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Abstract
The paradigm of second-order phase transitions (PTs) induced by spontaneous symmetry
breaking (SSB) in thermal and quantum systems is a pillar of modern physics that has been
fruitfully applied to out-of-equilibrium open quantum systems. Dissipative phase transitions
(DPTs) of second order are often connected with SSB, in close analogy with well-known thermal
second-order PTs in closed quantum and classical systems. That is, a second-order DPT should
disappear by preventing the occurrence of SSB. Here, we prove this statement to be wrong,
showing that, surprisingly, SSB is not a necessary condition for the occurrence of second-order
DPTs in out-of-equilibrium open quantum systems. We analytically prove this result using the
Liouvillian theory of DPTs, and demonstrate this anomalous transition in a paradigmatic laser
model, where we can arbitrarily remove SSB while retaining criticality, and on a Z2-symmetric
model of a two-photon Kerr resonator. This new type of PT cannot be interpreted as a
‘semiclassical’ bifurcation, because, after the DPT, the system steady state remains unique.

1. Introduction

The similarities and differences between quantum (or thermal) phase transitions (PTs) and dissipative
phase transitions (DPTs) in open quantum systems are the subject of intense research [1–8]. Criticality and
critical phenomena (e.g. hysteresis [9–12] and slowing-down [13–15]) have been predicted, observed, and
characterized for first-order DPTs. Central to the characterization of second-order PTs is the role of
spontaneous symmetry breaking (SSB): nonanaliticity can occur when a system symmetry is ‘broken’, i.e.
the emergence of several steady (or ground) states that are not invariant anymore under the action of a
given symmetry group [16–18]. SSB in open systems has been discussed in, e.g. references [19–27]. The
relation between criticality, symmetries, and exotic effects have also been discussed for a wide range of
models [5, 28–32].

In this article, we analytically prove that second-order DPTs in open quantum systems can occur with or
without symmetry breaking. Similarly to other examples, where the phases of dissipative systems possess
features which have no analogue in closed and thermal systems [19, 33–36], this feature can be explained by
the spectral properties of a Liouvillian superoperator (i.e. the generator of the dynamics of an
out-of-equilibrium open quantum system) [1, 18, 37].

We demonstrate our results with two examples. First, we consider a lasing model characterized by
U(1)-SSB with a second-order DPT. By adding dephasing, the U(1) symmetry of the model is maintained,
but its phase coherence is destroyed, thus preventing SSB. Yet, a second-order DPT takes place. Second, we
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consider the Z2 symmetry breaking in parametric down-conversion. In this case, the addition of a parity
dissipator enables a DPT without Z2-SSB.

Similar phenomena of continuous PTs without symmetry breaking (whose explanation goes beyond the
Landau theory of PTs [17, 38, 39]), can be encountered in closed systems at equilibrium [40, 41]. These
examples are characterized by a nontrivial topological structure, e.g. topological insulators [42, 43]. As such,
our work prompts the question for a generalization of topological PTs in non-equilibrium, non-quadratic,
and bosonic systems [44–46]. Other models of open quantum systems can undergo critical phenomena
without a trivial SSB. For instance, in reference [47], it was shown that a continuous PT without symmetry
breaking can take place. However, such a model can also be associated with the emergence of boundary
time crystals [48] (signalling its profoundly dissipative nature), and meaning that a time-invariance
symmetry is broken. In other words, in this model there exist multiple (oscillating) non-decaying states.

Furthermore, the presence of a DPT without SSB has been discussed for chain of S-level spins in
reference [49]. The authors demonstrate that in a regime where the semiclassical solution of a U(1)
symmetric model would predict SSB, purely fluctuation-induced suppression of symmetry breaking can
prevent states from retaining their coherence.

Our work reveals that in any dissipative continuous second-order PT, SSB can be arbitrarily removed.
This always allows obtaining a unique steady state in the ‘broken symmetry’ region. As we also discuss
below, such nontrivial effect can be obtained both with the use of Hamiltonian or dissipative terms,
showing the nontrivial interplay between quantum and dissipative fluctuations.

2. Criticality of open quantum systems

Under the Born and Markov approximations [50], the reduced density matrix ρ̂(t) of an open quantum
system at time t evolves according to a Lindblad master equation (� = 1):

d

dt
ρ̂(t) = Lρ̂(t) = −i

[
Ĥ, ρ̂(t)

]
+

∑
j

D[L̂j]ρ̂(t), (1)

where Ĥ is the Hamiltonian describing the coherent part of the system evolution, L is the Liouvillian
superoperator [37, 50–52], and D[Lj] are the so-called Lindblad dissipators, whose action is

D[L̂j]ρ̂(t) = L̂iρ̂(t)L̂†
j −

L̂†
j L̂jρ̂(t) + ρ̂(t)L̂†

j L̂j

2
. (2)

The operators L̂j are the jump operators, and they describe how the environment acts on the system
inducing loss and gain of particles, energy, and information. The steady state ρ̂ss, i.e. the state which does
not evolve anymore under the action of the Liouvillian (∂t ρ̂ss = Lρ̂ss = 0), is central to a system
characterization. We indicate the expectation values of operators at the steady state as 〈ô〉ss = Tr [ ρ̂ssô].

A DPT is a discontinuous change in ρ̂ss as a function of a single parameter [1, 18]. For instance, the
medium gain rate A, defined in equation (12), plays this role in the first model considered below, and:

lim
A→Ac

∂2

∂A2
ρ̂ss(A) →∞, (3)

where Ac is the critical point.
This thermodynamic nonanalyticity can be witnessed in finite-size systems, as discussed in references

[1, 18] and experimentally demonstrated in references [10, 15, 53]. Criticality is accompanied by the
emergence of the so-called critical slowing down, i.e. the appearance of infinitely-long timescales in the
system dynamics. Diverging timescales can be captured by the Liouvillian spectrum, defined by

Lρ̂j = λjρ̂j, (4)

λj (the eigenvalues) representing the decay rates and oscillation frequencies, and ρ̂j (the eigenmatrices)
encoding the states explored along the dynamics of L.

3. Dissipative phase transitions with or without spontaneous symmetry breaking

Before dealing with a specific model, let us provide a demonstration of this novel type of criticality.
The weak symmetry of a dissipative system can be described by a superoperator U such that U = Ĵ · Ĵ†,

where Ĵ† = Ĵ−1 [54]. This is always the case if we assume that U defines a cyclic group (such as Zn) and
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therefore Ĵ† Ĵ = 1̂. Note that this is one of the most common types of symmetries that one encounters in
open quantum systems, characterizing, e.g. lasing (U1), parametric downconversion (Z2), and Zn for a
translational invariant lattice with n sites.

The fact that the Liouvillian is symmetric, i.e. [L,U] = 0 allows partitioning the space in different
symmetry sectors, i.e. parts of the Liouvillian space which are not connected to other parts (sectors) by the
system dynamics [32, 55, 56]. Accordingly, the Liouvillian reads L = L0 + L1 + . . . , where Lk is the
evolution operator of the kth symmetry sector. As such, we can relabel the eigenvalues and eigenmatrices as
λ(k)

i and ρ̂(k)
i , respectively, and write

Lkρ̂
(k)
j = λ(k)

j ρ̂(k)
j , and U ρ̂(k)

j = Ĵρ̂(k)
j Ĵ† = u(k)ρ̂(k)

j . (5)

We order the eigenvalues of each symmetry sector in such a way that
∣∣∣Re

[
λ(k)

0

]∣∣∣ �
∣∣∣Re

[
λ(k)

1

]∣∣∣
�

∣∣∣Re
[
λ(k)

2

]∣∣∣ � . . . . In this regard, λ(k)
0 represents the slowest-decaying process in each symmetry sector.

The steady state must always be such that U ρ̂ss = ρ̂ss [18]. We call this the symmetry sector for k = 0, and
therefore ρ̂(0)

0 ∝ ρ̂ss. Thus, each eigenmatrix belonging to the symmetry sector for k = 0, i.e. ρ̂(0)
j , is such

that U ρ̂(0)
j = ρ̂(0)

j .
These considerations on symmetries are valid independently of the presence of a DPT, but they are

fundamentally related to SSB. Generally speaking, SSB occurs when a state does not have the same
symmetries, across a PT, as the theory that describes it. Such a transition is characterized by an order
parameter, i.e. a quantity distinguishing phases. SSB is then signalled by the fact that the order parameter is
zero (due to symmetry) in one phase and in another phase it is non-zero [57]. In an open quantum system,
SSB means that several steady states emerge in a region after a DPT took place, and each of these states is
not an eigenstate of U .

Consider now a Liouvillian that, in a certain region of parameter space, admits a unique eigenvalue
λ(0)

0 = 0 and all the other eigenvalues are such that λ(j)
0 �= 0 (i.e. ρ̂ss ∝ ρ̂(0)

0 , such that Lρ̂ss = 0, is the only
eigenmatrix which does not evolve under the Lindblad master equation). Within this formalism, a PT with
SSB means that in each symmetry sector a zero eigenvalue λ(k)

0 emerges, i.e.

Lρ̂(k)
0 �= 0 if A < Ac, and Lρ̂(k)

0 = 0 if A > Ac, (6)

where the critical point Ac is defined in equation (3). Indeed, equation (6) states that for A > Ac it is
possible to construct new steady states (i.e. well-defined density matrices which do not evolve under the
action of L) of the form ρ̂(k)

ss = ρ̂(0)
0 + ck[ρ̂(k)

0 + ρ̂(k) †
0 ], and, obviously, U ρ̂(k)

ss �= ρ̂(k)
ss . The role of the order

parameters is then played by an operator Ô such that Tr
[
ρ̂(0)

0 Ô
]
= 0, and Tr

[
ρ̂(k)

0 Ô
]
�= 0. Thus,

equation (6) reveals a DPT with SSB.

3.1. Preventing the spontaneous-symmetry breaking
Let us now consider a new Liouvillian

L′ = L+D[L̂]. (7)

If L is a well-defined Liouvillian, so does L′, because adding a dissipator to a Liouvillian keeps L′ a
completely positive and trace-preserving map. Note that the following property holds

D[L̂]ρ̂(k)
j = L̂ρ̂(k)

j L̂† −
L̂†L̂ρ̂(k)

j + ρ̂(k)
j L̂†L̂

2
�= 0, if and only if k �= 0, (8)

if [
ρ̂(0)

j , L̂
]
=

[
ρ̂(0)

j , L̂†
]
= 0, and

[
ρ̂(k)

j , L̂
]
=

[
ρ̂(k)

j , L̂†
]
�= 0. (9)

All ρ̂(0)
j must remain unchanged, while for k �= 0, the dynamics of L and of L′ must differ. But since

λ(0)
j � 0, and the dynamics must be different, it can only occur that λ(0)

j �= 0.

This operator can always be found. Indeed, we can choose the symmetry operator Ĵ as a jump operator
because

D[̂J]ρ̂(k)
j = Ĵρ̂(k)

j Ĵ† −
Ĵ†Ĵρ̂(k)

j + ρ̂(k)
j Ĵ† Ĵ

2
= U ρ̂(k)

j − ρ̂(k)
j =

(
u(k) − 1

)
ρ̂(k)

j = 0, if and only if k = 0, (10)

according to equation (5), and given Ĵ† Ĵ = 1̂. We conclude that one can arbitrarily remove SSB from any
second-order DPT. This does not mean that Ĵ is the only operator which allows removing the SSB while
keeping a second-order DPT. It can also be done, e.g. by a generator of a symmetry group Ĵ, provided that Ĵ
is continuous, as we show below on the example of a U(1) model.
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A remark is in order. If we were to include an additional term in the Hermitian Hamiltonian, not a
Lindbladian dissipator, in equation (1), the above reasoning would remain the same. Indeed, by considering
Ĥ′ = Ĥ + L̂ (where now L̂ needs to be Hermitian), the commutator [ρ̂(0)

j , L̂] = 0 ensures that the dynamics
is again unchanged for the sector k = 0.

3.2. Second-order phase transitions and spontaneous-symmetry breaking in the Landau theory
PTs do not necessarily imply an SSB. For instance, a first-order PT can occur even for non-symmetric
systems [38] (this is true also in out-of-equilibrium systems [13, 18, 58–60]). There are also examples of
second-order PTs without SSB, such as topological PTs, including the Berezinskii–Kosterlitz–Thouless
transition in two-dimensional XY model [61] or Bose gasses [62]. In this case, however, topology dictates
the change in the system properties.

The phenomenological theory of PTs, developed by Landau [38], explains second-order criticality in
terms of symmetries and SSB. One phase ‘possesses’ a certain symmetry (i.e. the system state is invariant
under the action of the symmetry group), while, in the SSB, phase this symmetry property is no more
exhibited. One assumes that there is a thermodynamic potential F (e.g. a free-energy function) that is an
analytic function of an order parameter β. The presence of a symmetry constrains the form of the potential
which, up to a constant shift, will read

F = Aβ2 + B
β4

4
. (11)

The order parameter β will be the one which minimizes the potential F. While A and B explicitly depend on
the various parameters (such as temperature, pressure, chemical potential, etc), thermodynamic
considerations on the system stability imply that B > 0. Since A > 0 implies that β = 0 minimizes F, a
second-order DPT occurs when A becomes negative. At this point, the order parameter β that minimizes F
is no more nonzero, and therefore a continuous, but nonanalytical, change in the system parameters occurs.
Since symmetry dictates that β = 0, such a second-order PT is always connected to an SSB. The Landau
theory remains applicable also for the description of the continuous quantum PT with SSB, where one can
construct the free energy functional from a given microscopic Hamiltonian [16].

Our result, instead, indicates that SSB can be arbitrary removed from second-order DPTs: a Landau-like
theory cannot correctly capture the nature of DPTs.

4. Model I: a U(1)-symmetric laser model

Let us provide an example of a DPT where the SSB can be arbitrarily removed. Consider a laser-like U(1)
model with Ĥ = ωâ†â and jump operators

L̂1 =
â†(2A − Bââ†)

2
√

A
, L̂2 =

√
3B

4
ââ†, L̂3 =

√
Γâ, (12)

where â (â†) is the bosonic annihilation (creation) operator, L̂1 describes the laser gain, L̂2 captures the field
dephasing, and L̂3 represents the particle loss. The jump operators are characterized by the rates: A for the
medium gain, B for the gain saturation, Γ for the dissipation (the inverse of the photon lifetime) changing
to the frame rotating at the frequency ω, we can set Ĥ = 0 [32]. This model is the celebrated Scully–Lamb
laser master equation in the so-called weak-gain saturation regime [63–66], valid if A = O(Γ) and
B

〈
ââ†

〉
� 2A. The limits of the validity of this approximation for the system dynamics are detailed in, e.g.

references [67, 68].
The model is characterized by a U(1) weak symmetry [69, 70], which is represented by the symmetry

operator Ĵ = exp
(
iφâ†â

)
. Indeed, the transformation â → Ĵ âĴ† → âeiφ leaves the equation of motion

unchanged, but
〈

â†â(t)
〉

is not conserved. Thus, 〈â〉ss = 0 holds for any finite-size system. An SSB in the
thermodynamic limit is, thus, signalled by 〈â〉 (t →∞) �= 0, which follows from symmetry considerations
[71]. Therefore, in finite-size systems, the U(1) SSB is signalled by 〈â〉 (t) �= 0 for increasingly long time, as
we increase N. To better grasp the meaning of this symmetry, let us express the eigenmatrices ρ̂j of the
Liouvillian and the action of the symmetry operator in equation (5) in the number (Fock) basis:

ρ̂(k)
j =

∑
m,n

c(k)
m,n|m〉〈n| and U ρ̂(k)

j =
∑
m,n

c(k)
m,ne−iφâ†â|m〉〈n|eiφâ†â =

∑
m,n

c(k)
m,ne−iφ(m−n)|m〉〈n| = u(k)

j ρ̂(k)
j . (13)

4
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Figure 1. Dissipative PT with or without the U(1) SSB. (a) Rescaled number of photons
〈

â†â
〉

ss
/N versus incoherent drive

strength A/Γ for various N. The solid curves are the results of the quantum simulations, and are independent of η. (b) Wigner
function of a state initialized in the coherent state |α =

√
〈â†â〉ss〉 for A = 1.25Γ and N = 50 evolving with: (c)–(e) η = 0;

(f)–(h) η = Γ/5. If η = 0, the DPT coincides with a SSB (shown by the long-time coherence). If η �= 0, a DPT occurs because〈
â†â

〉
ss
/N is discontinuous, but the system has no SSB since it rapidly loses coherence. The time evolution of the operators〈

â†â
〉

, | 〈â〉 |, and | 〈â2〉 | for η = 0 (solid red curve) and η = Γ/5 is shown in (h)–(k), respectively. Parameters: B/Γ = 10−1/N
and ω/Γ = 0 (i.e. the frame rotates at ω).

We conclude that exp [−iφ(m − n)] must be a constant and, therefore, any eigenmatrix ρ̂j in equation (13)
must obey

ρ̂(k)
j =

∑
m

c(k)
m |m〉〈m − k|, (14)

for some constant integer k ∈ Z. In other words, ρ̂(k)
j must be an operator containing elements only on one

diagonal, and different symmetry sectors occupy different upper and lower diagonals.

4.1. Second-order dissipative phase transitions with the spontaneous breaking of U(1) symmetry
PTs and nonanaliticity can only emerge in the thermodynamic limit. One can exploit the infinite dimension
of the bosonic Hilbert space to observe a nonanalytical change in the steady state, as discussed, in, e.g.
references [18, 20, 32, 72–74]. To do so, we consider a rescaling parameter N, so that the size of the Hilbert
space increases, but a meaningful observable, such as the rescaled photon number, merge far from the
critical point:

{A, B,Γ} → {A, B/N,Γ}. (15)

In a laser model [63], N represents an increasing number of injected three-level atoms in the lase cavity, but
each with a weaker light–matter coupling. We also refer to reference [68] for a more detailed discussion of
the system thermodynamic limit and on the nature of the DPT in the Scully–Lamb laser model.

To numerically simulate the results of this model, we introduce a cutoff C in the Hilbert space, i.e. we
assume that 〈m|ρ̂(t)|n〉 = 0 if m > C or n > C. We then verify the convergence with the cutoff, i.e. we check
that by increasing C the values do not change (within a numerical precision). By decreasing the nonlinearity
(i.e. increasing N), C increases.

In figure 1(a), we plot the rescaled photon number
〈

â†â
〉

ss
/N, obtained by numerically solving Lρ̂ss = 0

(solid curves), and the results of the semiclassical approximation (dashed lines) for different values of N. As
one can see, the photon number is continuous, but there is an emerging ‘elbow’ signalling the occurrence of
a second-order DPT.

The breaking of the U(1) symmetry means the retaining of coherence for infinitely long time.
Although this occurs only in the thermodynamic limit, we can show the presence of the critical slowing
down for finite-size systems. In figures 1(b)–(e), we show the Wigner function W(α) for an initially
coherent state when η = 0 in the ‘broken symmetry region’ (i.e. for A > Ac = Γ), where W(α) =
2 Tr

[
D̂α exp

(
iπâ†â

)
D̂†

αρ̂(t)
]
/π and D̂α = exp(αâ† − α∗â) is the displacement operator [75]. As time

passes, the system retains its coherence 〈â(t)〉 �= 0, signalling that, even for this finite-size system, a critical
timescale associated with SSB has emerged.

5
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To better quantify the meaning of SSB and the role of the U(1) symmetry, we note that

Tr
[

ânρ̂(k)
j

]
= Tr

[
U†U ânρ̂(k)

j

]
= Tr

[(
e+iφâ†ââne−iφâ†â

) (
e−iφâ† âρ̂(k)

j eiφâ†â
)]

= e−iφ(k−n)
〈

ânρ̂(k)
j

〉
. (16)

We, thus, conclude that the critical slowing down, associated with SSB in the kth symmetry sector, is
witnessed by

〈
âk

〉
. Thus, in figures 1(i)–(k) we plot with red solid curves the dynamics of

〈
â†â(t)

〉
, | 〈â(t)〉 |,

and |
〈

â2(t)
〉
| (associated with the sectors k = 0,±1,±2), respectively. The initial state is the same coherent

state as in figure 1(b). While the photon number rapidly converges to its steady-state value, we see again
that the coherences are preserved for very long-times, confirming that indeed a U(1) SSB is taking place,
and there is a critical slowing down in each symmetry sector.

4.2. Removing the spontaneous breaking of U(1) symmetry
According to our proof, we should be able to remove the SSB while retaining criticality. To do that, we
notice that a jump operator of the form L̂ =

√
η/4ââ†, where η represents an additional dephasing rate,

satisfies equation (9) given the structure of ρ̂(k)
j (cf equation (14)).

First, we verified that the photon number is identical to the one for which η = 0 (the results are within a
floating-point precision in figure 1(a)). Again, the photon number becomes sharper and sharper with
increasing N, and the results coincide for all tested values of η, meaning that a second-order DPT is taking
place.

Figures 1(f)–(h) show that an initially coherent state, as in the case η �= 0, rapidly looses its coherence
on a timescale of η/2. That is, the U(1) SSB does not take place. Indeed, ρ̂(t) 
 ρ̂ss in figure 1(h), indicating
that an initial state rapidly reaches its steady state, proving the absence of any residual or hidden SSB, which
would anyhow lead to a critical slowing down.

To better quantify how each symmetry sector is affected, we compare
〈

â†â(t)
〉

, | 〈â(t)〉 |, and |
〈

â2(t)
〉
|

in figures 1(i)–(k) for η = 0 (red solid curves) and η �= 0 (blue dashed curves). Wile the sector for k = 0 is
unaffected (as demonstrated by the photon number). Dynamics in other symmetry sectors is much faster,
and | 〈ân(t)〉 | rapidly reaches zero.

We have, thus, demonstrated the existence of a second-order DPT without the U(1) SSB and the
possibility to arbitrary remove the SSB retaining a critical behavior. Importantly, the semiclassical analysis
[71] fails to capture this kind of criticality (see also reference [68] for details), which highlights the necessity
to use the Liouvillian formalism in describing dissipative critical phenomena.

5. Model II: a Z2-symmetric Kerr resonator

To further illustrate the validity of our results, here we consider the second-order DPT of a two-photon Kerr
resonator, studied in, e.g. [18, 20, 22, 28]. The Hamiltonian in the frame rotating at the pump frequency
reads

Ĥ = −Δâ†â + i
G

2

[(
â†

)2 − â2
]
+

U

2

(
â†

)2
â2, (17)

where Δ is the cavity-to-pump detuning, G is the two-photon drive intensity, and U is the Kerr nonlinear
interaction.

Photons continuously escape the Kerr resonator, and the system is described by the Lindblad master
equation for the system density matrix ρ̂(t) [76]

∂

∂t
ρ̂(t) = −i[Ĥ, ρ̂(t)] + ΓD[â]ρ̂(t). (18)

This system is characterized by a Z2 weak symmetry, meaning that â → Ĵ âĴ† = −â leaves the equation of
motion unchanged, where Ĵ = exp

(
iπâ†â

)
, but parity is not a conserved quantity [70]. With a reasoning

similar to that of equation (13), we can demonstrate that there are two symmetry sectors, k = 0 and k = 1,
such that

U ρ̂(k)
j = eikπρ̂(k)

j , and ρ̂(k)
j =

∑
m,n

c(k)
2m,2n|2m〉〈2n + k|+ c(k)

2m+1,2n+1|2m + 1〉〈2m + 1 + k|. (19)

We conclude that ρ̂(0)
j contains only the even–even and odd–odd states, while ρ̂(1)

j couples the even–odd
and odd–even states.

This time, the rescaling parameter N acts as {Δ, U, G,Γ}→ {Δ, U/N, G,Γ} [20, 77, 78].
Similarly to the previous case, we observe the emergence of a second-order DPT (figure 2(a)). This is

accompanied by a critical slowing down signaling an SSB, as it can be argued from the evolution of a system

6
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Figure 2. DPT with or without the Z2 SSB. (a) Rescaled number of photons
〈

â†â
〉

ss
/N versus incoherent drive strength A/Γ for

various N. The solid curves are the results of the quantum simulations, and are independent of ζ . (b) Wigner function of a state
initialized in the coherent state |α =

√
〈â†â〉ss〉 for G = 12.5Γ and N = 50 evolving with: (c)–(e) ζ = 0; (f)–(h) ζ = Γ/5. If

ζ = 0, the DPT coincides with a SSB (shown by the long-time coherence). If η �= 0, a DPT occurs because
〈

â†â
〉

ss
/N is

discontinuous, but the system has no SSB since it rapidly loses coherence. The time evolution of the operators
〈

â†â
〉

and | 〈â〉 |
for ζ = 0 (solid red curve) and ζ = Γ/5 are shown in (i)–(j), respectively. Parameters: Δ/Γ = 10 and U/Γ = 10.

initialized in a coherent state. In particular, both the Wigner functions in figures 2(b)–(e) and the evolution
of

〈
â†â

〉
and | 〈â〉 | (solid lines in figures 2(i) and (j)) show the presence of a slow-time scale in the k = 1

symmetry sector.
To remove the SSB and keep the second-order DPT, this time we consider an additional jump operator

of the form L̂ =
√
ζ Ĵ =

√
ζ exp

(
iπâ†â

)
. Again, there is no difference with the case for ζ = 0 in the

symmetry sector for k = 0, as it can be argued by the fact that the photon number in the steady state is
unchanged (figure 2(a)) as well as the time dynamics of

〈
â†â

〉
(figure 2(i)). However, the presence of ζ

significantly changes the sector k = 1, as it can be seen by analyzing the Wigner function in figures 2(f)–(h)
and the time evolution of | 〈â〉 | in figure 2(j).

We confirm again our predictions, and we show that, by adding an appropriate dissipator, we can
remove the SSB also in the case of this Z2 SSB.

6. Conclusions

In this article, we have proved that continuous DPTs can occur with and without an SSB. In particular, we
derived analytical conditions to remove SSB from any second-order DPT. As examples, we have analyzed a
paradigmatic non-equilibrium lasing system and a model characterized by a discrete Z2 symmetry. In both
cases, our analytical predictions are confirmed by the numerical simulations, demonstrating how
tremendously multiform and various are the non-equilibrium states, their dynamics, and their PTs.

The presented DPTs without SSB are, to our knowledge, a novel phenomenon, where dissipation plays a
fundamental role. This phenomenon opens questions concerning the mechanism of criticality in open
quantum systems. Our predictions can be experimentally tested with, e.g. superconducting circuits, where
physically engineered dissipation can be realized with state-of-the-art techniques.

From a fundamental point of view, the presence of second-order DPTs, where degeneracy can be
removed, is intriguing because it represents a shift from the Landau theory of PTs. An interesting question
would now be if it is possible, with similar mechanisms, to ‘reintroduce’ SSB in second-order DPTs without
SSB, such as that in reference [49]. Revealing a link, if any, with extensions of topological theories for DPTs
is one of our future objectives [45, 46]. Even though the models considered here were characterized by a
single order parameter, our results are valid, in general, for any multi-order parameter systems with any
global symmetry, e.g. open and/or dissipative extensions of thermal Z2-symmetric systems with
light–matter interactions [79, 80].
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