address the above issue, we describe in this manuscript the use of the two-atom decay to provide a
strong anharmonicity. The two-atom decay, proposed in our recent work [16] by exploiting a fully quantum
degenerate parametric amplifier (DPA), refers to a simultaneous decay of two atoms in an ensemble. As
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usual, we assume the atomic ensemble to be in the low-excitation regime, where the number of excited atoms
is much smaller than the total number of atoms. In such a regime, the spin-wave approximation can be
applied, and the ensemble behaves as a harmonic oscillator. However, the nonlinear two-atom decay
conserves the parity of the number of the excited atoms, and as a result the ensemble states are restricted to a
2D quantummanifold, spanned by the ground state and a symmetric collective state with only one excitation
(i.e. a single-excitation superradiant state). Moreover, due to the two-atom decay, the transitions out of the
2D quantum subspace (e.g. driven by an external driving) are strongly suppressed, and the residual
transitions are converted into an effective decay from the single-excitation superradiant state to the ground
state. This indicates that an ensemble qubit is formed. Such an ensemble qubit is not discussed in our
previous proposal in [16], although a 2D quantum manifold spanned by long-lived atomic cat states has
been shown there. Note that compared to [16], our present proposal, though as an extension of [16], involves
no pump-mode driving, as a result no two-atom excitation, and thus cannot stabilize atomic cat states.

We also show that our proposal is compatible with the cavity protection technique, such that the
resulting ensemble qubit can be well protected from inhomogeneous broadening, which is the main source
of noise of atomic ensembles. Specifically, a strong coupling between the ensemble and the signal mode
makes the superradiant spin-wave mode largely detuned and, thus, decoupled from the subradiant spin-wave
modes. Consequently, spin dephasing due to inhomogeneous broadening can be strongly suppressed. In
contrast to previous work on ensemble qubits, our proposal requires neither Rydberg dipole blockade nor
strong atom-atom interactions. Moreover, multiphoton processes used to excite and control Rydberg atoms
are not required either. Therefore, it could be applied to common atomic or spin ensembles, thus enabling a
significant simplification of the experimental complexity.

The remaining of the paper is organized as follows. The physical system used to form an ensemble qubit,
i.e. an atomic ensemble coupled to the signal mode of a fully quantum DPA, is introduced in section 2.
Included are the system Hamiltonian and the corresponding master equation. In section 3, we discuss a
parametric coupling between an atom pair and a pump-mode photon, obtain the two-atom decay by
adiabatically eliminating the pump mode, and then, with such a nonlinear atomic decay, analyze the form of
an ensemble qubit. Section 4 presents Rabi oscillations of the ensemble qubit subject to an external field, and
shows that the transitions out of the ensemble-qubit subspace, driven by this external field, can be converted
to an effective decay process of the ensemble qubit. We demonstrate in section 5 that our idea is compatible
with the cavity protection mechanism, and thus can strongly suppress spin dephasing due to inhomogeneous
broadening for the ensemble qubit. Conclusions are drawn in section 7. Finally, three Appendixes provide
some detailed derivations.

2. Physical model

The basic idea is schematically illustrated in figure 1. We consider a fully quantum DPA, with a pump mode
âp of frequency ωp, and a signal mode âs of frequency ωs. These two modes are coupled through a
single-photon parametric coupling of strength J. We further assume that an ensemble of N two-level atoms is
coupled to the signal mode with a single-atom strength g, and that all the atoms have the same transition
frequency ωq. The system can thus be described by the Hamiltonian,

Ĥ= ωsâ
†
s âs +ωpâ

†
p âp +ωqŜz + g

(
â†s Ŝ− + âsŜ+

)
+ J

(
âpâ

†2
s + â†p â

2
s

)
, (1)

where Ŝz =
1
2

∑N
j=1σ

z
j and Ŝ± =

∑N
j=1σ

±
j are collective spin operators of the ensemble. Here, σz

j and σ±
j are

the Pauli matrices of the jth atom. We have assumed, for simplicity, that the couplings of the atoms to the
signal mode are uniform, but in appendix A, we demonstrate the collective spin operators also in the
nonuniform case. Upon introducing the Holstein–Primakoff transformation [28], the collective spin can be
mapped to a bosonic mode ŝ, i.e.

Ŝ− = ŝ
√

N− ŝ† ŝ, (2)

Ŝz = − N

2
+ ŝ† ŝ. (3)

We restrict our discussions to the case of N→∞, so that the number of excited atoms is much smaller than
the total number of atoms, i.e. ⟨̂s† ŝ⟩ ≪ N. In this case, we can apply the spin-wave approximation and, as a
consequence, have

Ŝ− ≃
√
Nŝ. (4)
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Figure 1. Schematics of our setup used to form an ensemble qubit with a fully quantum degenerate parametric amplifier. The
pump and signal modes, âp and âs, coupled via a single-photon parametric coupling of strength J, are represented by two cavities,
for simplicity. An ensemble consists of N two-level atoms, each with a transition frequency ωq, and it is coupled to the signal
mode with a single-atom coupling of strength g. Here, ωp, ωs are the resonance frequencies of the pump and signal modes, and
κp, κs are their respective photon loss rates.

The Hamiltonian Ĥ is accordingly transformed to

Ĥ= ωsâ
†
s âs +ωpâ

†
p âp +ωq ŝ

† ŝ+ gcol
(
â†s ŝ+ âŝs

†)+ J
(
âpâ

†2
s + â†p â

2
s

)
, (5)

where gcol =
√
Ng is the strength of the collective coupling of the ensemble to the signal mode. Furthermore,

we use the Lindblad dissipator L(o)ρ=
(
2ôρ̂ô† − ô†ôρ̂− ρ̂ô†ô

)
/2 to describe photon losses. Therefore, the

full dynamics of the system can be determined by the following master equation:

˙̂ρ=−i
[
Ĥ, ρ̂

]
+κpL

(
âp
)
ρ̂+κsL(âs) ρ̂, (6)

where κp and κs are the photon loss rates of the pump and signal modes, respectively.
Note that for typical ensembles, the single-atom coupling g is extremely weak, and thus an extremely

large N is required to induce a strong gcol. For example, for spin ensembles of nitrogen-vacancy (NV) centers,
having g≃ 2π× 10 Hz and N≃ 1012 results in gcol ≃ 2π× 10 MHz. In this case, the specific value of N is not
easy to determine, and is not so important. In fact, the key element is the collective coupling gcol, which can
be well measured in experiments and is usually treated as a constant for a given setup. Thus, here we do not
have to take into account the dependence of our proposal on the number N of atoms. Instead, finding such a
dependence, as a research agenda in the future, may be more important if our proposal is used for small-size
ensembles (e.g. N∼ 10 or 100) with a strong coupling g.

Furthermore, in the general case, the single-photon coupling J is also very weak, so that a strong
pump-mode driving is needed to generate a strong parametric (i.e. two-photon) driving for the signal mode.
In this case, the pump mode is treated classically and its quantum nature is neglected [29–31]. Such a type of
DPA is called semiclassical, and its intracavity squeezing has been extensively studied for various
applications [32–46]. For example, applying a semiclassical DPA to the Jaynes–Cummings model can
enhance the ability of cavity and circuit quantum electrodynamics systems to process quantum information,
which was predicted in [34–36] and demonstrated experimentally in [41]. Recently, with the rapid
development of quantum devices, a strong coupling J, which can range from several tens of kHz to several
tens of MHz [47–54], has been achieved in experiments. This strong single-photon coupling allows to exploit
the quantum nature of the pump mode, i.e. a fully quantum DPA, for modern quantum
technologies [55–64]. As demonstrated below, a fully quantum DPA can be used to confine the state of an
atomic ensemble to a 2D quantum manifold spanned by the ground state and a single-excitation
superradiant state, forming an ensemble qubit.

3. Ensemble qubit

In this section, we show how to form a two-level ensemble, i.e. an ensemble qubit, by using a fully quantum
DPA. To proceed, we assume that both couplings of the signal mode to the ensemble and to the pump mode
are largely detuned, i.e.

ωs −ωq ≡∆q ≫ gcol, (7)

3
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Figure 2. (a) Parametric coupling between an atom pair and a real pump photon mediated by a virtual signal-photon pair. Two
excited atoms emit two virtual signal photons, which then are up-converted into a real pump photon. (b) Transition processes
corresponding to the two-atom single-photon conversion shown in (a).

2ωs −ωp ≡∆p ≫ J. (8)

But at the same time, the pump mode frequency is approximately equal to the doubled atomic transition
frequency, i.e.

ωp ≃ 2ωq. (9)

Note that here, a slight detuning between ωp and 2ωq has been assumed to compensate some undesired
resonance shifts of the atoms and the pump mode (see below for details). Under these assumptions, we can
predict a parametric coupling between atom pairs and real pump photons, i.e. the joint absorption and
emission of a pump photon by two atoms [65, 66]. This parametric coupling is mediated by a virtual
signal-photon pair, as shown in figure 2(a). Note that the virtual-photon mediated coupling has been
previously exploited for quantum nonlinear optics [67–69].

To better understand the form of the above parametric coupling, we demonstrate the virtual
intermediate transitions between the states |00⟩|2⟩ and |10⟩|0⟩ in figure 2(b). Here, the first ket |mpms⟩
(mp,ms = 0,1,2, · · · ) in the pair accounts for the DPA state withmp photons in the pump mode andms

photons in the signal mode, and the second ket |n⟩ (n= 0,1,2, · · · ) accounts for the symmetric superradiant
state, |S= N/2,mz =−N/2+ n⟩, of the collective spin, with n excited atoms. Note that such a collective
superradiant state can be formed as long as N⩾ 2. The coupling g drives two virtual transitions in turn from
the state |00⟩|2⟩, via the state |01⟩|1⟩ with a detuning∆q = ωs −ωq, to the state |02⟩|0⟩ detuned by 2∆q.
Subsequently, a virtual transition from |02⟩|0⟩ to the real state |10⟩|0⟩ is driven by the parametric coupling J.

Thus, the HamiltonianH in equation (5), after time averaging in the interaction picture (see appendix B
for details), becomes

Ĥavg = χ
(
âp ŝ

†2 + â†p ŝ
2
)
, (10)

where

χ =
g2colJ

∆2
q

(11)

is the strength of an effective parametric coupling between the ensemble and the pump mode. We
numerically diagonalize the system Hamiltonian Ĥ in equation (5), and plot the lowest energy levels in
figure 3(a). It seems as though the levels of the states |10⟩|0⟩ and |00⟩|2⟩ cross around ωp/ωq = 2. However,
in fact, the predicted parametric coupling χ can hybridize the states |10⟩|0⟩ and |00⟩|2⟩ and, as a result,
induce an avoided crossing, with two hybridized states

|φ±⟩=
1√
2
(|10⟩|0⟩± |00⟩|2⟩) . (12)

This avoided level crossing becomes apparent in the enlarged view shown in figure 3(b).
Let us now consider how to implement a two-level atomic ensemble with the time-averaged Hamiltonian

Ĥavg. We assume that the photon loss of the pump mode is very strong, so that the pump photon emitted
jointly by two excited atoms is lost rather than reabsorbed by these two atoms. This process leads to the
desired two-atom decay. To be more explicit, we adiabatically eliminate the pump mode âp of the

time-averaged Hamiltonian Ĥavg (see appendix C), and then obtain an adiabatic master equation associated
only with the degree of freedom of the ensemble, i.e.

˙̂ρens = κ2atL
(̂
s2
)
ρ̂ens, (13)
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Figure 3. (a) Lowest energy levels of the system Hamiltonian in equation (5) as a function of ωp/ωq. The two levels indicated by
the arrows corresponds to the states |10⟩|0⟩ and |00⟩|2⟩, respectively. Here, we set gcol = 0.03ωq, J= 3gcol, and∆q = 20gcol.
(b) Enlarged view of the boxed region in (c), showing an avoided level crossing around ωp/ωq = 2. This avoided crossing
originates from the hybridization of the states |00⟩|2⟩ and |10⟩|0⟩ due to the parametric coupling χ in equation (10).

where

κ2at =
4χ2

κp
(14)

is the rate of the two-atom decay. It is clear that the two-atom decay conserves the parity of the number of
excited atoms. Therefore, the state space of the ensemble can be decomposed into even and odd subspaces,
according to the eigenvalues±1 of the parity operator P= exp

(
iπŝ† ŝ

)
. Under the master equation in

equation (13), the ensemble can be cooled to its ground state |0⟩ for an even-parity initial state, and to a
single-excitation superradiant state |1⟩ for an odd-parity initial state. Here, the ket |n⟩ (n= 0,1,2, . . . ) refers
to the collective spin state |S= N/2,mz =−N/2+ n⟩ as already mentioned above, such that

|n⟩ ≡ |S= N/2,mz =−N/2+ n⟩. (15)

This indicates that the steady state of the ensemble is restricted by the two-atom decay into a 2D quantum
manifold C spanned by |0⟩ and |1⟩, and can be expressed as

ρ̂ssens = c00|0⟩⟨0|+ c11|1⟩⟨1|+ c01|0⟩⟨1|+ c10|1⟩⟨0|, (16)

where ci,j (i, j = 0,1) are some coefficients, which are determined below.
In order to determine the coefficients cij, we define the following two conserved quantities [70, 71]:

Π̂00 =
∑
n=0

|2n⟩⟨2n|, (17)

Π̂01 =

(̂
s† ŝ− 1

)
!!

ŝ† ŝ!!
Π̂00 ŝ, (18)

where n!! = n× (n− 2)!! is the double factorial. Under the master equation in equation (13), the time
evolution of an operator Π̂ in the Heisenberg picture is given by

˙̂
Π =

1

2
κ2at

(
2̂s†2Π̂ŝ2 − ŝ†2 ŝ2Π̂− Π̂ŝ†2 ŝ2

)
. (19)

After a straightforward calculation, we obtain

˙̂
Π00 =

˙̂
Π01 = 0, (20)

implying that these two quantities are indeed conserved.

5
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Figure 4. Time evolution of the state error η, with the ensemble being initially in different spin coherent states of coherent
amplitudes α= 1, 2, and 3. We assumed that J= 3gcol,∆q = 20gcol, κp = 5χ, κs = 0.3κp, and that both the pump and signal
modes are initialized in the vacuum.

According to [70, 71], the operators Π̂00 and Π̂01 determine the population, c00, of the ground state |0⟩,
and the complex coherence, c01, between |0⟩ and the single-excitation superradiant state |1⟩. As a result, the
coefficients cij can be calculated as

c00 = Tr
[
Π̂00ρ̂ens (0)

]
, (21)

c11 = 1− c00, (22)

c01 = Tr
[
Π̂†

01ρ̂ens (0)
]
, (23)

c10 = c∗01, (24)

where ρ̂ens (0) is the initial state of the ensemble. Clearly, if the ensemble is initially in the even (or odd)
parity subspace, we have c00 = 1 (or c11 = 1), and all other coefficients vanish.

In order to further confirm the steady-state prediction given above, we perform numerical simulations in
figure 4. Specifically, we plot the time evolution of the state error η = 1−F , where F is the state fidelity.
Initially, the ensemble is assumed to be in a spin coherent state ρ̂ens (0) = |θ,ϕ⟩, which is defined as

|θ,ϕ⟩= R̂(θ,ϕ) |0⟩. (25)

Here,

R̂(θ,ϕ) = exp

[
1√
N

(
αŜ+ −α∗Ŝ−

)]
, (26)

where α=
√
Nθ exp(iϕ)/2, is a rotation operator of the collective spin, which rotates the ground state |0⟩ of

the ensemble by an angle θ about the axis (sinϕ,−cosϕ,0) of the collective Bloch sphere. Clearly, under the
spin-wave approximation (i.e. Ŝ− ≃

√
Nŝ), the rotation operator R̂(θ,ϕ) becomes a bosonic displacement

operator with a coherent amplitude α, and accordingly, the spin coherent state |θ,ϕ⟩ becomes approximated
by a bosonic coherent state |α⟩. With such an initial state, a straightforward calculation gives

c00 =
1

2

(
1+ e−2|α|2

)
, (27)

c01 = α∗e−|α|2 I0
(
|α|2

)
, (28)

where I0 (• ) is the modified Bessel function of the first kind.
In figure 4, we numerically integrate the original master equation in equation (6) for α= 1, 2 and 3 by

using the QutiP toolbox [72, 73], and obtain the actual states of the system. Then, we calculate the fidelity F
between these actual states and the ideal states analytically predicted by the coefficients in equations (27)
and (28). We find from figure 4 that for realistic parameters of gcol/2π = 10 MHz and J/2π = 30 MHz, an
evolution time of t= 2/χ≃ 0.42 µs can keep the state error η below 0.1 even for an initial spin coherent
state of α= 3. Thus, as expected, the ensemble states are driven by the two-atom decay into a stabilized 2D
quantum manifold C of the states |0⟩ and |1⟩, with a high fidelity.

6
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4. Rabi oscillations

Having demonstrated the formation of a collective qubit, let us now discuss how to manipulate this qubit.
We assume that the ensemble is driven by an external field of amplitude Ωd, phase θd, and frequency ωd. As
shown in equation (B4) in appendix B, the atomic transition frequency is shifted by an amount δq = g2col/∆q,

due to the second-order perturbation of the largely detuned Hamiltonian Ĥ in equation (5). Thus, in order
to make the ensemble driven resonantly by the external field, we set

ωd = ωq + δq. (29)

This yields a driving Hamiltonian under the spin-wave approximation, i.e.

Ĥd =Ωd

(
e−iθd ŝ+ eiθd ŝ†

)
. (30)

Note that, here, Ĥd has been transformed to the rotating frame, which the time-averaged Hamiltonian Ĥavg

in equation (10) and the adiabatic master equation in equation (13) are in. Including the driving
Hamiltonian Ĥd, the master equation in equation (13) can be rewritten as,

˙̂ρens =−i
[
Ĥd, ρ̂ens

]
+κ2atL

(̂
s2
)
ρ̂ens. (31)

Clearly, the drivingΩd can cause transitions out of the desired subspace C. However, as long asΩd ≪ κ2at,
the two-atom decay can bring the excited out-of-subspace states quickly back to the subspace C and, as a
result, the dominant dynamics of the ensemble is still restricted into C. To see this more clearly, we express the
driving Hamiltonian Ĥd and the two-atom decay operator ŝ2 in terms of the states |0⟩, |1⟩, and |2⟩ as follows:

Ĥd =Ωd

(
eiθd |1⟩⟨0|+ eiθd

√
2|2⟩⟨1|+H.c.

)
, (32)

ŝ2 =
√
2|0⟩⟨2|. (33)

It can be seen that the driving Ωd drives the transitions |0⟩ ↔ |1⟩ ↔ |2⟩, but then the state |2⟩ decays to the
state |0⟩ via the two-atom decay. This results in a coherent coupling between the states |0⟩ and |1⟩, and at the
same time an effective decay from the state |1⟩ to the state |0⟩. To further quantify these processes, we now
adiabatically eliminate the state |2⟩ (see appendix D), and obtain the Hamiltonian

Ĥqubit
d =Ωd

(
e−iθd σ̂− + eiθd σ̂+

)
, (34)

with the corresponding master equation,

˙̂ρens =−i
[
Ĥqubit

d , ρ̂ens

]
+ γL(σ̂−) ρ̂ens, (35)

where γ = 4Ω2
d/κ2at is the rate of the effective decay of the ensemble qubit. Here, we have defined

σ̂− = |0⟩⟨1| and σ̂+ = σ̂†
− as the lowering and raising operators of the ensemble qubit, respectively. As

expected, Ĥqubit
d represents a coherent driving of the ensemble qubit, which can arbitrarily rotate the state of

this ensemble qubit on the Bloch sphere.
In figure 5, we plot the time evolution of the probabilities, P0 and P1, of finding the ensemble qubit being

in the states |0⟩ and |1⟩, respectively. We find that the exact results are in excellent agreement with the
effective predictions. The Rabi oscillations between the states |0⟩ and |1⟩ are clear, implying that the driving
Ωd can effectively manipulate the ensemble qubit. Furthermore, the amplitude of the Rabi oscillations
decreases mostly due to the ensemble decay γ as induced by the two-atom decay. Note that here the Rabi
oscillations are driven by an external driving applied to the atoms, rather than to the pump mode of the DPA.

5. Inhomogeneous broadening

So far, we have considered a model, where there is no spin dephasing. Now, we consider inhomogeneous
broadening, which is the main source of noise in typical atomic ensembles. The thermal noise can safely be
neglected here, since the number of thermal photons is very low. For example, for NV spin ensembles with
an atomic transition frequency of ωq ≃ 2π× 3 GHz, the thermal photon number nth is found to be≃ 0.03 at

a temperature T= 40 mK, according to the expression nth =
[
exp(h̄ωq/kBT)− 1

]−1
.

7
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Figure 5. Probabilities, P0 and P1, of the ensemble being in the states |0⟩ and |1⟩, respectively, forΩd = 0.1κ2at and θd = 0. The
Rabi oscillations between the states |0⟩ and |1⟩ are demonstrated. Symbols are the exact results obtained by integrating the original
master equation in equation (6), with the driving Hamiltonian Ĥd in equation (30) transformed to the proper frame. Curves are
the effective predictions given by the master equation in equation (35). The parameters used here are the same as those in figure 4.

Inhomogeneous broadening can be described by the following Hamiltonian

Ĥinh =
1

2

N∑
j=1

δjσ̂
z
j , (36)

where δj = ωj −ωq. Here, ωj is the transition frequency of the jth atom, and ωq can be considered as the

average of transition frequencies of all the atoms, i.e. ωq =
∑N

j=1ωj/N. The detrimental effects of spin
dephasing due to inhomogeneous broadening can, in principle, be completely canceled using spin echo
pulses [74]. Below, we show that our proposal can inherently suppress these detrimental effects, without
applying spin echo techniques.

In the low excitation regime, each two-level atom can be modelled by a bosonic mode bj [75–78], such
that

σ̂
j
− ≃ b̂j, (37)

σ̂j
z ≃−1+ 2b̂†j b̂j. (38)

Correspondingly, the Hamiltonian Ĥinh becomes

Ĥinh =
N∑

j=1

δjb̂
†
j b̂j. (39)

According to the definition of the mode ŝ given in equation (4), it is clearly seen that

ŝ=
1√
N

N∑
j=1

b̂j. (40)

Since the mode ŝ is coupled to the cavity photon, it is thus called the superradiant spin-wave mode. In
addition to this mode, there also exist (N− 1) orthogonal dark modes, which are uncoupled from the cavity
photon. These dark modes are, thus, called subradiant. In the case of no inhomogeneous broadening, i.e.
δj = 0, the superradiant mode ŝ is decoupled from the subradiant modes, and it is not affected by them.

In the presence of inhomogeneous broadening, the Hamiltonian Ĥinh can be modeled as a chain of
coupled subradiant modes [76], as shown in figure 6(a), and the superradiant mode ŝ is coupled to the
subradiant mode

d̂=
1√
Nδinh

N∑
j=1

δjb̂j (41)
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Figure 6. (a) Schematic illustration of suppressing spin dephasing induced by inhomogeneous broadening. The superradiant

mode ŝ is coupled to the end mode d̂ of a chain of subradiant modes, with a strength δinh and a detuning δq. The effect of
inhomogeneous broadening can be strongly suppressed, as long as δinh ≪ δq. (b), (c) Time evolution of the coherence,
⟨σ̂−⟩= |⟨σ̂−⟩|exp(iϕ), of the ensemble qubit, with and without the cavity protection. The modulus |⟨σ̂−⟩| is plotted in (b), and
the phase ϕ is in (c). Here, we integrated the adiabatic master equation in equation (13), with an additional inhomogeneous
broadening, and the initial state is assumed to be a spin coherent state of amplitude α= 1. The horizontal dash-dotted line refers
to the ideal value of |⟨σ̂−⟩|, given by equation (28). We set N= 6, δinh = 0.1δq, and the other parameters are the same as those in
figure 4.

at the end of this chain. Here, δinh is the variance of the atomic transition frequencies, and is defined as

δ2inh =
1

N

N∑
j=1

δ2j . (42)

Typically, the number N can reach the order of 1012 as mentioned above, and in this case, the distribution of
δj is usually considered as continuous, e.g. as a Gaussian or even Poissonian distribution. As a consequence,

the variance δinh can be considered as a constant here. The coupling strength between the modes ŝ and d̂ is
found to be δinh, according to the Heisenberg equation of motion for the mode ŝ. However, as discussed
above and in appendix B, the resonance of the superradiant mode ŝ is shifted by an amount δq, due to its
detuned coupling to the cavity mode âs, which is not mediated by virtual photon pairs of the mode âs. Under
the assumption that

δinh ≪ δq, (43)

the coupling between the superradiant mode ŝ and the subradiant mode b̂ becomes far detuned and,
therefore, can be neglected. This is the so-called cavity protection effect [75–77, 79].

In figures 6(b) and (c), we perform numerical simulations, with and without the cavity protection.
Specifically, we integrate the adiabatic master equation in equation (13), with the inhomogeneous-
broadening Hamiltonian Ĥinh given in equation (39), and then calculate the complex coherence,
⟨σ̂−⟩= |⟨σ̂−⟩|exp(iϕ), of the ensemble qubit. Note that, here, Ĥinh needs to be transformed, by a unitary
operator exp

(
iδq ŝ† ŝt

)
, to the rotating frame of the adiabatic master equation. In fact, this transformation

reflects the suppression effect of the detuning δq on the inhomogeneous-broadening induced spin dephasing.
The frequency shifts δj are randomly chosen according to a Gaussian distribution of mean 0 and variance
δinh. In figure 6(b), we see that the cavity protection stabilizes the modulus |⟨σ̂−⟩| at almost the ideal value
given in equation (28). Furthermore, figure 6(c) shows that, with cavity protection, the phase ϕ increases
linearly with the evolution time, and thus can be subtracted in a proper frame. In sharp contrast, the
coherence of the ensemble qubit (or quantum information) is easily destroyed in the case of no cavity
protection. This indicates that our proposal can inherently and strongly suppress the effect of
inhomogeneous broadening, as long as δinh ≪ δq.

9
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6. Possible implementations

We here consider a possible experimental realization utilizing a hybrid system of superconducting circuits
and spin ensembles of NV centers. In superconducting circuits, it has been experimentally shown that the
available single-photon parametric coupling J can range from hundreds of kHz to tens of MHz [47–51]. For
example, in [51], two superconducting microwave oscillators are inductively coupled through a
radio-frequency superconducting quantum interference device, and in that case the value of J can reach
≃ 2π× 17.7 MHz. This setup, with such a strong single-photon parametric coupling, can be used as a fully
quantum DPA. Furthermore, by placing an NV spin ensemble, of size≃ 4.5× 2.25× 0.5 mm3 [80, 81], on
top of a superconducting microwave oscillator, their strong collective coupling has also been widely
demonstrated in experiments; see, e.g. [78–82]. A typical value of such a collective coupling strength is
gcol = 2π× 10 MHz, which can be used for our proposal. Hence, the key elements required in our proposal
have already been experimentally demonstrated, and we can expect that our proposal can be implemented in
a hybrid system of superconducting circuits and NV spin ensembles.

7. Conclusions

We have introduced a method of how to generate an ensemble qubit. The method does not rely on Rydberg
dipole blockade, and eliminates the need for the strong atom-atom interactions. The anharmonicity required
for the formation of a qubit is provided by the nonlinear two-atom decay. We have demonstrated that the
two-atom decay can restrict the ensemble states into a 2D quantum manifold, spanned by the ground state
and a symmetric single-excitation superradiant state. The transitions to higher excited superradiant states are
strongly suppressed by the two-atom decay, with the residual transitions being converted into an effective
decay between the single-excitation superradiant state and the ground state. We have also shown that spin
dephasing induced by inhomogeneous broadening can be strongly suppressed, due to the cavity protection
effect, with which our proposal is compatible. This indicates that our ensemble qubit can have a long
lifetime. We expect that our ensemble qubit could find and stimulate diverse applications in modern
quantum technologies.
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Appendix A. Collective spin operators for nonuniform single-atom couplings

For an atomic ensemble with a finite size, the couplings of the atoms to a cavity mode are nonuniform, due
to the nonuniform distribution of the electromagnetic field inside the cavity. For such a case, we define the
collective spin operators in this appendix. We now assume that the coupling of the jth atom to the cavity
mode is g j, and the interaction between the ensemble and the cavity can thus be described by the
Hamiltonian,

Ĥint =
N∑

j=1

gj
(
â†s σ̂

−
j + âsσ̂

+
j

)
. (A1)

In this case, we can define the collective spin operators,

Ŝz =
1

2

N∑
j=1

σ̂z
j , and Ŝ± =

1

g

N∑
j=1

gjσ̂
±
j , (A2)
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where

g=

√√√√ 1

N

N∑
j=1

g2j . (A3)

Note that in the main text, the couplings of the atoms to the cavity have been assumed to be uniform for
simplicity; that is, gj = g.

With the collective operators in equation (A2), the Hamiltonian Ĥint in equation (A1) is accordingly
transformed into

Ĥint = g
(
âsŜ+ + â†s Ŝ−

)
, (A4)

which, clearly, has the same form as in the uniform case of gj = g (see equation (1)).

Appendix B. Derivation of the time-averaged Hamiltonian in equation (10)

In this appendix, we show in detail how to derive the time-averaged Hamiltonian Ĥavg. To begin, we rewrite
the Hamiltonian in equation (5) in the interaction picture, yielding

ĤI = gcol
(
â†s ŝe

i∆qt + âŝs
†e−i∆qt

)
+ J

(
âpâ

†2
s ei∆pt + â†p â

2
s e

−i∆pt
)
, (B1)

where∆q = ωs −ωq and∆p = 2ωs −ωp. According to the formalism of [83, 84], the second-order and
third-order time-averaged Hamiltonians are given, respectively, by

Ĥ(2)
TA =

g2col
∆q

(
â†s âs − ŝ† ŝ

)
− J2

∆p

(
2â†p âp + 4â†p âpâ

†
s as − â†s â

†
s âsas

)
. (B2)

and

Ĥ(3)
TA = χ

(
âp ŝ

†2e−iδt + â†ps
2eiδt

)
. (B3)

Here, δ = ωp − 2ωq and χ = g2colJ/∆
2
q. Note that as demonstrated below, the detuning δ is small but nonzero,

so as to compensate some undesired shifts induced by the second-order process.
Since the signal mode âs is initialized in the vacuum state, the second-order time-averaged Hamiltonian

is reduced to

Ĥ(2)
TA =−

g2col
∆q

ŝ† ŝ− 2J2

∆p
â†p âp. (B4)

It is seen that the second-order process induces a Lamb shift [29] for atoms (i.e. the first term), and a
resonance shift for the pump mode (i.e. the second term). In order to compensate these two undesired shifts,
we set

δ =
2J2

∆p
−

2g2col
∆q

. (B5)

Under this condition, the time-averaged Hamiltonian Ĥavg can be achieved in a proper frame.

Appendix C. Adiabatic elimination of the pumpmode âp

In this appendix, we demonstrate how to adiabatically eliminate the pump mode âp of the time-averaged

Hamiltonian Ĥavg in equation (10). We now consider the following master equation,

˙̂ρ=−i
[
Ĥavg, ρ̂

]
+κpL

(
âp
)
ρ̂. (C1)

Under the assumption of κp ≫ χ, the photon population of the pump mode is very low. This allows us to
only consider the vacuum state |0⟩ and single-photon state |1⟩ of the pump mode. Here, the number in the
ket refers to the number of photons of the pumpmode. As a result, the density matrix ρ can be reexpressed as

ρ̂= ρ00|0⟩⟨0|+ ρ01|0⟩⟨1|+ ρ10|1⟩⟨0|+ ρ11|1⟩⟨1|. (C2)
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It follows, upon substituting it into the master equation in equation (C1), that

ρ̇00 = iχ
(
ρ01 ŝ

2 − ŝ†2ρ10
)
+κpρ11, (C3)

ρ̇11 = iχ
(
ρ10 ŝ

†2 − ŝ2ρ01
)
−κpρ11, (C4)

ρ̇01 = iχ
(
ρ00 ŝ

†2 − ŝ†2ρ11
)
−

κp

2
ρ01, (C5)

and ρ10 = ρ†01. Then setting ρ̇01 = 0 gives

ρ01 = i
2

κp
χ
(
ρ00 ŝ

†2 − ŝ†2ρ11
)
, (C6)

and, in turn, the adiabatic master equation only with the degree of freedom of the ensemble, as follows:

˙̂ρens = ρ̇00 + ρ̇11 = κ2atL
(̂
s2
)
ρ̂ens, (C7)

where κ2at = 4χ2/κp. Note that in equation (C7), we have set ρ11 = 0, due to the fact that the photon
population of the pump mode is very low.

Appendix D. Adiabatic elimination of the superradiant state |2⟩

We begin with the master equation in equation (31). In the limit Ωd ≪ κ2at, the coupling of the superradiant
states |1⟩ and |2⟩, which is induced by the driving Ωd, is considered as only a perturbation. Therefore, the
state |2⟩ can be adiabatically eliminated. To do so, we define, according to [85], a non-Hermitian
Hamiltonian

ĤNH =− i

2
κ2at̂s

†2 ŝ2 =−iκ2at|2⟩⟨2|, (D1)

and a perturbative coupling

V̂ =
√
2Ωde

iθd |2⟩⟨1|. (D2)

With them, we can obtain an effective coupling between the states |0⟩ and |1⟩, described by

Ĥqubit
d = − 1

2
V̂†

[
Ĥ−1

NH +
(
Ĥ−1

NH

)†
]
V̂ +Ωd

(
e−iθd σ̂− + eiθd σ̂+

)
, (D3)

=Ωd

(
e−iθd σ̂− + eiθd σ̂+

)
. (D4)

and an effective Lindblad operator

2κ2atL
(
|0⟩⟨2|Ĥ−1

NHV̂
)
= γL(σ̂−) , (D5)

where γ = 4Ω2
d/κ2at. Thus, the master equation in equation (35) can be achieved.
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