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Abstract

We examine the momentum and angular momentum (AM) properties of monochromatic optical
fields in dispersive and inhomogeneous isotropic media, using the Abraham- and Minkowski-type
approaches, as well as the kinetic (Poynting-like) and canonical (with separate spin and orbital degrees
of freedom) pictures. While the kinetic Abraham—Poynting momentum describes the energy flux and
the group velocity of the wave, the Minkowski-type quantities, with proper dispersion corrections,
describe the actual momentum and AM carried by the wave. The kinetic Minkowski-type momentum
and AM densities agree with phenomenological results derived by Philbin. Using the canonical spin—
orbital decomposition, previously used for free-space fields, we find the corresponding canonical
momentum, spin and orbital AM of light in a dispersive inhomogeneous medium. These acquire a
very natural form analogous to the Brillouin energy density and are valid for arbitrary structured fields.
The general theory is applied to a non-trivial example of a surface plasmon-polariton (SPP) wave ata
metal-vacuum interface. We show that the integral momentum of the SPP per particle corresponds to
the SPP wave vector, and hence exceeds the momentum of a photon in the vacuum. We also provide
the first accurate calculation of the transverse spin and orbital AM of the SPP. While the intrinsic
orbital AM vanishes, the transverse spin can change its sign depending on the SPP frequency.
Importantly, we present both macroscopic and microscopic calculations, thereby proving the validity
of the general phenomenological results. The microscopic theory also predicts a transverse
magnetization in the metal (i.e. a magnetic moment for the SPP) as well as the corresponding direct
magnetization current, which provides the difference between the Abraham and Minkowski
momenta.

1. Introduction and overview

1.1. Abraham and Minkowski momenta

The characterization of the momentum and angular momentum (AM) of light in continuous media is a long-
standing problem, with the Abraham—Minkowski discussion in its center; see [ 1-5] for reviews. Although
recently there were several works claiming the ‘resolution’ of the Abraham—Minkowski controversy [5-7],
debates on various aspects of optical momentum in media are still continuing. Naturally, different momenta can
manifest in different types of problems or experiments. For example, one can investigate optical forces acting on
the medium or on a small material probe in the medium [7—10]. On the other hand, one may wonder about the
momentum carried by the wave per se and characterizing wave parameters such as the velocity of its propagation
(phase or group) or wave vector [11-19]. In this work we mostly stick with the second approach. Throughout
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this paper we consider monochromatic waves with fixed frequency w;, lossless isotropic media described by
permittivity and permeability € and p (which can depend on w in the dispersive case), and cycle-averaged
dynamical properties (energy, momentum, and AM) of waves.

To recall the basics of the problem, we start with the Poynting momentum density of monochromatic light
in free space [20-22]:

Py = gkoRe(E* x H). (1.1)

Hereafter, we use Gaussian units’ with ¢ = (87w) ™!, kg = w/, and all free-space quantities are marked by the
subscript ‘0’. In a non-dispersive medium, the Abraham and Minkowski momentum densities are given by
[1-5]:

Pa = Pos Py = euPy. (1.2)

These two momenta are often interpreted as ‘kinetic’ and ‘canonical’ momenta of light, respectively [3-5,
7,11, 13,18]. In dispersive media, the Abraham momentum preserves its form, while the ‘canonical’ momentum
should be modified with dispersion-related terms [12—14, 16, 17]:

Pr = Py + {dispers. terms}, (1.3)

and the ‘naive’ Minkowski momentum (1.2) does not make physical sense. Hereafter, we mark by tilde all
quantities modified by the presence of dispersion. For simplicity, we will refer to the momentum (1.3) as to the
properly modified Minkowski momentum in a dispersive medium.

For the simplest optical fields—plane waves—in a transparent medium, the Abraham and Minkowski
momenta ‘per photon’ are reduced to the following simple form [3-5, 7, 11-14, 16-18]:

1 f
Py = -

Tk = —vg, Py = hk, (1.4)
fpng c

where n, = \/eji and n, = n, + wdn, /dw are the phase and group refractive indices of the medium,
respectively, v, = Ow/ 0k is the group velocity in the medium (v, = ¢/n,), and kis the wave vector in the
medium, with magnitude k = 1, ko.

Equations (1.4) shed light on the physical meaning of the Abraham and Minkowski momenta, which can be
associated with the group velocity and wave vector in the medium. This correspondence is very general [11, 18].
For example, even for inhomogeneous waves in non-transparent inhomogeneous media, such as surface
plasmon-polaritons (SPPs) at metal-vacuum interfaces [23], the group velocity is still determined by the integral
value of the Poynting (=Abraham) momentum [24]. At the same time, the conservation of the wave momentum
and momentum matching in various resonant problems involve Minkowski momentum, i.e., the wave vector in
the medium. The most known example is Snell’s law in the light refraction at planar interfaces [20, 22].
Furthermore, more subtle spin and orbital Hall effects (transverse beam shifts) in the refraction at planar
interfaces are intimately related to the conservation of the corresponding Minkowski AM based on the same
wavevector k [25-30].

However, there are problems, where the wave vector and corresponding momentum conservation are well
defined and observable, while using the Minkowski momentum faces difficulties. For instance, in evanescent or
surface waves, such as SPPs, the wave vector k exceeds k, in absolute value, and this ‘super-momentum’ higher than
h kg per photon is observable in momentum-transfer experiments [23, 31-35]. As we show below, the modified
Minkowski momentum (1.3) can explain these features when integrated in localized SPP waves, but not locally in
evanescent and other structured fields. This problem is related to another optical momentum dilemma.

1.2. Canonical and kinetic pictures in free space

Besides the Abraham—Minkowski debate, the momentum and AM oflight allow various descriptions even in free
space. There, it is also related to the ‘kinetic’ and ‘canonical’ quantities, but in a different sense. Namely, the well-
known Poynting momentum (1.1) corresponds to the kinetic momentum density, which appears in the
symmetrized (kinetic) energy—momentum tensor (EMT) of the electromagnetic field [36]. In this approach, the
total AM density is determined by the same Poynting vector [20-22, 36]:

._70 =r X P(). (15)

Despite its universal character, this formalism has several practical drawbacks. First, the Poynting momentum
and AM do not describe separately spin and orbital degrees of freedom of light. In particular, the AM density (1.5)
is extrinsic, i.e. depending on the choice of the coordinate origin, and characterizing the spin (intrinsic) AM
density is problematic in the Poynting formalism. At the same time, spin and orbital AM are widely explored as
independent degrees of freedom in modern optics [37-43] and also in quantum field theory [44, 45]. Second, the

For the conversion between Gaussian and SI units see appendix 4 in [20]. For the quantities used in this work, this conversion is realized via

E — J4meoE, H — (JdmpgH, ¢ — 1/ [Efiy, M — [y /A7 M, and {e, j, d} — {e, j, d} /{/4mep.
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Poynting vector looses its clear physical meaning in the case of structured (i.e., inhomogeneous) optical fields,
where it cannot explain local momentum transfer (including ‘super-momentum’) and optical radiation-
pressure forces [31-35,41, 46, 47].

The spin—orbital decomposition of the AM oflight, described in [48—54], appears naturally in the canonical
approach [35, 36,41, 44, 45,47, 54, 55]. Using the formalism dual-symmetric with respect to the electric and
magnetic fields [35, 41, 52, 54-57], the canonical momentum density of a monochromatic light in free space is
given by [35, 41, 54-56]:

P, = %Im[E* - (V)E + H* - (V)H]. (1.6)

This momentum describes only the orbital part of the AM, Lo, while the spin part is provided by an independent
intrinsic quantity Sy [35,41, 52, 54, 55, 57]:

Lo=r x P, Sy = %Im(E* x E + H* x H). (1.7)

Recently, it was shown that the canonical quantities (1.6) and (1.7) are much more suitable for the description of
the momentum and AM properties of free-space light than the kinetic Poynting characteristics (1.1) and (1.5). In
particular, the optical force and torque on a small electric-dipole particle or an atom are given by the electric
parts of the canonical momentum (1.6) and spin AM (1.7), respectively [35, 41, 46,47, 58—60]. This makes
canonical quantities directly measurable and immediately explaining numerous experiments involving spin/
orbital AM [35,41, 61-63] and structured light fields [31-35, 46, 47, 64]. Moreover, using canonical formalism
enabled prediction and description of unusual phenomena, such as unusual transverse spin AM in evanescent
and other structured fields [35, 41-43, 46, 65—68] and super-momentum transfer higher than ik, per photon
[31-35].

The canonical momentum density (1.6) can be written as a local expectation value of the quantum-
mechanical momentum operator p = —iV, and hence can be associated with the local phase gradient or local
wave vector K, of the field [33, 56]. This elucidates its canonical character, akin to the Minkowski momentum
(1.4). However, in contrast to equation (1.4), valid for a single plane wave, canonical momentum (1.6) describes
thelocal phase gradient in an arbitrary structured field, which can consist of multiple plane waves propagating in
different directions. In turn, the canonical spin AM density (1.7) describes the local ellipticity of the 3D
polarization of an arbitrary structured field.

The relation between the kinetic (Poynting) momentum % and canonical momentum Py in free space is
given by the spin—orbital momentum decomposition [35,41,47, 55, 56]:

1
Py =Py + Py, PS = EV X So. (1.8)

Here the canonical momentum P describes the orbital part (which determines the orbital AM L), while the spin
momentum Py is related to the spin AM S, via the non-local relation % f r x (V x SpdV = f Sy dV, valid for
any localized fields vanishing at infinity. Importantly, the spin momentum vanishes for plane waves and does

not contribute to the integral (expectation) value of the wave momentum for localized fields, so that the integral
kinetic and canonical momenta coincide:

(Po) = (Po). (1.9)

Here, (...) = f ... dV, and hereafter it denotes suitable spatial integrals for localized fields.

In terms of relativistic field theory, the canonical momentum and spin densities (1.6) and (1.7) originate
from the canonical energy—momentum and AM tensors, which are directly obtained from Noether’s theorem
applied to the electromagnetic field Lagrangian [36, 44, 45, 54, 55]. Two points should be emphasized here. First,
the original form of these canonical tensors involves the gauge-dependent electromagnetic vector potential A.
The standard procedure in this case is to consider only the ‘transverse’ (i.e., divergence-free) gauge-invariant
part of this potential, A, which for monochromatic fields is expressed via the wave electric field
A = —i(c/w)E [44,45,47-50, 52, 54, 55, 60]. Second, the standard electromagnetic-field Lagrangian is not
dual-symmetric with respect to the electric and magnetic fields. Due to this, it results in double electric-field parts
of quantities (1.6) and (1.7), with no magnetic-field parts [36, 44, 47, 60]. However, an alternative Lagrangian
formalism, dual-symmetrized between electric and magnetic contributions [55, 69, 70], produces the symmetric
quantities (1.6) and (1.7), more natural for free Maxwell fields [35, 41, 54-57, 59]. In this paper we employ the
dual-symmetric formalism [55] and show that it is more consistent with the canonical optical properties in
media than the dual-asymmetric (electric-biased) approach.

While the symmetrized (kinetic) EMT contains only the Poynting momentum density $, the canonical
EMT is non-symmetric, and contains both the Poynting vector %, acting as the energy flux density, and the
canonical momentum density Py. Remarkably, considering the EMT for electromagnetic waves in a medium,
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Dewar [11] and later Dodin and Fisch [18] found that the electromagnetic EMT in a (non-dispersive) medium
can be modified to the Minkowski form, where the Poynting energy flux and canonical momentum are
substituted by the Abraham (Poynting) and Minkowski momenta, $, and P, respectively. Schematically,
these different forms of the EMT's in free space and in media can be presented as follows:

0]
energy energy flux W, cFR ®w —V, W P,
- - c —
, stress tensor , ng
e — | S L
Energy-momentum tensor (EMT) Canonical EMT Modified canonical EMT
in free space Plane-wave-like form in a dispersionless medium
e.g. Soper (1976) [36] Dewar (1977) [11] Dewar (1977) [11]
Bliokh et al. (2013) [55] Dodin & Fisch (2012) [18]

(1.10)

This provides a qualitative link between the Abraham—Minkowski and kinetic-canonical (in the relativistic field-
theory sense) dilemmas.

Summarizing the above considerations, one should associate the Poynting—Abraham quantities with the
energy flux and group velocity of the wave-packet propagation, while the canonical and Minkowski quantities are
related to the momentum density carried by the wave and its wave-vector characteristics. At the same time, we
emphasize that the kinetic-canonical dilemma between %, and Py in the sense of relativistic field theory
originates from the separation of the spin and orbital degrees of freedom, while the Abraham—Minkowski
dilemma between P, and P, is related to the separation of the medium and field contributions to the
momentum. Therefore, one can consider the spin—orbital separation in both Abraham and Minkowski
momenta in a medium, as well as Abraham and Minkowski forms of the kinetic and canonical (orbital)
momenta in a medium, i.e., four types of momenta in the medium. In what follows, we use the ‘kinetic’ and
‘canonical’ characteristics in the field-theory sense of the spin—orbital separation, also explicitly indicating the
Abraham- and Minkowski-type quantities.

1.3. About this work

Here we aim to provide a complete Abraham—Minkowski and kinetic-canonical picture of optical momentum
and AM in dispersive and inhomogeneous (but isotropic and lossless) media. For the reader’s convenience, we
summarize all the quantities under discussion in table 1, indicating their forms in free space, dispersion-free, and
dispersive media. Our main emphasis in this work is on the Minkowski-type quantities, because these
correspond to the actual wave momentum, spin, and AM in the medium, in contrast to the Abraham-type
energy flux properties.

The paper is organized as follows. In this introductory section 1 we provided a general overview of the
problem. In section 2, we discuss the general momentum and AM expressions listed in table 1 and their
properties. Then, in section 3, we consider an explicit example of a SPP wave at a metal-vacuum interface.

This example (which to the best of our knowledge has never been considered in the Abraham—Minkowski
context) provides a perfect test for the momentum and AM properties of structured optical fields in dispersive
inhomogeneous media. The multiple advantages of the SPP system are as follows:

(i) SPP waves are well studied and readily achievable experimentally.

(ii) Even a single SPP wave is a structured field, for which the simplified plane-wave equation (1.4) are not
applicable.

(iii) SPPsexistatinterfaces, i.e. in essentially inhomogeneous media.

(iv) SPPs exhibit non-trivial momentum and AM properties, including super-momentum [31-35] and transverse
spin AM[35,41-43, 46, 65—68].

(v) Dispersion of the metal is crucial for the SPP properties.

Thus, SPPs provide both an accessible and highly non-trivial system to study optical momentum and AM.

In section 3 we apply the general expressions from table 1 to calculate the momentum and AM properties of
SPPs. In particular, we present the first accurate calculations of the canonical and Minkowski momenta, as well
as the transverse spin and orbital AM of a SPP. Notably, the integral canonical or Minkowski momentum of SPP
exceeds fik per particle, and this offers the first example of the integral super-momentum (previously known
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Table 1. Four possible pictures of the optical momentum and AM densities in free space, non-dispersive isotropic media, and dispersive
(generally inhomogeneous) media. The Abraham- and Minkowski-type, kinetic and canonical (spin—orbital) quantities are shown. In all
cases, the kinetic Abraham—Poynting momentum density Py = P describes the energy flux and group velocity of the wave, whereas the
canonical Minkowski-type momentum and spin densities Py; and Sy provide a clear and self-consistent picture of the momentum and AM
carried by the wave. In turn, the kinetic-Minkowski and canonical-Abraham quantities have less natural forms with cumbersome dispersive
and gradient corrections (indicated as { dispers.} and {grad.} here).

Kinetic picture Canonical (spin-orbital) picture
Abraham Minkowski Abraham Minkowski
(energy flux) | (wave momentum) (energy flux) (wave momentum)
1
. P <—Im|(E-(V)E+H-(V)H
e=1 kanRe(ExH) 2 [ ) ) ]
=1
g J,=rxP, Lo
S,e<—Im(E'xE+H xH)
2
Berry (2009) [56), Barnett (2010) [52], Bliokh et al (2013) [55]
P, o
_ eE-(V)E uH-(V)H |
€ P,=euP, b Im|: (v) M (V)
u g,=rxP=eng, | B 2 2
E-(V)E H-(V)H eE'XE uH xH
Im|: g ) " g ) :| SM XIm( " ‘u
P=F, g : 2
97 =4, +{grad .} P, o
5 . : ‘ EE-(V)E [H-(V)H |
e(0) PP, +({dispers} | g wp| EXE, HxH In{ (V) LA (V)
5 _ = : ! 2u 2e 2
(o) J,,=rx P, +{dispers.}
. EE'XE [H xH
S, e<Im e
Philbin (2012) [16,17], Bliokh et al (2012,2014) 2
This work [65,35] This work

onlylocally). Moreover, the intrinsic orbital AM of the SPP vanishes, whereas the integral transverse spin AM
can change its sign depending on parameters.

Importantly, in section 4, we provide microscopic calculations of the momentum and AM in SPPs. Taking
into account both microscopic electromagnetic fields and the motion of free electrons in the metal, we obtain
the Minkowski and canonical quantities previously introduced using macroscopic phenomenological
considerations. This validates the use of these quantities for structured optical fields in dispersive and
inhomogeneous media. Moreover, the microscopic theory predicts a transverse magnetization in the metal (i.e. a
magnetic moment for the SPP) as well as the corresponding direct magnetization current , which corresponds to
the difference between the Abraham and Minkowski-type momenta.

Finally, in section 5, we briefly discuss issues related to the dual symmetry between electric- and magnetic-
field contributions. We show that while integral electric and magnetic conributions to the momentum and spin
are equal for localized fields in free space [52, 55], this is not the case for localized fields in media. Most
importantly, we find that the microscopic calculations of section 4 are only compatible with the dual-symmetric
(rather than electric-biased) forms of the canonical quantities.

We should also briefly mention preceding works, which considered some of the above aspects of SPPs. First,
Nakamura [71] performed microscopic calculations of the transverse AM of SPPs. Although results of that work
are erroneous in several aspects (calculation errors, mixing of the spin and orbital AM, etc), its methodology
inspired us to perform microscopic calculations presented in section 4. Second, Kim and Wang aimed to
calculated Abraham and ‘naive’ Minkowski (without dispersion terms) versions of the transverse spin AM in
SPPs [72—74]. However, their results are also misleading. First, the definitions in [72—74] do not describe the
Abraham-type spin, which was properly defined and calculated in [35, 65], and which corresponds to an energy-
flux property rather than the actual spin AM carried by the wave. Second, the ‘naive’ Minkowski expressions are
not applicable to waves in dispersive media and lead to erroneous results. Thus, the first accurate calculation of
the transverse spin and other ‘canonical’ characteristics of SPPs are provided in the present work.
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2. Momentum and AM of light in dispersive inhomogeneous media

Throughout this paper we consider monochromatic electric and magnetic fields: £(r, t) = Re[E(r)e ] and
H(r, t) = Re[H(r)e “*]. The main independent dynamical properties of light are: energy, momentum, as well
as spin and orbital AM. One can also add here helicity, which is an independent conserved quantity

[55,57,59, 69,70, 75-79]. The momentum and AM characteristics, both kinetic and canonical, for
monochromatic free-space fields are given by equations (1.1) and (1.5)—(1.8). For completeness, here we add the
energy density [20-22]:

()
%z%ﬂW+mm @.1)

We now consider an isotropic lossless dispersive and inhomogeneous medium, which is characterized by the
real frequency-dependent permittivity € (w, r) and permeability 1 (w, r). In this case, the complex field
amplitudes satisfy stationary Maxwell equations:

V - (uH) = 0, uH:—kLVxE,
0

V - (¢E) = 0, cE = LV x H. 2.2)
0
Note that these source-free equations are used in the decomposition of the Poynting momentum density into
canonical and spin parts, equation (1.8).
The energy density of a monochromatic optical field in such a medium is described by the well-known
Brillouin expression [20, 22]:

W= %W(EIEIZ + AHP), (2.3)
where
§:€+wd—€, ﬂzu—kwd—u. (2.4)
dw dw

Describing the optical momentum density in a medium is a more sophisticated problem. On the one hand,
the Abraham momentum %, preserves its Poynting-vector form (1.2) in the medium. By analogy with the
canonical decomposition (1.8), one can decompose it into orbital and spin parts,

Py =Py + P, =P, + %V X Su, where:

Py = %Im[u‘lE* - (V)E + e 1H* - (V)H]—%[Vﬂ‘l x Im(E* x E) + Ve~! x Im(H* x H)]

+§[5E(E* Ve + EHE* - Vul)], (2.5)
2\ p €
Sy = %Im(;flE* % E + e 'H* x H). (2.6)

This spin—orbital decomposition was introduced in [65] (up to the missing last term in square brackets in (2.5))
and was used in [35, 46, 80] because of its convenience in homogeneous media. However, in inhomogeneous
media, the canonical momentum density (2.5) acquires cumbersome gradient terms. Moreover, the physical
interpretation of the quantities (2.5) and (2.6) is not quite clear. Indeed, as we discussed above, the Abraham
momentum %, should be associated with the energy flux density and group velocity (1.10) rather than with the
wave momentum density. Therefore, the Abraham-type quantities (2.5) and (2.6) correspond to the orbital and
spin parts of the energy flux density, but cannot be regarded as canonical momentum and spin densities in the
wave. In addition, at interfaces between media, the Abraham-type spin density (2.6) is discontinuous, and the
corresponding gradient terms in equation (2.5) produce singular delta-function contributions to the canonical
and spin momentum densities Py and P5, [65]. This makes the Abraham-type spin—orbital decomposition
imperfect. Note also that, similarly to the free-space equations (1.8) and (1.9), the solenoidal spin part of the
energy flux does not contribute to the plane-wave and integral characteristics:

(Pa) = (Pa). 2.7)

Therefore, in some plane-wave or integral calculations it could be more convenient to use equation (2.5) as the
energy flux density.

To describe physically meaningful momentum and AM densities in the optical field, one should use the
Minkowski momentum. Its simple form (1.2) is not valid in the presence of dispersion, and several works
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discussed modifications of the Minkowski-type wave momentum in a dispersive medium [12-14, 16, 17]. The
most general expression, suitable for structured wave fields was derived by Philbin [ 16, 17] using the
phenomenological Lagrangian formalism and Noether’s theorem:

Py = Py + 8w m[d_EE* (V)E + d—’uH* . (V)H]. (2.8)
2 dw dw

Here, the first term is the ‘naive’ Minkowski momentum (1.2), while the second term describes the dispersion-
related correction. For a plane wave in a transparent homogeneous medium, the Abraham and modified-
Minkowski momenta $, and P yield simplified equation (1.4) [3-5,7, 11-14, 16-18].

Since the Minkowski-type momentum (2.8) represents ‘canonical’ wave-vector properties of the wave, it
makes sense to find the spin—orbital decomposition, similar to equation (1.8), and introduce the corresponding
canonical spin and orbital properties. In doing so, we apply the standard Poynting-vector decomposition (1.8) to
the first (Minkowski) term in equation (2.8) and add the second dispersive term to the orbital part (because of its
natural orbital form). This resultsin Py, = Py + waz

Py = %Im[gE* - (V)E + fH* - (V)H], (2.9)

P, = %V X Surs Sy = %Im(eE* x E + pH* x H). (2.10)

Notably, the canonical (orbital) momentum density (2.9) has a nice form similar to the free-space momentum
(1.6) with the & and fi multipliers, exactly as in the Brillouin energy density (2.3). Furthermore, the
momentum (2.9) is free of cumbersome gradient terms, present in the canonical Abraham-type momentum
(2.5). However, the quantity Sy, in equation (2.10) is the ‘naive’ Minkowski spin AM density, which lacks
dispersive corrections. As we show below, this is not the canonical spin AM density of the wave. Notably, in
the SPP example considered below, the quantity Sy, is continuous at the interface, and therefore the canonical
and spin parts of the modified Minkowski momentum density, By; and P$,, are free of delta-function
singularities. This makes the Minkowski-type spin—orbital decomposition more appealing than the Abraham
one.

Akin to equations (1.8), (1.9), and (2.7), the solenoidal spin momentum (2.10) vanishes for plane waves and
does not contribute to the integral momentum values. Therefore, the integral values of the kinetic and canonical
Minkowski-type momenta (2.8) and (2.9) coincide for localized fields:

(Py) = (Pur). (2.11)

Thus, one can use either of these momenta in calculations of the integral or plane-wave properties.

To determine the canonical spin and orbital AM in a dispersive medium, we start with the kinetic (total)
Minkowski-type AM. Again, the Minkowski-type analog of equation (1.5) in a dispersive medium was found by
Philbin and Allanson [17]:

Fu=r1 x Py + g—wlm[d—EE* w B4+ Sy H]. 2.12)
2 dw dw

Importantly, the AM density (2.12) breaks the simple relation (1.5) between the kinetic momentum and AM
densities, Ju = r X $y, and contains a dispersion-related correction of the spin-like local form. Substituting
Py = Py + P}, with equations (2.9) and (2.10) into equation (2.12) and using the nonlocal relation between

the spin momentum and spin AM, % f r x (V x Sy)dV = f Sy AV, we derive the canonical orbital and spin

AM densities in a dispersive medium:

Sy = %Im(éE* x E + gH* x H), [y =1 x Py (2.13)

Here the dispersion terms from equation (2.12) correct the ‘naive’ Minkowski spin density Sys. Remarkably,
equations (2.13) have a very nice form, similar to the free-space equation (1.7), but now with the same & and [
multipliers as in the Brillouin energy density (2.3) and canonical momentum density (2.9). The integral values of
the kinetic and canonical AM (2.12) and (2.13) coincide for localized fields:

7
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(Tm) = (Sm) + (L) (2.14)

Equations (2.3), (2.9), and (2.13) constitute a set of canonical characteristics of a monochromatic lightin a
dispersive and inhomogeneous medium. Importantly, these can be written as local expectation values of
quantum-mechanical energy (w), momentum (p = —iV), and spin-1 S) operators [35, 54—56, 59]:

W= @lwl ¥), Py =Re@pl ¥),  Su= @IS ¢),  Lu=Re@lr x p| ¥), (2.15)
using the following wave-function:
_ |8 v1/2(E N ~ (€0
o= [Ean(E) wwr=we w=(5 %) 2.16)

Exactly the same formalism for electromagnetic bi-linear forms (including Berry connection and other
topological characteristics) in dispersive media was recently suggested in works by Silveirinha [81-83]. Thus, the
above equations bring together approaches developed by (i) Philbin (kinetic Minkowski-type momentum and
AM in dispersive media) [16, 17], (ii) Bliokh et al (canonical momentum and AM pictures in free space)
[35,41,52,55, 56], and (iii) Silveirinha (electromagnetic bi-linear forms in dispersive media) [81-83].

The natural form of the energy, momentum, and AM in equations (2.3), (2.9), (2.13), and (2.15) suggests that
the canonical form of the Minkowski-type momentum and AM densities is more suitable for the description of
the optical momentum and AM than the previously used kinetic Minkowski-type approach, equations (2.8) and
(2.12), and the Abraham-type quantities (2.5) and (2.6). For example, consider a polarized plane wave
propagating in a homogeneous dispersive medium. All field components have the same phase factor exp(ik - r),
the electric and magnetic field amplitudes are related by |E|* /i = |H|? /¢, whereas the ellipticity of the
polarization can be characterized by the helicity o, such that Im(E* x E) = o |E[’k (and a similar equation for
the magnetic field), where k = k/k characterizes the direction of the wave propagation. Using these simple
properties, from equations (2.3), (2.5), (2.6), (2.9) and (2.13), we readily obtain the ratios of the canonical
Abraham- and Minkowski-type momentum and spin densities to the energy density of the wave:

P Lk Pu_k o S 1 op Sw _og 2.17)
w fphy W w w w fphy W w w

The first two of these equations exactly correspond to equation (1.4), whereas the other two equations provide
their counterparts for the spin AM (see [17, 84]). In this manner, the Minkowski-type momentum Py, and spin
AM S, correspond to the values 7k and fick per photon, as one would expect for photons, the Abraham-type
momentum P4 determines the group velocity (1.4), while the Abraham-type spin S, does not have a clear
physical meaning.

Itis important to note that it is the Minkowski-type wave momentum and AM that are conserved in media
with the corresponding translational and rotational symmetries. First, this follows in the most general form
from the results of [16, 17], where the kinetic quantities (2.8) and (2.12) were derived from Noether’s theorem.
In view of equations (2.11) and (2.14), this is also true for the canonical Minkowski-type quantities (2.9) and
(2.13). Second, in the plane-wave equation (2.17), the Minkowski-type momentum and spin exactly correspond
to the tangent-momentum and normal-AM conservation laws in the wave refraction at an interface between two
media [20, 22, 25-30] (Snell’s law and optical beam shifts).

In this section we presented a macroscopic phenomenological introduction of these quantities. Below,
considering SPPs at the vacuum-metal interface, we show that this macroscopic model is in exact agreement
with microscopic calculations taking into account separate electron and field contributions. It should be also
noted thatin the absence of dispersion, & = €, i = u, and both kinetic and canonical characteristics discussed
in this section acquire simplified Minkowski forms, shown in table 1.

3. Macroscopic calculations for a SPP

3.1. SPP fields and parameters

We now consider an explicit example of a structured optical field in a dispersive and inhomogeneous medium: a
SPP at the metal-vacuum interface [23]. The geometry of the problem is shown in figure 1(a), where the interface
isthe x = 0 plane with the vacuum in the x > 0 half-space (medium 1) and metal in the x < 0half-space
(medium 2), whereas the SPP wave propagates along the z-axis with the wavevector k, = k,Z (hereafter, X, ¥,
and Z denote the unit vectors of the corresponding axes). The permittivity and permeability of the metal are
given using the standard plasma model [23]:

|E
[SH a2

w=1, ew=1-— . 3.1)

w
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Figure 1. (a) Schematic picture of a surface plasmon-polariton (SPP) wave at the metal-vacuum interface [23]. The subluminal group
velocity (3.8), super-momentum (3.9), and the transverse spin (3.14) are schematically shown. (b) The dispersion of the SPP, w(k,),
obtained from equations (3.1) and (3.3).

Here, w; = 4mnge?/mis the plasma frequency, where n, is the volume density of free electrons in the metal,
e < 0isthe electron charge, and m is the electron mass. Thus, the metal is a dispersive medium with
E=1+ w?, / w? = €. SPPsare electromagnetic surface TM waves that exist at frequencies w < wj / V2 where
e < —1[23].
The electric and magnetic fields of a single SPP wave can be written as [23, 24, 65]:

(i — 1%2] exp(ik,z — K1x), x>0

E=A ’ (3.2a)
1 X + 25 exp(ikyz + Kax), x <0
€ k,
ko .
yk— exp(iky,z — Kix), x>0
H=A kP (3.2b)
Vk—o exp(ikyz + Kyx), x <0
P
where A is the field amplitude, whereas the wave number and spatial decay constants of the SPP field are:
J=F 1 —€
ky = ———ko, K1 = —ko, Ky = ———kq. 3.3
p o 1 o 2 A (3.3)

The vacuum part of the SPP fields (3.2) and (3.3) is a free-space TM-polarized evanescent wave with
k; — ki = k. From equations (3.1) and (3.3), one can obtain the dependence k,(w) and the dispersion of the
SPP, w(k,), shown in figure 1(b).

3.2. Energy, group velocity, and momentum of SPPs
Substituting equations (3.2) and (3.3) into equation (2.3), we obtain the energy density distribution in the SPP
field:

exp(—2k1x), x>0

W=glAPwi1 — 2 . 3.4
glAl 1%exp@mx), x<0 (34)

Note that the distribution (3.4) is discontinuous at the interface x = 0. Since SPP field is localized along the x
coordinate, we can also calculate the integral ‘expectation value’ of the SPP energy integrating W over x:

A|2i(1 — )1 + &2

W) =
(W) =gl PN

(3.5)

o0
where (...) = f ... dx. In what follows, we express the integral momentum and AM characteristics of SPPs
—00

with respect to the energy (3.5), in order to highlight their values ‘per plasmon’. From the energy-density
distribution, we also find the position of the center of energy along the x-axis:

9
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Figure 2. The integral energy (3.5) and center-of-energy position (3.6) versus the SPP frequency w.

1 1 14248

<x>:Wj:medx:_£7(l+Ez)\/__

(3.6)

It follows from here that for w < w, /1.57 the energy centroid is located in the vacuum: (x) > 0, while for
wp/1.57 < w < w,/~/2 itmoves into the metal: (x) < 0.Dependences of the integral energy (3.5) and center-
of-energy position (3.6) on the SPP frequency are shown in figure 2.

The Abraham—Poynting momentum density, or rather the energy flux, equations (1.1) and (1.2), for the SPP
fields (3.2) and (3.3) yields

5 |exp(—2k1x), x>0

Py =glAPzZ

1 . (3.7)
k, ;exp(Zmzx), x<0

Note that this flux is negative (backward) inside the metal, producing a vortex-like energy circulation in SPP wave
packets [24, 65, 85]. Nonetheless, the integral energy flux () is positive, and, in ratio to the energy (3.5), it
determines the group velocity of SPPs [24, 86]:

W P vEECL—e? dw (3.8)
) 1+ &2 ok, '

NI

Importantly, the absolute value of the group velocity (3.8) is always subluminal: v, < c, which corresponds
to the subluminal propagation of a SPP wave packet. This also means that the integral Abraham momentum is
smaller than hik, ‘per plasmon’. Although the plane-wave homogenous-medium equations (1.4) and (2.17) are
not directly applicable to the structured SPP wave at the metal-vacuum interface, the group velocity (3.8) can

be written in the form v, = ¢ / nc™ where we introduced an effective phase refractive index for SPPs, n;ff =

k,/ko > 1, and the corresponding effective group index n;ff = n;ff +w dnlfff / dw > 1. This shows that the
relations (1.4) between the Abraham energy flux, group velocity, and refractive indices are rather general and can
be extended, using integral expectation values, to localized states in inhomogeneous media. The frequency
dependence of the SPP group velocity (3.8) is depicted in figure 3(a).

The orbital and spin parts of the energy flux (3.7), P4 and P5, = %V X Su, equations (2.5) and (2.6), have
been analyzed for SPPs in [65], and we do not reproduce these here. We just recall that these parts have singular
delta-function contributions at the interface x = 0 due to the gradient terms in equation (2.5) and discontinuity
of the Abraham spin (2.6) S4 (shown below). These singular contributions are crucial to satisfy equation (2.7).

We now calculate the Minkowski-type momentum for the SPP fields. It has a more natural form in the
canonical approach. Indeed, using equation (2.9), we readily obtain for the field (3.2) with the common

exp(ik,z) phase factor:

W)

1]
e | =
1]

Z. (3.9
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Figure 3. The group velocity (3.8) and integral Minkowski-type momentum (3.9) of a SPP versus frequency. While the group velocity
is always sub-luminal, v, < c, the integral momentum of SPP corresponds to the super-momentum #k, > hk, ‘per plasmon’.

Note that the momentum density Py, is positive both in the vacuum and in metal, in contrast to the energy flux
(3.7). Moreover, it does not have delta-function singularities at the interface, in contrast to the canonical Abraham-
type momentum P, [65].

Assuming that the energy is quantized as fiw ‘per plasmon’, equations (3.9) mean that the SPP carries super-
momentum hk, > hk, per plasmon. Remarkably, so far the super-momentum was described only locally, in
evanescent waves or near optical vortices [31-35, 56, 87, 88]. At the same time, the integral momentum for any
localized wave field in free space is always less than 71k, per photon [33]. Equations (3.9) show an example of the
integral super-momentum. Of course, one can say that a canonical momentum higher than ik, per photon
appears in any medium with phase refractive index n, > 1. Equations (3.9) can also be written in the form of

equations (1.4) and (2.17) with k = k,Z and effective refractive index n;ff = ky /ko > 1. However, in the case of
SPP waves, this effective refractive index originates from the inhomogeneous evanescent character of surface

waves rather than from the high permittivity of the medium. Indeed, in the limit w — Wp / J2 , wehave

eff
P
‘superluminal group velocity’ [33, 88], our present analysis shows that it should rather be considered as a pure

momentum property, while the group velocity is determined by the Poynting—Abraham energy flux and is

nS' — oo, while e — —1. Note that although in some works the super-momentum was interpreted as a

always subluminal. The frequency dependence of the ratio of the SPP momentum (3.9) and energy is shown in
figure 3(b).

According to equation (2.11), the kinetic form of the Minkowski-type momentum (2.8) has the same integral
value (3.9), but its local density does not exhibit the nice proportionality to the energy density as in
equation (3.9):

5 exp(—2k1x), x>0

Pu=glAP27d1 — 2 3.10
Pu = glAl pZ 71 et2e exp(2ryx), x<O0. ( )
e(l + ¢)

Moreover, this momentum density coincides with the Poynting—Abraham one in the vacuum. Therefore, for
x> 0,cPy/W = cPy/W =k /ky < 1, and the kinetic Minkowski-type momentum (3.10) cannot explain
the local super-momentum density in the vacuum evanescent field, cPy; /W = ky, /ko > 1, which is described by
the canonical momentum (3.9) and is observed experimentally [31-33]. Comparing equations (3.8)—(3.10),
together with the singular character of the canonical Abraham-type momentum P4 [65], confirms that the
canonical picture is more natural for the description of the Minkowski-type wave momentum, while the kinetic
approach is more suitable for the characterization of the Abraham-type energy fluxes, see table 1.

3.3. Spin and orbital AM of SPPs

We are now in the position to determine the spin and orbital AM of SPPs. Akin to the momentum of SPPs, these
should be described using the Minkowski-type canonical picture. However, for completeness and comparison
with other approaches, we first calculate the Abraham-type spin density (2.6) and its integral value. With the SPP
fields (3.2) and (3.3), we obtain:

11



10P Publishing

NewJ. Phys. 19 (2017) 123014 KY Bliokh et al
ols) @ _o(L)®
()04 ) 4] (W)° ‘
0.2 N

7

1 e e Y-
: -2
-0.2 ;
; -3
0.4 !
N Lo
00 02 04 06 08 10 —_—— 0 02 04 06 08 10
a)P P

Figure 4. (a) The integral Abraham-type transverse spin (3.12) and proper canonical Minkowski-type transverse spin (3.14) of the SPP
versus frequency. In contrast to the positive Abraham-type spin, the Minkowski-type spin can have different directions and vanishes
for w = w, / J3.(b) The frequency dependences of the intrinsic (3.15) and extrinsic (with respect to the interface x = 0) (3.16)
orbital angular momentum (AM) of the SPP. The vanishing intrinsic part means that the canonical momentum density (3.9) does not
exhibit any vortex-like circulation, in contrast to the Poynting—Abraham energy flux (3.7) [24, 65, 85]. In turn, the extrinsic orbital
AM originates from the shifted energy centroid of the SPP, equation (3.6) and figure 2(b).

ﬂexp(—me), x>0
P

Si=glaPyy (.11)
fz—k exp(2ryx), x <0
e°kp
(=1 —e)v=e (W) _
Su) = . 3.12
(Sa) 1+ 22 B Yy ( )

This is the transverse helicity-independent spin, first described in [65] and now attracting considerable attention
[35,41-43, 46, 66—-68]. We wrote equation (3.11) using the x; , /k, factors to conform with the known results for

the transverse spin in an evanescent wave in free space [35,41-43]: Sy, = %% for x > 0.Equation (3.11) shows
P

that the Abraham-type spin density S, is discontinuous at the interface x = 0. Asaresult of this, the canonical
and spin parts of the Abraham—Poynting energy flux have delta-function singularities [65], originating from the
gradient terms in equation (2.5). Note also that the integral value (S,) is always positive and is in agreement with
calculations of [65] up to a factor of 2 missing there. (The missing factor of 2 in [65] originates from the improper

application of the relation (S4) = f (r x Pi) dx = % f r x (V x S,) dx to the z-delocalized SPP wave,

involving only the term 0S,, /Ox under the integral. In fact, this relation is valid only for localized wave packets
involving two terms: 9Sy, /0x and 05y, /0z). At the same time, calculations of the integral Abraham spin ‘per
particle’ for surface Maxwell modes in [89] are not applicable in the SPP case because a dispersion-free model
without proper Brillouin energy (2.3) was considered there. The frequency dependence of the Abraham-type
spin (3.12) (in units of / ‘per plasmon’) is shown in figure 4(a).

We now calculate the properly defined canonical Minkowski-type spin and orbital AM (2.13). Substituting
equations (3.2) and (3.3) into equation (2.13), we find:

ﬁexp(fZIﬁx), x>0
P
Ky2 — ¢

2
k, ¢

Su =glAPy (3.13)

exp(2r,x), x < 0.

The spin AM density (3.13) is directed oppositely in the vacaum and metal: S, < 0 for x < 0. This agrees
with the opposite direction of rotation of the electric field E in the metal, equation (3.2a), but is in contrast to
what is obtained for the ‘naive’ Minkowski spin (2.10), positive in the metal: Sp;,, > 0for x < 0[72-74]. (Here
we do not show the distribution of Sy, equation (2.10), and only note that it is continuous at the interface x = 0;
this assures the non-singular character of the canonical momentum Py, equation (2.9), which does not have any
gradient corrections.) This proves that taking into account the dispersion-related corrections is crucial for
determining the transverse spin and other dynamical properties of light in a dispersive medium. The integral
expectation value of the spin AM (3.13) becomes:
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(3.14)

_ (2 -9v=E (W)
1+ &2 w v

(Sm)

Equation (3.14) provides the first accurate calculation of the transverse spin AM carried by a SPP. In contrast to
the Abraham-like spin (3.12) considered before, its direction can vary depending on the SPP frequency. Namely,
itis positive, <§My> > 0,forw < wp/\/g and negative, <§My) < 0, for wp/\/g <w< wp/ﬁ, so that it
vanishesat w = w, / /3. The frequency dependence of the Minkowski-type spin (3.14) (in units of /i per
plasmon) is shown in figure 4(a). Note that its absolute value never exceeds /2 per plasmon; this is because of
the pure-electric origin of the transverse spin, with no magnetic part. Interestingly, the critical zero-spin value
w=w / J3,0re = -2, corresponds to the elliptical (x, z)-polarizations of the electric field (3.2) with the axes
ratios /2 and 1/+/2 (i.e., identical ellipticities but different orientations), and opposite directions of the
rotation, in the vacuum and metal, respectively.

The orbital AM density in the SPP field is determined by equation (2.13) and the canonical momentum
density (3.9): Ly = r x Py. This quantity s extrinsic, i.e., depends on the choice of the coordinate origin.
However, the expectation value of the orbital AM can have both extrinsic and intrinsic contributions [41]. The
intrinsic orbital AM is calculated with respect to the centroid of the energy density distribution. Using the
x-shifted centroid (3.6) and z-directed momentum density (3.9), we calculate the y-directed intrinsic orbital AM
of the SPP:

(L) = 7 [ o = () Py dx = 0. (3.15)

Thus, the intrinsic orbital AM of SPP vanishes. This is because of the proportionality between the canonical
momentum density (3.9) and energy density (3.4), which in turn determines the centroid (3.6). The vanishing
intrinsic orbital AM (3.15) reflects the non-vortex character of the canonical momentum (3.9), in contrast to the
circulating Abraham-type energy fluxes [24, 65, 85]. The extrinsic part of the orbital AM, calculated with respect
to the interface x = 0, can be written as:

Fexty ¢ o\ gEinty 5, A+ g2+ (W)_
<LM> = <LM> <LM> = Y<x> <PMZ> - 2(1 + 62)\/—_5 w :

This quantity can change its sign depending on the sign of (x). The frequency dependences of the intrinsic and
extrinsic parts of the Minkowski-type orbital AM, equations (3.15) and (3.16), (in units of /2 per plasmon) are
shown in figure 4(b).

Below we examine the microscopic model of fields and electrons in the metal, which confirms the above
phenomenological calculations and Minkowski-type picture of the momentum and AM of SPPs.

(3.16)

4. Microscopic calculations for a SPP

4.1. Microscopic fields and parameters of electron plasma

The microscopic approach is based on the separation of the microscopic electromagnetic field (E, H) and
charges/currents inside the medium. In our case, the metal can be described using the Bloch hydrodynamic
model for electron plasma. In this model, the electron density is written as n(r, t) = ny + 7(r, t), where n is
the uniform unperturbed density of free electrons (which neutralizes positive charges of background motionless
ions), and 7 is a small perturbation of the electron density caused by the interaction with electromagnetic wave
fields. The local electron velocity is given by v(r, t). Considering a monochromatic linear problem, we
introduce complex amplitudes for perturbations of electron properties, 7(r, t) = Re[#i(r)e“']and

v(r, t) = Re[¥(r)e '], and the time derivatives become 0/t — —iw, entirely similar to complex field
amplitudes. Microscopic electromagnetic fields always occur in free space (i.e., there is no effective medium,

¢ = p = 1), but the Maxwell equations are modified by the presence of charges and currents [22]:

V-H=0, H=-—V xE,
0
V - E = 4rei, E= LV x H_ 2Ty, (4.1)
0 w
These equations describe the influence of the electrons on the fields. The back action is described by the
hydrodynamic equation for the electron gas [71]:
—iwngm¥ = enyBE — mB*Vi. (4.2)
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This equation is a classical equation of motion of the electron in the electric field E (the Lorentz force from the
magnetic field vanishes in the linear problem) with the additional quantum pressure term involving the
coefficient 32 = (3/5)v{, where v is the Fermi velocity of electrons. Our classical treatment of the SPP wave
implies the limit 3> — 0. However, we cannot omit the last term in equation (4.2) from the beginning because it
is crucial to satisfy the boundary conditions at the metal-vacuum discontinuity, x = 0.

Solving equations (4.1) and (4.2) with standard boundary conditions at the metal-vacuum interface
(continuity of Ey, E,, Hy, and vanishing of 1;) yields the microscopic electric and magnetic fields as well as
electron plasma properties in the SPP wave. The magnetic field (both in the vacuum and in the metal) and
electric field in the vacuum are still described by the macroscopic equation (3.2) with parameters (3.1) and (3.3),
while the electric field inside the metal becomes:

A y IV kp N K2 oxls .

E=—9[-0 - g)e* + X + i[ —(1 — e) =™ + —e"™*|Zrexp(ikyz), x <O. 4.3)
€ ¥ k,

Here v? = k; — ew?/[3% westill use ¢ asa parameter given by equation (3.1),and 3% — 0 implies v — oo.

The electron density and velocity perturbations in SPPs are given by:

_ k2
i = Ac 1[7 — —P]e"”‘ exp(ikyz), x <0, (4.4)
4me € 0
~ A e e . kp Ry . _ .
V= i——| (=" + ™)X + i| ——e* + —e™*|Z |exp(ikyz), x < 0. (4.5)
€ mw y k,

We can now consider the classical limit ¥ — oo. Since the vy-terms appear only in the metal half-space
x < 0, one can use the limiting transition y exp(yx) — 6 (x), where the delta-function describes surface effects
at the interface. After doing so, the electric field (4.3) becomes equal to the macroscopic one, equation (3.2), while

the electron density vanishes in the volume, 7i = 0 for x < 0, and acquires a surface delta-function singularity:
~ Ae—1
il =—

4e

exp(ik,z) 0 (x). (4.6)

As we show below, this singularity is cancelled by another singularity in field gradients, and all dynamical
properties of the SPP wave are determined by volume contributions in the metal and in the vacuum. Finally, the
electron velocity (4.5) becomes proportional to the electric field (3.2) (which follows from equation (4.2) at

6= 0):

V= iéL(i + iﬂi) exp(ikyz + Kox) = iE, x < 0. (4.7)
€ mw k, mw

Note that it is the vanishing of the electron density perturbation 7 in volume that makes the microscopic fields
‘transverse’, i.e., divergence-free: V - E = 0. Because of this, we do not need to consider contributions of
‘longitudinal’ (i.e., curl-free) fields to the energy, momentum, and AM [90].

In addition to the point-charge features of electrons, we will need their electric-dipole properties. Since
velocity is a time derivative of the position of the electron, we can write the complex amplitude of the electron
displacementas @ = 5\7 From here, the complex amplitude of the density of the electron dipole moment is:

inge _
V.

d= npea = (4.8)
w
Substituting here equation (4.7), we can write the dipole-moment density (4.8) as:
2
~ —1
d=ak, o=_0¢ _ £~ (4.9)
mw? 47

Here o is the dipole polarizability of the electron gas, and the last equality shows that it is in perfect agreement
with the macroscopic theory based on the permittivity € [22]. Indeed, substituting the velocity (4.7) into
Maxwell equation (4.1) for microscopic fields, we immediately obtain the source-free Maxwell equation (2.2) for
macroscopic fields with permittivity €.

4.2. Microscopic calculations of energy and momentum densities
In the vacuum half-space x > 0, the microscopic and macroscopic electromagnetic fields and their properties
coincide, so we have to compare only the macroscopic and microscopic properties in the metal. Hereafter, we
consider all quantities only in the x < 0 half-space.

The cycle-averaged energy density in the system of microscopic electromagnetic fields and electrons can be
written as:
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LLLIUE i ARV (4.10)

- w

W= SEOEP + [HP) +
Here the first term is the microscopic-field energy (written as for free-space fields, equation (2.1)), and the
second term is the kinetic energy of electrons. Note that the latter can also be presented as the energy of the
dipole (4.8) and (4.9) in the electric field: W, = —% Re(d>|< -E)=— ia|E|2. Substituting fields (3.2) and
velocity (4.7) into equation (4.10) results in the macroscopic energy density W, equation (3.4),at x < 0. Thus,
the microscopic and macroscopic calculations are in perfect agreement. The field and electron contributions in
the metal are:

1 2 - 1 — ¢)? ~
Wy = LW, Whnat = ﬁw. (4.11)

2(1 — e + €% 2(1 — e + &%)

The momentum density in the microscopic approach is also the sum of the field and electron contributions.
The velocity of electrons in external fields is associated with the kinetic rather than canonical momentum of
electrons, and, therefore, we consider the corresponding kinetic momentum density of the field. (It is worth
noticing that the canonical electron momentum in the metal vanishes: p = mv + %A =mv — i“E =0,
where we used the relation A = — i%E for the transverse vector potential and equation (4.7).) For the
microscopic field, the kinetic field momentum is given by the Poynting vector (1.1), i.e. the Abraham
momentum. Below we show that adding it to the kinetic electron momentum yields the kinetic Minkowski-type
momentum density (2.8) suggested by Philbin [16, 17]:

P = gkoRe(E* x H) + Prat = Po + Prnar- (4.12)

The calculation of the electron contribution £, requires a more sophisticated approach. Indeed, the simple
expression nymv = 1—“E (with oscillating, zero-average ¥) for point electrons does not provide a meaningful
result; instead of this, one has to consider an optical force acting on electric dipoles (4.8) and (4.9). We follow the
formalism described in the review [4], section 5.1 therein.

Namely, we consider along but finite wave packet instead of a monochromatic continuous wave.
Afterwards, the length of the wave packet can be tend to infinity. Introducing slowly varying amplitudes
E(r) — E(r, t), H(r) — H(r, t), etc, with the typical scale of the t-variations much larger than w™!, involves
the corresponding narrow but finite frequency Fourier spectrum centered at w. This produces the first-order
Taylor-series correction to the relation (4.9) between the dipole moment and electric field:

d(r, 1) = a@W)E@, 1) + 192 BE D (4.13)
dw Ot
Next, we consider the cycle-averaged force density acting on the dipole moment (4.13) in an external
electromagnetic field [4]:
1 % ~k 10 ~x
F=—Reld - V)E+d x(VXE) +——(d" x H)| (4.14)
2 c ot
Substituting here equation (4.13), after some transformations the force can be written as:
F=—-VWhat + 2{ld—al [E*- (V)E] + —Re(d X H)} (4.15)
ot 4d 2c
where Wy, = —a |E[? /4. The first term in equation (4.15) represents the gradient force, while the two terms

subject to the time derivative should be associated with the momentum density carried by the electrons, i.e., Prat
of equation (4.12). Expressing the dipole-moment density and polarizability via the electric field and ¢,
equation (4.9), we arrive at:

gw de

Prnat = I [E* - (V)E] + (¢ — 1)gko Re(E* x H). (4.16)

Here the second term is associated with the ‘Abraham force’ [22].
Substituting the electron momentum density (4.16) into equation (4.12), results in the kinetic form of the
Minkowski-type momentum density (2.8) (for = 1):

Pr = egkoRe (E* x H) +

gw de
P, dw

m[E* - (V)E]. (4.17)
Thus, using microscopic calculations for the SPP, we rigorously derived the kinetic momentum density (2.8)
suggested previously from a phenomenological formalism [16, 17].

We now trace the decomposition of the kinetic momentum (4.17) into the canonical (orbital) and spin parts
(2.9)and (2.10). In principle, one substitutes the electron velocity ¥ = (ie/mw)E into the microscopic Maxwell
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equation (4.1), which results in the macroscopic Maxwell equation (2.2) with permittivity €. Then, the
decomposition becomes straightforward as described in section 2. However, it is instructive to trace this
decomposition at the microscopic level. For this purpose, we decompose the Poynting-like part of the kinetic
momentum (4.17) into canonical and orbital parts using the microscopic Maxwell equation (4.1). The presence
of sources, 71 and ¥, modifies this decomposition as compared to the free-space case (1.6)—(1.8):

Py =Py — 27Tg@ Im (H* x ¥) + %V x So — 2mge Im (E*7). (4.18)
L ¢ | L |
canonical spin

Here we ascribed the two source-related terms to the canonical and spin parts such that the final result will
coincide with the macroscopic equations.

First, for the SPP fields (3.2) and velocity (4.7) the velocity-related term contains only the canonical-type
contribution (because Im(H* x H) = 0 in SPPs):

1—¢

O x ¥) = Im[H* - (V)H]. (4.19)
c 4me
Combining the canonical part of equation (4.18) with equation (4.19) and the second term in equation (4.17), we

obtain the macroscopic canonical Minkowski-type momentum (2.9) (with . = 1):

Py = %Im[EE* - (V)E + H* - (V)H]. (4.20)

Second, the curl of the free-space-like spin Sy for the SPP fields (3.2) contains a delta-function singularity at
the metal-vacuum interface x = 0. Remarkably, this singularity is exactly cancelled by the singularity (4.6) in the
electron density distribution, so that the spin part in equation (4.18) becomes non-singular. This confirms the
non-singular character of the spin—orbital decomposition in the Minkowski-type approach, in contrast to the
Abraham one [65]. In the bulk, x < 0, the spin part of equation (4.18) substituted in equation (4.17)
immediately yields the corresponding part of the macroscopic Minkowski-type momentum involving the
‘naive’ Minkowski spin (2.10):

Py, = %V X Sut Su = Sim(eE* x B, (421)

Thus, we have obtained the macroscopic Minkowski-type momentum densities (2.8)—(2.10), both kinetic
and canonical, using microscopic calculations in the metal with separated field and matter contributions.

4.3. Microscopic approach to the spin and orbital AM
It might seem that the description of the AM quantities in dispersive media, given in section 2, is somewhat
‘inconsistent’ with the corresponding momentum quantities. Indeed, the Minkowski-type kinetic AM (2.12) is
not simply determined by the corresponding kinetic momentum, r x P, but contains additional dispersion-
related terms. Furthermore, the spin momentum (2.10) is determined by the naive Minkowski spin density Sy,
while the proper canonical spin AM S, equation (2.13), differs from it in a dispersive medium. The
microscopic approach sheds light on these ‘inconsistencies’.

Namely, the local motion of electrons provides an intrinsic contribution to the AM density [71], in fact, to its
spin part. Using the electron displacement &, equation (4.8), and velocity ¥, equation (4.7), one can write this
part of the AM density as:

9 1m@E* x B), (4.22)
dw

noe?
E

St = %Re(a* X ¥) =

Im(E* x E) = %”

This term exactly describes the dispersion-related addition in the Minowski-type kinetic AM (2.12) for the SPP
wave:

Tu=r1 X Py + Smar. (4.23)

Thus, akin to the momentum density (2.8) and (4.17), microscopic calculations justify the kinetic AM density
(2.12), previously obtained by Philbin within a phenomenological approach [17].

Consider now the spin and orbital AM densities. The orbital AM density is straightforwardly determined by
the canonical momentum (4.20): Ly; = r X Py, and we have already described its properties in section 3. At the
same time, the intrinsic electron contribution (4.22) elucidates the difference between the naive Minkowski spin
density (4.21) and canonical spin density (2.13):

Sy = Sy + St = %Im(F:E* % E). (4.24)

This justifies the use of the canonical spin AM in dispersive media and the transverse spin of a SPP calculated in
equations (3.13) and (3.14), figure 4(a). The dispersion-related contribution is absolutely crucial in the case of
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SPPs,because ¢ < 0,8 = 2 — ¢ > 0, and it changes both the magnitude and sign of the spin AM density in the
metal.

4.4. Magnetization, magnetization current, and Abraham momentum

The electron contribution (4.22) to the spin AM of a SPP corresponds to the microscopic circular motion of
electrons in the SPP field. This microscopic orbital motion of the electrons produces multiple circulating
currents, and, hence, the constant (non-oscillating) magnetization of the metal. Using the standard
gyromagnetic ratio, we obtain the magnetization density in the metal:

M= %, =8« E) (4.25)
2mc 4mc dw

This equation exactly coincides with the results [91, 92] obtained for the magnetization of plasma by
electromagnetic radiation and the inverse Faraday effect [22, 93]. For the SPP fields (3.2) and (3.3), we find:

—e 2(1 — e)/—¢

M =g|AP—S
gl |2mc g2

exp(2rk,X)¥. (4.26)

Thus, the metal is magnetized along the positive-y direction (e < 0).

The magnetization (4.26) means that the SPP, being a mixed photon-electron excitation, carries a non-zero
magnetic moment. To characterize this magnetic moment ‘per plasmon’, we calculate the integral magnetization
(4.26):

_—_eZJ—_Em_

= 4.27
2mcl + 2 w (4.27)

This corresponds to the magnetic moment p = f+—F;u3V per plasmon, where i, = |e| h/2mc is the Bohr
magneton. The absolute value of this magnetic moment grows from 0 to 1, as the SPP frequency w changes
from 0 to wp/ﬁ.

Moreover, the inhomogeneous magnetization (4.26) generates the corresponding magnetization electric
current j, ., = ¢V X M:

—e2(1 — e)J/—¢

=g |AP = Ko exp(2K,X)Z. (4.28)

Jmagn m
This is a direct current which flows in the metal in the z direction, i.e., along the SPP propagation. It should be
emphasized that the current (4.28) is obtained as a quadratic form of the SPP fields. Indeed, the linear-
approximation current is determined by the electron velocity ¥ and vanishes after cycle averaging.
We also note that the magnetization current is solenoidal (divergenceless). Therefore, it does not contribute
to the charge transport and cannot be measured by an ammeter or voltmeter. Nonetheless, one can determine
the electron velocity Vi,gn / enyand momentum density Pragn = M1 Vinagn = (1/€) jmagn

corresponding to the direct current (4.28). Using equation (3.3), we write it as:

= ]magn

k_§2(1 —€)

pman:_ Al?
& g"kp -1 -

exp(2K,X)Z. (4.29)

Thus, the magnetization momentum (4.29) is directed oppositely to the SPP propagation. Remarkably, it is
exactly equal to the difference between the kinetic Abraham and Minkowski-type momentum densities in the
metal, equations (3.7) and (3.10):

P = i)M + Pmagn- (4.30)

Equation (4.30) completes the microscopic picture and explains the origin of the difference between the
Abraham and Minkowski momenta in the medium. Since this difference is produced by the direct magnetization
current, it cannot be attributed to the wave (Minkowski-type) momentum but it does contribute to the energy flux
(Abraham-Poynting momentum) and the group velocity of SPPs. Note that the Abraham momentum density can
also be obtained as a pure microscopic-field momentum Py = P, see equation (4.12) [19]. It follows from here that
the total momentum of the metal vanishes in the problem under consideration: the electron contribution to the
wave momentum is exactly cancelled by the magnetization-current momentum: Fpa¢ + Prnagn = 0.
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5. Helicity and duality aspects

5.1. Helicity density and flux in a medium

Here we briefly consider problems related to the dual symmetry between electric and magnetic fields in Maxwell
equations [52, 54-57, 69, 70, 75, 76, 79]. This symmetry is exact in free-space Maxwell equations, but the
presence of electric charges and currents in matter breaks it. The dual symmetry corresponds to the conservation
of electromagnetic helicity via Noether’s theorem [55, 57, 69, 70, 75, 76, 94—97]. Using the same
phenomenological Lagrangian formalism as for the derivation of Minkowski-type momentum and AM
densities (2.8) and (2.12), Philbin obtained the helicity density in a dispersive medium [77]:

g = 3(5 + E)Im(E - H*). (5.1)
2\e u

In a dispersion-free medium, & = ¢ and fi = p, and equation (5.1) yields the free-space result

K = gIm(E - H*)[55, 57, 59, 69]. It should be emphasized that K is the helicity density, but not the chirality

density (Lipkin’s zilch); these quantities are simply proportional to each other only in free space [57, 77, 98—102].

Similarly to equation (2.17), for a plane wave in a homogeneous transparent medium, equation (5.1) yields:
K_1g (5.2)
W o nw

This means that the helicity ‘per photon”in units of 72 is limited in the medium by the (—#, L n, ! range. This is

astrange result without clear physical meaning. Using the quantum wavefunction formalism (2.15) and (2.16)

with the helicity operator [55,59] K = ((11 z) would produce a more natural result:
K o
= = T (5.3)
W  w

but only in the case of a non-dispersive medium. Therefore, the helicity density in a dispersive medium is still
controversial and requires further investigation. In any case, for the SPP fields (3.2), the helicity vanishes [65] due
to the orthogonality of the electric and magnetic fields.

Note also that in free space the dual-symmetric spin AM density (1.7) determines the helicity flux density
[55,57,69,70,99]. In a dispersive medium, calculations in [77] showed that the flux density of the helicity (5.1) is
determined by the Abraham spin density S4, equation (2.6). In this case, the helicity flux density does not
coincide with the proper Minkowski-type spin AM density (2.13) in a medium, and these are two different
physical quantities. Even considering the Lipkin’s chirality density, its flux becomes proportional to the ‘naive’
Minkowski spin density Sy, [77, 101], which is different from the canonical spin density (2.13) in dispersive
media.

5.2. Dual-symmetric and asymmetric quantities

So far, we considered all definitions of the optical energy, momentum, and AM using forms symmetric with
respect to the electric and magnetic fields (and, correspondingly, indices € and ) [35, 41, 42, 46, 52, 54-57,

59, 65,69, 70]. However, in standard electromagnetic field theory (or QED) the field Lagrangian is not dual-
symmetric [36, 44, 55, 69, 70]. Due to this, the canonical momentum, spin, and orbital AM densities are often
defined using dual-asymmetric field-theory expressions, which contain only the electric-field parts [36, 44,
47-50, 60, 90]. In such ‘standard’ formalism in free space, the energy density and kinetic Poynting momentum
density are still given by the dual-symmetric expressions (1.1) and (2.1), whereas the canonical momentum,
spin, and spin AM densities (1.6)—(1.8) become [54, 55]:

P, = 2P{ = gIm[E* - (V)E], (5.4)
Ly=r x Py, Sy = 28, = gIm[E* x E]. (5.5)

Here, we introduced the electric and magnetic parts of the momentum and spin densities (1.6) and (1.7):
Py = P§ + Pjand So = S + Si'. Adopting the definitions (5.4) and (5.5) would mean that only the phase
gradients of the electric (but not magnetic) field produce momentum and orbital AM, and only rotations of the
electric (but not magnetic) field generate the spin AM. On the one hand, this is not satisfactory from a general
physical perspective, where electromagnetic waves involve electric and magnetic fields on equal footing [52,
55-57,81-83]. On the other hand, the electric-biased quantities (5.4) and (5.5) can be useful in some practical
problems considering interactions of fields with electric-dipole particles or atoms, which are not sensitive to
magnetic fields [47-49, 59, 60]. However, for magnetic-dipole particles, the electric-biased quantities (5.4) and
(5.5) do not make sense.

Note that in free space, the dual-asymmetric densities (5.4) and (5.5) do not cause significant problems
because: (i) the Poynting-vector decomposition still has the same form (1.8): Py = Pj + %V X Sp, and (ii) the
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integral values of all these quantities for localized free-space fields coincide with the dual-symmetric definitions
[52,55]:

(Po) = (Py) = (Po)> (So) = (So)- (5.6)

However, in a medium, which is dual-asymmetric (¢ = p) in the generic case, the difference between the
dual-symmetric and asymmetric definitions becomes crucial. We again consider the example of a SPP wave ata
metal-vacuum interface. First, the electric and magnetic contributions to the energy density (2.3) and (3.4) for
the macroscopic SPP fields (3.2) equal:

g exp(—2k1x), x>0
W= 2 |APw] € (5.7a)
—1 -2
2 wexp(&%zx), x<0
€
e+ 1
exp(—2k1x), x>0
W = % AW _ i X (5.7b)

exp(2ryx), x < 0.

Obviously, these contributions are different and result in different integral electric and magnetic energy parts:

Wy — ed + 82)
2(1 + €%

me  2—e+e?, o ~
) = 22 ), ( (W) 69

Then, the electric and magnetic parts of the canonical Minkowski-type momentum (2.9) and (3.9) become
proportional to the corresponding energy parts:

.. We,m_ . <We,m>

Py =k z, Py =ky

w w

Z. (5.9)

From here and the difference in the integral electric and magnetic energies (5.8), it follows that using an electric-
biased momentum density similar to equation (5.4), f)’M = 2P}, = gIm[Z E* - (V)E], would yield:

(Phy) = kp2<TWE>z =k, (W) z = (Py). (5.10)

w
Thus, the dual-asymmetric definitions in a medium do not satisfy the convenient free-space relations (5.6). In
the case of equation (5.10), this breaks the natural proportionality (3.9) and the momentum of the SPP becomes
not equal to fik, per plasmon. Obviously, this is a physically unsatisfactory result. Therefore, we conclude that
dual-symmetric definitions of momentum and AM densities are crucial for structured waves in inhomogeneous
optical media.

Moreover, the validity of the dual-symmetric (rather than electric-biased) formalism follows from the
microscopic calculations of section 4. Indeed, the dispersion-related material correction in equation (4.17) has
the form wj—ZPf), independently of the formalism. It is naturally combined with the corresponding electric term
eP§ of the dual-symmetric spin—orbital decomposition of the first term of (4.17), yielding the electric part of the
canonical dual-symmetric Minkowski-type momentum (2.9): P}, = ZP§, see equations (4.18)—(4.20).
However, using the electric-biased decomposition (5.4) and (5.5) doubles the non-dispersive term: 2P, and
then it cannot be combined with the same dispersive term into a meaningful result proportional to &. The same
situation occurs in the microscopic derivation of the spin AM. The dispersive material term w%SS (4.22)1s
naturally combined with the electric part of the dual-symmetric spin density S, = €S;, producing the electric
part of the canonical dual-symmetric Minkowski-type spin (2.13): S}, = £S¢, see equation (4.24). In turn, the
electric-biased non-dispersive spin 2¢S; cannot be combined with the fixed dispersive term. Thus, the dual-
symmetric forms of the canonical momentum and AM densities are justified on the microscopic level by fixed
dispersive material terms in the momentum and AM densities.

The transverse spin AM of SPPs is a quantity which is extremely sensitive to the duality. Indeed, for the
metal-vacuum interface considered here, the transverse spin has a purely electric nature: only the electric field
rotates in solutions (3.2), while the transverse magnetic field yields no contribution to the spin AM [65]. Using
an electric-biased definition of the spin AM, similar to equation (5.5), S?\/I = 2§, = ¢Im(ZE* x E), wewould
obtain a transverse spin twice as large as equations (3.13) and (3.14): <§3\4> = 2(Sy). However, one could also
consider surface waves at an interface between the vacuum and a magnetic medium with e = land y < —1.In
this case, the surface wave would be given by equation (3.2) with swapped electric and magnetic fields, and the
transverse spin would have a purely magnetic nature. Obviously, the electric-biased definition would yield no
spin AM atall: <§;\/1> = 0. This is a clear evidence that the equality of integral electric and magnetic spins for
localized states in free space [52] does not hold true in media:
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(Sh) = (Sm). (5.11)

Overall, we conclude that only the dual-symmetric definitions of the momentum, spin, and orbital AM
properties of optical fields in dispersive media provide physically consistent and satisfactory results.

6. Concluding remarks

We have examined momentum and AM properties of monochromatic optical fields in dispersive and
inhomogeneous media. The two major problems that lie at the heart of this study are: (i) the Abraham—
Minkowski dilemma and (ii) the canonical spin—orbital decomposition of optical momentum and AM. We have
shown that, in principle, one can formulate four momentum-AM pictures using Abraham-type and
Minkowski-type quantities in kinetic (i.e. Poynting-like, without spin—orbital separation) and canonical (i.e.
with spin—orbital separation) approaches. These four pictures are summarized in table 1. However, two of these
sets of quantities are more physically meaningful.

First, the Abraham—Poynting kinetic momentum density (1.1) and (1.2), Py = P, should be associated
with the energy flux density rather than the momentum density. This quantity determines the energy transport
and group velocity of a wave packet in the medium.

Second, the canonical Minkowski-type momentum density (2.9), Py, together with the corresponding spin
and orbital AM densities (2.13), Sy and Ly = r x Py, provide a physically meaningful and self-consistent
description of the momentum and AM oflight in the medium. To the best of our knowledge, these quantities
were derived for the first time in the present work, but these are consistent with several previously used
approaches. On the one hand, the kinetic counterpart of this canonical picture, momentum (2.8), Py, and total
AM (2.12), T, 'M»> exactly coincide with those obtained in the most general form by Philbin and Allanson [16, 17].
On the other hand, our canonical characteristics (2.9) and (2.13) have a more elegant form, exhibiting a pleasing
similarity with the Brillouin energy density (2.3), W, in the medium. As a result, the energy, momentum, spin,
and orbital AM densities in the medium can be written in a laconic unified form (2.15) using the corresponding
quantum-mechanical operators and proper inner product modified by the & and i indices of the medium. This
coincides with the general approach to electromagnetic bi-linear forms developed by Silveirinha [81-83].

We applied the above general theory to a SPP wave at a metal-vacuum interface. This example provides a
deep physical insight because it involves essentially inhomogeneous fields as well as an inhomogeneous, non-
transparent, and dispersive medium. This is in sharp contrast to plane waves in homogeneous transparent media,
which are considered in the majority of the Abraham—Minkowski studies. We have shown that in the non-trivial
SPP field, the integral Abraham—Poynting momentum (%) describes the group velocity v, = dw/0k, < c of
SPPs, equation (3.8), while the integral canonical momentum (Py;) corresponds to the super-momentum
hik, > hk, per plasmon, equation (3.9). This is the first example of a wave, which carries an integral momentum
larger than that of a photon in vacuum, and this originates from the inhomogeneous-evanescent character of the
surface wave rather than from the medium refractive index (k, — oo ate — —1inthe metal).

We have also provided the first accurate calculation of the transverse spin <§M> of a SPP, equation (3.14). The
result differs considerably from previous calculations using the Abraham-type definition of the spin [65]. In
particular, the integral transverse spin AM of a SPP can vanish (at w = w, / /3), change its sign and reach the
value —h/2 per plasmon, figure 4(a). In turn the intrinsic orbital AM (calculated with respect to the center of
energy) of a SPP vanishes, equation (3.15). This agrees with the non-vortex character of the canonical
momentum density (phase gradient) in the SPP field, and is in contrast to the Abraham—Poynting circulating
energy flux [65].

Thus, the SPP example shows that the Abraham-type kinetic and Minkowski-type canonical properties
provide intuitively clear and consistent description of complex optical fields in complex media. Importantly, we
have also provided microscopic calculations of the momentum and AM densities for the SPP field, considering
the microscopic electromagnetic fields and motion of free electrons in the metal. These calculations resulted
precisely in the Minkowski-type momentum and AM densities, previously suggested from macroscopic
phenomenological approaches [16, 17]. This proves the validity of our approach and illuminates its physical
origin. Importantly, the dispersion € (w) in the metal was absolutely crucial in the above calculations, affecting
not only the magnitudes but also the signs of the dynamical quantities (because of ¢ < 0and & > 0).

Using the microscopic theory, we have also predicted a transverse magnetization of the metal (the inverse
Faraday effect) corresponding to the transverse spin of a SPP. This means that a SPP wave carries not only the
spin AM but also the transverse magnetic moment, up to a Bohr magneton per plasmon. Furthermore, an
inhomogeneous magnetization produces the direct magnetization current flowing along the metal surface in the
SPP propagation direction. Remarkably, the momentum density corresponding to this current is exactly equal
to the difference between the Abraham and Minkowski-type momenta in the metal, thereby providing one more
‘resolution’ of this longstanding problem [1-7].
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Finally, we briefly discussed the optical helicity and duality problems in dispersive media. The analysis of the
SPP example leads us to conclude that the dual-symmetric description of the canonical momentum, spin and
orbital AM, with symmetric electric- and magnetic-field contributions, is crucially important for the physically
meaningful and consistent picture of these properties in dispersive media. In particular, we found that
microscopic calculations, including dispersion-related material terms, are consistent with the dual-symmetric
(rather than electric-biased) formalism.

Thus, the present study provides a complete analysis and description of the momentum and AM of light in
dispersive and inhomogeneos (but isotropic and lossless) media. We have considered SPPs only as the simplest
example of the application of our theory, where other approaches fail. Taking into account both material and
structured-light properties is crucial in a variety of nanooptical and photonic systems, including photonic
crystals, metamaterials, and optomechanical systems. Our theory provides an efficient toolbox for the
description of dynamical properties of light in such systems. One of the main tasks for future studies is to extend
this analysis to other classes of materials, including dissipation or gain and anisotropy. In particular, it is not
clear if one can separate the spin and orbital degrees of freedom in anisotropic media. Close correspondence of
our approach to some of the results of [ 18, 81-83, 101] (dealing with quite general bi-anisotropic media),
suggests that the analysis presented in this work can be extended to more complex cases.

Another important direction for future consideration is whether the fundamental wave characteristics
introduced in this work can be observed in experiments. There were experiments measuring Minkowski-type
momentum (c</ik) for plane waves in dispersive media [13, 103, 104]. In addition, the canonical momentum and
spin AM densities in structured optical fields in free space are directly observable via the optical force and torque
on dipole particles or atoms [31-35, 41, 46,47, 59-63, 66]. Therefore, now it would be important to calculate
and measure optical forces and torques on small particles in dispersive media (e.g. liquids or gases), and check if
these are proportional to the canonical momentum and spin densities in dispersive media. Furthermore, it
would be important to find an experimental setup where the integral super-momentum and transverse spin of
SPPs, derived in this work, could be detected. So far, only local densities of these quantities were accessible via
local free-space measurements using small particles or atoms [31-35, 41, 66, 67, 105-108].
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