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Abstract

In quantum field theory, bare particles are dressed by a cloud of virtual particles to form physical
particles. The virtual particles affect properties such as the mass and charge of the physical particles,
and it is only these modified properties that can be measured in experiments, not the properties of the
bare particles. The influence of virtual particles is prominent in the ultrastrong-coupling regime of
cavity quantum electrodynamics (QED), which has recently been realised in several condensed-matter
systems. In some of these systems, the effective interaction between atom-like transitions and the
cavity photons can be switched on or off by external control pulses. This offers unprecedented
possibilities for exploring quantum vacuum fluctuations and the relation between physical and bare
particles. We consider a single three-level quantum system coupled to an optical resonator. Here we
show that, by applying external electromagnetic pulses of suitable amplitude and frequency, each
virtual photon dressing a physical excitation in cavity-QED systems can be converted into a physical
observable photon, and back again. In this way, the hidden relationship between the bare and the
physical excitations can be unravelled and becomes experimentally testable. The conversion between
virtual and physical photons can be clearly pictured using Feynman diagrams with cutloops.

1. Introduction

In quantum field theory (QFT), the creation and annihilation operators in the Lagrangian describe the creation
and destruction of bare particles which, however, can not be directly observed in experiments (see, e.g., [1, 2]).
Bare particles, due to the interaction terms in the Lagrangian, are actually dressed by virtual particles and become
real physical particles which can be detected. The interaction modifies the properties of the particles, e.g., giving
rise to the Lamb shift of electronic energy levels [3, 4] and affecting the charge, mass, and magnetic moment of
the electron [1, 5, 6]. The predictions of the theory must be expressed in terms of the properties of the physical
particles, not of the non-interacting (or bare) particles [1, 2]. The relations between the bare and the physical
particles are unobservable.

The influence of virtual particles features prominently in the ultrastrong coupling (USC) regime of cavity
quantum electrodynamics (QED) [7, 8]. In cavity QED [9], the interaction between light confined in a reflective
cavity and natural or artificial atoms is studied in conditions where the quantum nature of light is important.
The system enters the USC regime when the light-matter coupling rate becomes an appreciable fraction of the
unperturbed resonance frequencies of the photons and the atom. In this regime, the routinely-invoked rotating
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wave approximation (RWA) is no longer applicable and the counter-rotating terms in the light-matter
interaction significantly change the standard cavity QED scenario [7, 8, 10-22]. For example, very recently it has
been shown that, in the USC regime, a single photon can excite two or more atoms [21]. This effect can occur
because the atom-cavity system can essentially borrow the needed second virtual photon from the quantum
vacuum. In the past few years, the USC regime has been reached experimentally in a variety of solid-state systems
and spectral ranges [23-37].

The need to distinguish between virtual and physical particles in the USC regime of cavity QED is
exemplified by the fact that the correct description of the output photon flux from the cavity, as well as of higher-
order Glauber normal-order correlation functions, requires a proper generalisation of input—output theory
[15, 38]. Due to the contribution from counter-rotating terms in the interaction Hamiltonian, the ground state
|Eo) of the system contains a finite number of photons [39], i.e.,

(Ey |a'a| Eo) = 0,

where @ and @' are the annihilation and creation operators for the cavity mode. However, the ground state can
not emit energy, so the output photon flux can not be proportional to (474), as in standard input—output theory.
Instead, it has been shown [15, 40] that the cavity output (which can be detected by a photo-absorber) is
proportional to (X %), where X* is the positive frequency component of the quadrature operator £ = d + af
and £~ = (#1)". Theresult

(Eo |X %7 Eg) =0

demonstrates that the photons that contribute to the ground state are not observable physical particles. An
analogous situation arises when the photons are coupled to collective matter excitations described by bosonic
fields [41]. It can also be shown that the (physical) system excitations are enriched by unobservable virtual
particles. For instance, the first excited state, corresponding to a single physical particle, may contain
contributions from an odd number of excitations. All these unobservable contributions, however, are significant
only in the USC regime, not at weaker coupling strengths. An interesting feature of these condensed-matter
systems is that the effective interaction between atom-like transitions and the cavity field can be switched on and
off by applying external drives. This offers the opportunity to convert the virtual excitations into real particles
which can then be detected. Both spontaneous [7] and optically [42] or electrically [43] stimulated conversion of
virtual photons from the ground state of a cavity QED system in the USC regime have recently been analysed.
Also, virtual photon pairs are converted into real ones in the dynamical Casimir effect (DCE) [44], which has
been analysed [45—47] and experimentally demonstrated [48] in circuit QED. Potentially, a proper modulation
of an effective mirror (i.e., an oscillating boundary condition) in a DCE setup could also allow for absorption of
photon pairs [49].

Here we show how to convert various numbers of virtual photons into real ones and back, both for the
dressed vacuum state and for a dressed excited state, in a three-level system with one transition ultrastrongly
coupled to an optical resonator. We also show that the corresponding Feynman diagrams can be obtained by
cutting the loop diagrams describing the energy correction of a physical excitation. Specifically, conversion of
virtual photons dressing a physical excitation into real ones is described by the first half of cut loop-diagrams
(photon emission). Similarly, the conversion of real photons back into virtual ones bound to a physical
excitation corresponds to the second half (photon absorption). Moreover, the proposed scheme does not
require the ultrafast modulation of boundary conditions and it can give rise to a conversion probability close
to one.

2.Results

2.1. The quantum Rabi model

The simplest cavity-QED model beyond the RWA is the quantum Rabi model [50, 51]. The Hamiltonian is
(i=1)Hy = Hy + V,where Hy = w.a'd + w, |e)(e] + wg |g) (glis the bare Hamiltonian in the absence of
interaction. Here, 4 and 4" are the photon destruction and creation operators for the cavity mode with
resonance frequency w; |g) and |e) are the ground and excited atomic states, respectively, and w, () are the
corresponding energy eigenvalues. The interaction Hamiltonian is

V = Qp @ + a)o, )

where Qy is the coupling strengthand 6, = 6, + 6 = |e) (g| + |g) (e]. When w. ~ wyy = w, — w, the
interaction Hamiltonian can be separated into a resonant and a non-resonant part: V =V, + V., where

V. = Qr(@'6. + 46,),and V,, = Qr (876, + a6.). The counter-rotating terms do not conserve the number of
excitations. They can be neglected when Qg /(w, + we,) < 1. The interaction Hamiltonian has a structure
which is very similar to that of the QED interaction potential, although it is less complicated. The quantum Rabi
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Figure 1. Diagrams for processes in the quantum Rabi model. The horizontal lines, coloured blue for |¢) and green for |g), represent
the qubit states and the wavy lines are the cavity photons. (a) Diagram for the transition |g, 0) — |e, 1), induced by the counter-
rotating term 475,. The filled vertex is used to mark counter-rotating processes. (b) Diagram for the transition |e, 1) — |g, 2). Thisis
aresonant process, induced by the term @6, marked by an empty vertex. For a process with stimulated emission, such as this one,
each photon involved is represented by a separate wavy line. This is the convention used in the rest of this article.

model can be viewed as a very simple QED system, where there is only a single photon mode and a two-state
electron. As a consequence, we would expect that Feynman diagrams for the Rabi Hamiltonian will be a
simplified version of QED diagrams. One such diagram, for the counter-rotating transition |g, 0) — |e, 1) (the
second entry in the ket denotes the photon number), is shown in figure 1(a).

However, some care must be taken when drawing diagrams for processes involving more than one photon in
the same mode [52], which occur in cavity QED. Stimulated emission [53], the mechanism behind laser action, is
one such process. It is a one-photon process |e, n) — |g, n + 1), where the n photons in the initial state
stimulate the downward transition of the atom, affecting the transition rate which becomes proportional to
n + 1. This factor must be included in the rules for the diagrams in order for calculations to be correct. An
example of a diagram showing the stimulated-emission process |e, 1) — |g, 2) is presented in figure 1(b). A
more detailed discussion about diagrams for stimulated emission can be found in appendix A.

2.2.Bare versus physical excitations

Owing to the presence of V,, in the Rabi Hamiltonian, the operator describing the total number of excitations,
N = a'a + |e) (e], does not commute with Hy and as a consequence the eigenstates of Hy do not have a definite
number of excitations [39]. When V},, can be neglected, the Hamiltonian becomes block-diagonal and easy to
diagonalize (this is the Jaynes—Cummings (JC) model [54]). The resulting eigenstates can be labelled according
to their definite number of excitations #. The ground state (zero excitations) is simply | £y) = |g, 0), and the

n > 1 excitation states |£:5), obtained by diagonalization of 2 x 2 subspaces, can be written as

|5:> = Cnlg) 11> + Sn|e> n — 1> |€;> = _Snlg) Tl> + Cnle) n — 1>) (2)

where C, and S, are amplitudes determined by Q0 and the detuning w, — we,. The eigenstates |E;) of the full
Rabi Hamiltonian, however, are expressed as a superposition of bare states with varying numbers of bare
excitations (see, e.g., [40]):

|Ei) = Y (chilg k) + didle, k), )
k=0

where the coefficients cg", rand de", r are determined by O, w, and wee. When Qr < w, we,, the Rabi eigenstates

reduce to the JC ones. Note that while N is not conserved with the Rabi Hamiltonian, the parity (even or odd
number of excitations) still is [10, 55-57].
The mean photon number for the system in its ground state is

(Eo la'al Eo) = 3 k(cgil* + ld:il. ()
k

These ground-state photons cannot be detected yet. Otherwise the system, emitting a continuous stream of
photons from its ground state, would be a perpetual-motion machine. However, the ground-state photons affect
vacuum fluctuations (temporary random changes of the field amplitude) even if the field is in its lowest energy
state. These fluctuations can be quantified considering the variance of a field quadrature, e.g.,
Ax? = (£%) — (®)2. For the empty cavity, or for the JC ground state, it is easy to find that Ax? = 1. For the
ground state of the quantum Rabi model, Ax? > 1, owing to the additional contribution of the photon number
states which are present in |E). Moreover, Ax? increases with increasing coupling strength {2z. Hence, we can
conclude that the photons in | Ey), although not being observable in photon-counting experiments, contribute to
vacuum fluctuations, which is a feature of virtual particles. The virtual nature of these photons is further shown
in the next subsection.

As discussed in the introduction, the output emission rate from a single-mode resonator is proportional to
(£7%T)[15, 40]. For weak coupling (or neglecting counter-rotating terms), (4'd) and ("% ") coincide; but in the
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Table 1. Bare and physical photonic correlation functions for the ground state
of the JC model and for the four lowest-energy states of the quantum Rabi
model. The table provides information on the number of real photons and on
the existence of bare photons in these states. The last column shows the
deviation of the ground-state variance from that of a noninteracting cavity
mode. In the row for |E,), we note that the nonzero expectation value for
(a*"a") indicates that this state contains a nonzero number of bare photons.
Moreover, this state displays no detectable photons (£ "£1") = 0) together
with a modification of the amplitude of vacuum fluctuations ((£2) — 1 = 0);a
clear indication that the bare photons are virtual particles.

Sate (@) (FF) @FRT) @R (@) -1
€o) =0 =0 =0 -0 -0
Eo) =0 —0 =0 =0 =0
|Ey) =0 =0 =0 =0 _
|Es) =0 =0 =0 =0 —
|Es) =0 =0 =0 =0 _

USC regime they can differ markedly. The components £+ and £~ are obtained in the eigenvector basis of Hy as
=3 i %ij |E;) (Ejl, where x;; = (E; |X| Ej), if the eigenstates of Hy are labelled according to their
eigenvalues such that E; > E, for k > j. Asexpected, we find that

(Eo 1X~ (X1 ()| Eo) = 0,

which demonstrates that the photonic Fock states enriching the quantum Rabi ground state are actually virtual.
This reasoning can be generalised to the excited states of the system. For the first excited state, the one-photon
correlation is different from zero:

(Ey 12O ()] Ey) = 0.

However, the output coincidence rate from this state, proportional to the physical two-photon correlation
function (E; |(£7)*(x")?| E), is equal to zero. On the contrary, the correlation functions for n > 2 bare photons
in the first excited state are different from zero; e.g.,

(E1 1(@9)*(a)*| Ey) = 0.

We can conclude that | ), like the corresponding JC eigenstate |£7), contains a single physical excitation.
However, unlike the JC eigenstates, it is enriched by a larger number of virtual photons. In table | we summarise,
for the JC ground state | £p) and for the lowest-energy states |E;) (i = 0, 1, 2, 3) of the quantum Rabi model,
when the nth-order photonic correlations (for bare and dressed photons) are zero or have finite values. Table 1
also shows that the field vacuum fluctuations are affected by the bare photons present in the ground state.

2.3. Energy corrections and loop diagrams

The analytical spectrum of Hy, is defined in terms of the power series of a transcendental function [51].
Moreover, the eigenstates of the quantum Rabi model can be easily derived numerically with high accuracy.
However, approximate forms, which can be derived by a perturbative approach (see, e.g., [58]), can provide
more insight. Specifically, we will show below that a perturbative diagrammatic approach provides a direct
visualisation of virtual and physical photons involved in the physical processes. Let us consider the correction to
the ground state energy Ag = Eq — &,. The lowest nonzero-order (in the counter-rotating potential)
contribution can be expressed as

AP = (g, 0 1V G(E) Varl g, 0), ©

where G (z) = (z — Hy — V,) !is the JC Green’s function. The Green’s function G (z) can be directly calculated
by using the JC eigenstates from equation (2). Alternatively, it can be expressed in a Dyson series containing V;
and the Green’s function G, (z) = (z — Hy)! in the absence of interaction:

G =Gy + GyV.Gy+ GV, Gy V.G + ... Thus, equation (5) can be expanded as

AP = (g, 0 [Var Go(E) Vx| & 0) + (8> 0 [VarGo(E0) Vi Go(E0) Vie| 85 0) + ... (6)

A direct inspection of the terms in the series shows that only the terms with an even number of V; are different
from zero. It is possible to associate a diagram with each of the terms in the series appearing in equation (6).
Figure 2(a) shows the first three diagrams providing a nonzero contribution. The first one corresponds to the
first term on the rhs of equation (6). The second diagram describes the third term in the series:

(g, 0| Vi Go (E0) Vi Go (E0) Vi Gy (E0) Vi | ¢, 0). Each bubble diagram, corresponding to a matrix element of Go,
describes intermediate virtual excitations. This can be explicitly shown by inserting identity operators in each
term of the series in equation (6). In this way, we obtain products involving only off-shell nonsingular
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Figure 2. Feynman diagrams contributing to the energy correction of the ground state (a), and of the first excited state (b) of the Rabi
Hamiltonian. Each bubble diagram, corresponding to a matrix element of Gy, describes the intermediate virtual excitations enriching
the ground and the first excited states. The virtual excitations originate from the counter-rotating terms in the interaction
Hamiltonian.

propagators: (g, 2 |Gy (Ep)| g 2)and (e, 1 |Gy(Ey)| e, 1) (see also appendix A). In QFT, virtual particles,
corresponding to nonsingular internal propagators in the Feynman diagrams, are termed off-shell because they
do not obey the energy—momentum relation. In our case, the virtual excitations induce a shift of the energy
levels, in analogy with the Lamb shift in QED. The latter result originates from the interaction between an
orbiting electron and the virtual particles in the surrounding vacuum. All the resulting bubble diagrams contain
at most two photon waves, since we considered only the lowest nonzero-order corrections in the counter-
rotating potential. Four and more photon waves arise when going beyond second-order perturbation theory in
Vie. As in QFT, physical particles are described by external (incoming or outgoing) lines in Feynman diagrams.
The absence of external photon (wavy) lines in figure 2(a) confirms the absence of real particles in the ground
state.

This approach can also be applied to the excited states. Considering the first excited state, we obtain

AP = (EF VG (EN Vil EF) = Clg, 1 Ve GED Vi g5 1) )

The mean value over the state |g, 1) in equation (7) can be expanded by exploiting the Dyson series. The
corresponding first three diagrams providing a nonzero contribution are displayed in figure 2(b). Analogously to
what was discussed above, the terms of the series contain only nonsingular internal propagators in the Feynman
diagrams, in this case corresponding to the off-shell nonsingular propagators (g, 3 |Gy ()| g, 3)and

(e, 2 |Gy (Ey)| e, 2) (see appendix E). They are described by diagrams with internal loops where one or two
additional virtual photons are created and finally reabsorbed. The Feynman diagrams in figure 2(b) display only
one external photon line. This confirms that the first excited state contains only one physical photon. The energy
corrections A and AP can be easily evaluated by directly using G (z) or by summing up the infinite
contributions arising from the Dyson series and described by the diagrams. These calculations, and a comparison
between the approximate analytical energy corrections and the corresponding nonperturbative numerical
calculations, can be found in appendix B. We observe that the analysis, carried out with the help of Feynman
diagrams for the ground and the first excited states, provides a powerful tool to directly discern between real and
virtual excitations in the eigenstates of the quantum Rabi Hamiltonian. Below we will show how this
diagrammatic analysis also provides a clear picture of the conversion from virtual to real photons.

2.4. Three-level atom
We now consider a system consisting of a single-mode cavity interacting with the upper two levels |e) and |g) of a
three-level atom [59, 60]. The energy difference E, between the middle level |g) and the bottom level |s) is
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Figure 3. (a) Schematic of the system in which a three-level atom is placed in a cavity. The upper two levels |e) and |g) of the atom
resonantly couple to a single cavity mode. The effective atom-cavity interaction can be controlled by external electromagnetic pulses
(arrow with a Gaussian pulse) inducing transitions from the cavity-interacting levels |g) and |e) to the noninteracting level |s) and
vice versa. These pulses can induce the emission of photons (red arrows) enriching the ground or the excited states of the Rabi
Hamiltonian. (b) Lowest energy-levels of the system as a function of the normalised coupling strength Qg /w, and the transitions
stimulated by the external pulses. Yellow arrows mark transitions induced by \Zg and green arrows mark transitions induced by V.

assumed to be much larger than the cavity-mode resonance frequency such that the cavity does not interact
significantly with the atom in the lowest energy state |s) (see figure 3(a)). The interaction of this transition with
tha cavity can be further reduced considering three-level atoms with dipole moments /1, 11, < pt,,. As we will
show, the additional state |s) enables an effective on/off-switch of the atom-cavity interaction. The system
Hamiltonian is simply He = Hg + w, |s) (s|. This Hamiltonian is block-diagonal and its eigenstates can be
separated into a non-interacting sector s, n), with energy w, + nw,, where nlabels the cavity photon number,
and dressed atom-cavity states |E;), resulting from the diagonalization of the Rabi Hamiltonian (see figure 3(b)).
The direct excitation of the atom by applied electromagnetic pulses is described by the Hamiltonian

I:Id = <c/‘d(t)(\,}sg + ‘Ze)’ (8

where V,, = g (1g) (s1 + Is) (gD Vie = p,(le) {s| + |s) {e]),and 15 and 7, are the dipole moments (here
assumed to be real) for the transitions |s) < |g)and |s) < |e), respectively. We consider quasi-monochromatic
pulses £4(t) = A(t)cos(wt), where A () is a Gaussian envelope. We only consider pulses which are out of
resonance with the transition |g) < |e) and neglect this transition in equation (8). If the system is prepared in a
dressed state |E;), the driving Hamiltonian Hj can induce transitions towards the noninteracting states |s, m):

HE) = Ea()Y (g chals, k) + pdiyls, K)). )
k=0

Thus Hy, when applied to a dressed state, is able to convert the virtual photons enriching the physical excitations
into real ones which can be detected. This is possible because Hy induces transitions from the atomic states |g)
and |e) (coupled to the cavity) to the noninteracting state |s). Of course, the transitions only occur if the driving-
field frequency w is resonant with the frequency of the corresponding transition |E;) — |s, m). Note also that, if
the artificial atom displays parity symmetry, only one of the two dipole moments (s, and ) will be nonzero.
However, in artificial atoms (e.g., flux qubits), parity symmetry can be easily broken [61].

In the absence of counter-rotating terms, a JC eigenstate with 7 excitations can only undergo transitions
towards states with n photons: |ES) — |s, n) (for ftg = 0),0rn — 1photons: |E) — |s, n — 1) (for u, = 0).

2.5. Stimulated emission and reabsorption of virtual particles
We first consider the system prepared in the ground state |Eg) of the quantum Rabi Hamiltonian. This state can
be easily reached from the ground state |s) by directly exciting the artificial atom with a resonant 7-pulse [7]. As
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photon emission

photon reabsorption
—
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Figure 4. (a) Diagrams contributing to the transition matrix element (s, 2 |V, | Eo), associated with the transition |Eg) — [s, 2)
(rightward time-arrow) where two cavity photons are emitted. The same diagrams but with a leftward time-arrow describe the reverse
transition |s, 2) — |E,), where two cavity photons get trapped into the Rabi ground state. (b) Diagrams contributing to the matrix
element (s, 3 | \753, | E),associated with the transitions |E;) < [s, 3), where three photons enriching the lowest-energy excited state of
the Rabi Hamiltonian are emitted or reabsorbed back. The red crosses represent the perturbation \Zg. (¢) Numerical calculations of
the mean cavity-photon number (continuous black curve), and of the two-photon correlation function (dashed blue curve)
corresponding to diagrams in figure 4(a). The system is initially prepared in the state |E,). A 7 pulse, resonantly exciting the system
from |Eg) to |s, 2),is then sent. A second (red) pulse induces the transition back from [s, 2) to |Ey). (d) Numerical calculations of the
mean cavity-photon number (continuous black curve), and of the three-photon correlation function (dashed blue curve)
corresponding to diagrams in figure 4(b). The system is initially prepared in the state |E;). A 7 pulse (filled curve), resonantly exciting
the system from |E;) to |s, 3), is then sent. A second pulse induces the transition back from |s, 3) to |E;). Here we used Qg /w, = 0.15,
Weg = We,and Vg = Vos = % =2 X 105w, where . is the decay rate for the cavity photons and Yeg> Vg ATE the decay rates for the
atom transitions [e) — |g) and |g) — |s).

long as the system remains in the state | Ey) (even if it is not the ground state of the total Hamiltonian

Hy + wy |s) (s]), no cavity photons can be observed, since the photons in |E,) are virtual. An input pulse of
central frequency w ~ Ey — w; — 2w, can induce a transition |Ey) — [s, 2), corresponding to a stimulated
emission process (see figure 3(b)). The corresponding matrix element (s, 2 | ng | Eo) = pg (8> 2Eo)>
determining the transition probability, is proportional to the probability amplitude cg(,’,2 = (g, 2|E,) thatin the
Rabi ground state there are two virtual photons. By exploiting perturbation theory (see appendix C), this matrix
element can be approximated as (s, 2 | \Zg G (&) Vil £, 0). From the Dyson series, we obtain

(5, 2 |VigG(E) Vel & 0) = (5, 2 |Vig Go(E0) Ve | & 0) + (5, 2 [Vig G0 (E0) Vi Go(Eo) Ve | &5 0)
+ (5, 2 | Vg Go (E) Vi Go (E) Vi Go (E0) Ve | &, 0) + ... (10)

Figure 4(a) displays the diagrams describing the first nonzero terms in this series. The red crosses represent
the action of the perturbation ng- These Feynman diagrams provide a clear interpretation of the emission
process. The loops in figure 2 contain virtual photons which contribute to the energy correction of the state | Ey)
and |E}). As shown in figure 4, the time-dependent perturbation ng is able to cut these loops. These diagrams
show that the virtual photons in the loops are not just a technical feature of perturbation theory but describe
internal physical processes, which can be interrupted by a suitable perturbation able to convert each virtual
photon into an observable physical photon. Specifically, diagrams in figure 4(a) together with the rightward
time-arrow describe the transition |Eg) — |s, 2), where two cavity photons are emitted. The same diagrams, but
with aleftward time-arrow, describe the transition |s, 2) — |E,), where two cavity photons are reabsorbed into
the Rabi ground state. The potential ng induces the breaking of two-photon loops, converting virtual photon
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pairs into real ones. It is not able, however, to break one-photon loops. These can be broken by the potential V,
as shown below.

Itis even more interesting to undress the excited states of the quantum Rabi model. This can provide access
to the relationship between bare and physical excitations. Let us consider the lowest-energy excited state | E;)
which, as we have shown in section 2.2, is a single-particle state. Following the same steps as used in obtaining the
series in equation (10), the diagrams in figure 4(b) can be drawn. According to the Fermi golden rule, an input
pulse of central frequency w ~ E; — w, — 3w, caninduceatransition |E;) — |s, 3). The corresponding matrix
element (s, 3 | ng | B)) = I c‘éﬁ is proportional to the probability amplitude that in the state | E;) there are three
bare photons. By applying perturbation theory, it can be approximated as (see appendix C)

(5,3 |Vigl Et) = =Si(s, 3 [VigG(ED) Vel g5 1). (11)

The analytical perturbative calculations of the matrix elements (s, 2 | ng | Eg)and (s, 3 | ng | Ep)are described in
appendix C.

We complete the above analysis by presenting nonperturbative numerical calculations which accurately
describe the dynamics of the undressing and re-dressing of the Rabi vacuum and of the Rabi lowest-energy
excitation.

The spectrum and the eigenstates of the quantum Rabi Hamiltonian Hy have been obtained by standard
numerical diagonalization in a truncated finite-dimensional Hilbert space. The truncation is realised by
including only the Nlowest-energy Fock states for the cavity mode. The truncation number N is chosen in order
to ensure that the lowest M energy eigenvalues and corresponding eigenvectors, which are involved in the
dynamical processes investigated here, are not affected significantly when increasing N. These results have been
obtained using N = 30, although numerical stability can also be achieved with alower N.

We take into account the presence of dissipation channels, the presence of higher energy levels in the Rabi
Hamiltonian, and the non-monochromaticity of the driving pulses. All the dynamical evolutions displayed in
figures 4(c) and (d) have been calculated numerically solving the master equation
p(t) =i[p(t), Hel + Z]- 21]- p(£) [40,62,63], where 2]» are Liouvillian superoperators describing the different
(atomic and photonic) dissipation channels. All calculations have been carried out with zero-temperature
reservoirs, which is a reasonable assumption for systems at very low temperatures. For instance, for a system
with a resonator at frequency w, /(27) = 10 GHz and temperature T = 40 mK, the number of thermal
photons is lower than 10, All the numerical calculations have been performed using
Vog = Vos = % = 2 X 10w, where ~_ is the decay rate for the cavity photons and Vo> Vs ATE the decay rates for

the atomic transitions |e) — |g)and |g) — [s). These small decay rates are still shorter than the typical decay
rates experimentally observed in state-of-the-art circuit QED systems (e.g., [64]). The density matrix, expressed
in the basis of the system eigenstates, is truncated in order to exclude all the higher-energy eigenstates which are
not populated during the dynamical evolution. The system of differential equations resulting from the master
equation is solved by using a standard Runge—Kutta method with step control.

We consider the system initially prepared in the state | Ey) (preparation starting from the ground state s, 0)
can be easily achieved by sending a suitable 7 pulse). Then, a Gaussian pulse with central frequency
w = Ey — wy; — 2w, induces the transition |Ey) — |s, 2). Specifically, the pulse area required to obtain a
complete transition is 7 / [{(s, 2| ng | Eo)|. The pulse arrival-time corresponds to the time when the loops in the
Feynman diagrams are cut. Figure 4(c) displays the dynamics of the intracavity mean excitation number (£ %),
which is directly related to the output photon flux @y, (£) = 7. (X~ (£)X7(t)) (Where 4, is the photon escape rate
through the cavity boundary), as well as the equal-time second-order correlation function
GA(t) = ((X(t))*(x*(£))?) [15]. Before the arrival of the Gaussian pulse (shaded red curve), the output photon
flux is zero, since (Eq |X~X1| Eo) = 0. After the arrival of the pulse, the photon flux becomes nonzero and
G (t) ~ (£ &"), confirming thata two-photon state is actually generated as expected from the diagrams in
figure 4(a). When a second pulse is sent, the two photons are reabsorbed almost completely into the Rabi ground
state: |s, 2) — |Eo) (diagrams in figure 4(a) with the leftward time-arrow). Figure 4(c) shows that a residual small
excitation remains in the system after the arrival of the second pulse. This can be attributed to the influence of
cavity losses which give rise to a spontaneous transition |s, 2) — |s, 1). Asaresult, a small but finite population
in|s, 1)leadsto (X %) = 0 with G® = 0. As expected, this residual excitation disappears in absence of
dissipation.

Figure 4(d) displays the dynamics starting from the system prepared in the state | Fy). If the dipole moment
s = 0, this state can be reached directly from the ground state |s, 0) by exciting the artificial atom with a
resonant 7-pulse. If /1, = 0, itis possible to reach the state in two steps (|s, 0) — |Eo) — |E;)). We observe that,
after the arrival of the Gaussian pulse (with central frequency w = E; — ws, — 3w, and area 7 / [{(s, 3| ng| E)D,
the initially zero third-order correlation function G approaches 6, the value corresponding to a three-photon
state. This result confirms the occurrence of the transition |E;) — |s, 3). Also in this case, the emitted photons
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Figure 5. (a) Diagrams contributing to the matrix element (s, 1 |V, | E), associated with the transition |Eq) — [s, 1) (rightward
time-arrow) where a cavity photon is emitted. The same diagrams but with a leftward time-arrow describe the reverse transition

s, 1) — |Eo), where a cavity photon is absorbed into the Rabi ground state. (b) Diagrams contributing to the matrix element

(s, 2 | V| Ey), associated with the transitions |E;) < [s, 2), where two photons enriching the lowest-energy excited state | E;) of the
Rabi Hamiltonian are emitted or reabsorbed back. The blue crosses represent the perturbation V... (c) Numerical calculations of the
mean cavity-photon number (continuous black curve) corresponding to diagrams in figure 5(a). The system is initially prepared in the
state |Eo). A w pulse (shown in red), resonantly exciting the system from |Eg) to |s, 1), is then sent. A second pulse induces the
transition back from [s, 1) to |Ep). (d) Numerical calculations of the mean cavity-photon number (continuous black curve), and of the
three-photon correlation function (dashed blue curve) corresponding to diagrams in figure 5(b). The system is initially prepared in the
state |E;). A7 pulse (red filled curve), resonantly exciting the system from |Ej) to |s, 2), is then sent. A second pulse induces the
transition back from [s, 2) to |E;). For the other parameters of the simulation not specified here, the same values as in figure 4 were
used.

are reabsorbed by sending an additional identical Gaussian pulse. We observe that, within the standard RWA,
(EF 12~ (®)XH(@)| &) = 0.5. Figure 4(d) att = 0 displays a higher value. This is a peculiar effect of the USC
regime, where the intracavity mean excitation number is quadrature-dependent. In particular, it increases for X
measurements and decreases for measurements of the conjugate quadrature § = i(a" — 4).

Having studied the above processes induced by \Zg, we now turn to those involving V,, instead. Specifically,
we consider the case where the dipole transition moment i, is different from zero. Figure 5 shows these
processes, with the action of V, represented in the diagrams by blue crosses. These processes are able to break
one-photon loops, as illustrated in figure 5(a), which shows the diagrams associated with the transition
|Eg) — |[s, 1), where a cavity photon is emitted (rightward time-arrow) and reabsorbed (leftward time-arrow).
Figure 5(b) shows the diagrams associated with the transitions |E;) < |[s, 2), where two photons enriching the
lowest-energy excited state |F;) of the Rabi Hamiltonian are emitted or reabsorbed. The analytical perturbative
calculations of the matrix elements (s, 1 |V;,| Eo)and (s, 2 |V,.| E,)are described in appendix D. In complete
analogy with what was shown in figures 4(c) and (d), we present in figures 5(c) and (d) nonperturbative
numerical calculations describing the dynamics of the undressing and re-dressing of the quantum Rabi vacuum
and of the quantum Rabi lowest-energy excitation, taking into account the presence of dissipation channels, the
presence of higher-energy levels, and the non-monochromaticity of the driving pulses. We first consider the
system starting in the state | Ey), corresponding to an intracavity mean excitation number (X %*) = 0. Then, a
Gaussian pulse with central frequency w = Ey — w, — w. induces a transition |Eg) — |s, 1). Specifically, the
pulse area required to obtain a complete transitionis 7/ | (s, 1 |V,| Eo)|. The pulse arrival-time corresponds to
the time when the loops in the Feynman diagrams are cut. Figure 5(c) displays the time evolution of (£~%).
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After the arrival of the first pulse, (X £T) jumps and almost reaches the value 1. The equal-time second-order
correlation function G®(t), not displayed, remains zero, confirming that a single-photon state is generated.

Figure 5(d) displays the dynamics starting from the system prepared in the state | E;). We observe that, after
the arrival of the Gaussian pulse (with central frequency w = E; — wy, — 2w, and area 7w/ (s, 2 | Ve Ep) ), the
initially zero second-order correlation function G‘» approaches 2, the value corresponding to a two-photon
state. This result confirms the occurrence of the transition |E;) — |s, 2). Also in this case, the emitted photons
are reabsorbed after an additional identical Gaussian pulse is sent.

We observe that both in figures 4 and 5, a normalised coupling strength Qg /w, = 0.15 is sufficient to break
one-, two-, and three-photon loops, converting virtual photons into real ones with probability close to one. This
value of the normalised coupling strength is Q2 /w. roughly equal to the experimentally demonstrated values in
circuit-QED systems [24]. We note that ¢, and c, , are significantly larger than cgf)) ,and c(éj, respectively. Hence

the process induced by V,, can be observed even for smaller coupling strenghts.

3. Discussion

The results presented here show that the USC regime of cavity QED can be used to observe, in a direct way, how
interactions dress the observable particles by a cloud of virtual particles. Such particle dressing is a general
feature of QFT and many-body quantum systems. We have shown that, by applying external electromagnetic
pulses of suitable amplitude and frequency, each virtual photon enriching a physical excitation can be converted
into a physical observable photon. In this way, the hidden relationship between the bare and physical excitations
can be unravelled and becomes experimentally testable. Virtual particles are represented by internal loops in
Feynman diagrams. These loop or bubble diagrams describe internal processes where virtual photons are
created and reabsorbed. The diagrams representing the conversion of virtual photons, dressing a physical
excitation, into real ones can be obtained by cutting the loop diagrams describing energy corrections and taking
the first half. Moreover, the stimulated reabsorption of real photons into the physical excitation, converting
them to virtual photons, corresponds to the second half of the loop diagrams.

We limited our analysis to the dressed vacuum and to a one-particle state. It can be easily extended to study
higher-energy excitations. Moreover, we considered only processes up to second-order perturbation theory in
the counter-rotating potential V.. The present analysis can be generalised to describe higher-order processes,
involving more than three photons, which can take place if the light—matter interaction is sufficiently
strong [35].

The most promising candidates for an experimental realisation of the proposed stimulated conversion
effects are superconducting quantum circuits [65] and intersubband quantum-well polaritons. In particular,
phase-biased flux qubits can reach the USC regime in circuit QED [66], as has been shown in experiments
[23,24, 35, 67]. Very recently, hybrid quantum circuits [68] with Qg /w,, ranging from 0.72 to 1.34 have been
realised [35] by making use of the macroscopic magnetic dipole moment of a flux qubit, large zero-point-
fluctuation current of an LC oscillator, and large Josephson inductance of a coupler junction. In flux qubits, an
externally applied magnetic flux can be changed such that these artificial atoms acquire both the quantised level
structure and the transition matrix elements required for the observation of the stimulated emission and
reabsorption of virtual particles [7]. Specifically, the supplementary material of [7] contains a section where
numerical calculations show how an artificial atom (a flux qubit) with a specific flux offset can provide the
required level spacing and dipole moments to observe the effect. We have checked that working far from the
sweet spot (around zero flux-offset) does not affect the results significantly. In addition, we observe that it is not
necessary that level |s) has lower energy than |g). In this case, the standard configuration of flux qubits near the
sweet spot can provide the required level structure and dipole moments [23, 24, 35]. The description of the
stimulated emission and reabsorption of virtual photons presented here also holds if |s) has higher energy than
the |g) and |e) states.

The USC regime can also be reached for intersubband transitions in undoped quantum wells [69]. In this
system, an optical resonator in the terahertz spectral range is resonantly coupled to transitions between the two-
lowest energy conduction subbands of a large number of identical undoped quantum wells. In this case, the
upper valence subband plays the role of the lowest energy state |s) (see figure 3). Ultrafast optical pulses can
induce transitions between the valence and conduction subbands prompting the conversion from virtual to real
photons and vice versa.

Such experiments would provide deep insight into fundamental aspects of interaction processes in QFT and
quantum many-body systems. They would pave the route for quantum emulation [70, 71] of fundamental
processes in QED.
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Figure Al. Diagrams corresponding to the four terms in the interaction Hamiltonian of the quantum Rabi model. The horizontal
lines represent the qubit states and the wavy lines the cavity photons. (a) Diagrams corresponding to those terms in the interaction
Hamiltonian that conserve energy when w, = w,,. (b) Diagrams for the terms oxa'6 and 46, which conserve neither energy nor the
number of excitations. Their elimination corresponds to the RWA.
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Appendix

In these appendix sections, we first restate some properties of the quantum Rabi model and its diagrammatic
representation, expanding on the discussion in the main text. We then proceed to explicitly calculate analytically
the second-order correction to the lowest energy eigenvalues and comparing them to full numerical
calculations. We also calculate matrix elements associated with the external drive used to stimulate the emission
and reabsorption of the virtual particles dressing the excitations in the system.

Appendix A. Hamiltonian and basic diagrams

The interaction Hamiltonian of the quantum Rabi model is
V = Or@" + d)b, (A1)

where Qg is the coupling strengthand &, = &, + & = |e) (g| + |g) (e[ Referring to the case

We R Wey = W, — Wy, the interaction Hamiltonian can be separated into a resonant and a nonresonant
contribution: V = V. + V., where V. = Qg (376 + acy),and Ve = O (@76 4+ a&). This interaction term
has a structure which is very similar to that of the QED interaction potential, although it is simpler. The quantum
Rabi model can be viewed as a prototypical QED system where there is only one photon mode and a two-state
electron. Therefore, we expect that the Feynman diagrams for the Rabi Hamiltonian will be a simplified version
of the QED diagrams.

Asin QED, there is only one vertex type with three lines: one wavy (photonic) line, one solid line with an
incoming arrow, and one solid line with an outgoing arrow. The vertices (of the same type) corresponding to the
four terms in the interaction Hamiltonian are displayed in figure A1. The upper diagram in figure Al(a)
describes the spontaneous emission process and the lower one the absorption process. Starting from these four
building blocks, it is possible to describe higher-order processes as in QED. However, in cavity QED there are
processes that are not described in a complete way by Feynman diagrams directly derived from this form of the
interaction Hamiltonian. Specifically, the presence of a resonator supporting discrete modes opens up the
possibility of observing processes involving more than one photon in the same mode. Stimulated emission, the
process underlying laser action, is one of these. It is a one-photon process |e, n) — |g, n + 1), where, however,
the n photons in the initial state stimulate the downward transition of the atom, affecting the transition rate
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Figure A2. Diagrams corresponding to the the transition |e, 1) — |g, 2). (a) Diagram with one incoming and one outcoming wavy
line, each labelled respectively with the number of photons involved in the process. (b) Diagram for the same process, but in this case
each wavy line represents one single photon.

S )

Figure A3. Examples of diagrams corresponding to the Green’s function. (a) Diagram for (e, 2 |Gy e, 2). (b) Diagram for
(& 11Gol g 1).

which becomes proportional to n + 1. The Feynman diagram describing the process is the same one describing
spontaneous emission (n = 0), shown in figure A1(a). However, the transition rate for stimulated emission is
n + 1times larger than that of spontaneous emission. Hence the Feynman diagram in the absence of additional
rules is not able to uniquely determine the transition amplitude for this process.

A possible solution is to expand the photon creation and destruction operators in equation (A1) in the Fock
basis. The resulting interaction operator is

o0
V=0 > @&+ a6y + 6, (A2)
n=0
where & = a% |n)(n| = Jn + 1 |n+ 1)(nl,and & = & |n) (n| = ¥r |n — 1) (n|(notice that
& = 0). This form of the interaction Hamiltonian consists of a sum of products of (upward or downward)
atomic and photonic transition operators; thus photonic and atomic transitions are treated on an equal footing.
In this case, each vertex is associated to two transition operators. For example, the vertex describing the
transition |e, 1) — |g, 2)is shown in figure A2(a): the wavy lines describe the incoming and the outgoing
photon states, while the continuous line with the arrows describes the incoming and outgoing electronic states.
The vertex in figure A2(a) describes a stimulated emission process. Since the photon wavy lines are labelled by
the photon number, an alternative (perhaps more visual) way to draw diagrams is to drop the photon label and
draw a wavy line for each incoming or outgoing photon line as shown in figure A2(b). In this case, the vertices
will have ny;, = nincomingand n,,, = n + 1outgoing wavy lines. Each vertex (full/empty circle) contributes
with a factor </ |\}r/nr |, where n = max(n;,, figur)-
The Green’s function for the system in the absence of interaction,

1

_— A3
z — (wgg + nwe) (43)

A () A
Gy (@) =(q, 1 |Gol g, n) =

where wy, = w; — wy, with g = e, g, corresponds to aloop diagram with # wavy lines and one straight arrow.
In figure A3, we show the two loop diagrams corresponding to G and Gél).

Appendix B. Second-order correction to the energy eigenvalues

The well-known second-order correction to the nth energy eigenvalue is

AE,EZ) — Z/|<Ek |V| En>|2

: (B1)
P E) — Ef
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where the prime in the summation means that the values k = # have to be excluded. For the first-order
correction to the eigenfunction we have

) = BT By (82)
k

E; - E

Following [58], defining the projection operator onto the space orthogonal to |n), Q, = 1 — |n) (n],
equation (B2) becomes

IED) = Q,G(ENQ,VIE,, (B3)
where
Go(ED) = ———— (B4)
E, — Hy

is the unperturbed Green’s function calculated for Ey, the unperturbed eigenenergy of the system.
Using the definition of the Green’s function from equation (B4) and the projection operators, equation (B1)
becomes

AED = (B 70,6 (E)Q, V| E). )

We apply these results to the JC Hamiltonian perturbed by the non-resonant potential V,+. In this case, the
unperturbed Hamiltonian Hy becomes Hjc = Hy + V;, whose eigenvalues and eigenstates are £ and |£ 5,
respectively. We have

1Ex) = Cilg> n) + Sile;n — 1) |E,) = =Sulg, n) + Cule, n — 1). (B6)
The action of the non-resonant potential on these eigenstates is
Vil €3) = Qr(Cule, n + 1) + Silg, n — 2)) (B7)
and
Vadl€5) = Qr(=Sile, n + 1) + Cilg, n — 2)). (BS)

From the last two equations, we deduce that the non-resonant potential V,, determines transitions from the
subspace 11 (spanned by £X)to (n + 2) or (n — 2) subspaces. As a consequence, we have

QuVad€5) = Varl£7)- (B9)
Owing to this property, equation (B5) becomes
AD = AED = (€7 1V G (ED Vel E3), (B10)
where
GED = (&~ Ho ' = (& — H - W' (B11)

is the JC Green’s function. Equation (B10) can be easily calculated exploiting the matrix elements of the JC
Green’s function by using the JC eigenstates. We do not follow this procedure because our scope is to show,
through a diagrammatic analysis, the structure of the virtual processes that contribute to such a correction. For
this purpose, we exploit the Dyson equation for the JC Green’s function, considering now the resonant potential
V, as the perturbation, and the Green’s function in the absence of interaction Gy (&,) = (£, — Ho)

G=0Gy+ GV.Gy+ ... Equation (B10) can thus be expanded as

AP = (Ex Ve GoE) Varl E7) + (Ex Vi Go(EN Vi Go(E) Viel E) + . (B12)

Using equation (B12), the lowest-order (second-order) correction to the ground state |g, 0) energy due to
the non-resonant potential V,, can be expressed as

AP = (g, 0 [V G (Eo) Vel g5 0) = (g 0 1VoeGoVarl & 0) + (g, 0 [Var GoViCoVorl £, 0) + o (BI3)
By using the identity operator and exploiting the explicit expression of V,;, equation (B13) can be expressed as
AP = (g,0 Vil e, 1) (e, 1 |G e, 1){e, 1 |Vir| g 0) = Q3 (e, 1 |G e, 1). (B14)
In order to calculate Af)z), we observe that
(€0 Vil e, 1) = (e, 1 [Vir| &, 0) = . (B15)

The remaining term, (e, 1 |G| e, 1), isa convergent geometric series that is calculated in appendix E. We
obtain
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0.2} Ground state corrections _0.2} First excited state corrections

0 0.2 QR/O)C 0.4 0.6 0 0.2 Q‘R/wc 0.4 0.6

Figure B1. Comparison between the exact (numerical) and approximated (diagrammatic) calculation of the correction terms for (a)
the ground-state energy and (b) the first excited state. The blue continuous lines describe the numerical calculation, while the red
dotted lines describe the approximate one.

Qi 1
A® _ 2R — (B16)
2we /2w — 1
For Qg /w. < 1, A can be approximated to second order in Qg:
QZ
AD ~ _ﬁ‘ (B17)
C

In figure B1, we show the comparison between the exact (numerical) and approximated (diagrammatic)
calculation of the correction term to the ground state energy.

This approach can also be applied to the excited states. We consider the first excited state. Using
equation (B10), we are able to calculate the correction up to second order in the potential \Zg to E1; we have

AP = (&7 IV GEN Varl E7) = ST 1 1VarG(ED Vie| g5 1) (B18)
Observing that Vyle, 0) = 0, Vilg, 1) = V2 Qle, 2),and |E]) = —Silg, 1) + Clle, 0), we have
Vil 1) = =285 le, 2). (B19)
Equation (B18) becomes
AP = (&7 Ve GED Vel 1) = S8 1 Ve G(ED Vie| &5 1)
=287 (e, 0 |G(ED)| e 0). (B20)

The energy correction A{?) can be easily evaluated by directly using G (z) or by summing up the infinite
contributions arising from the Dyson series, described by the diagrams (see appendix E, equation (E11)).
In the absence of detuning, we have for the first excited state

1
) = —(—lg, 1) + le, 0)), (B21)
with energy
[ = we — . (B22)
We obtain
AP = 03— O + 2w . (B23)
dws — 4Qpwe — 203
For Qg /w. < 1, A{®) can be approximated to second order in :
QZ
AP~ ——R (B24)
2w,

A comparison between the approximate analytical energy corrections and the corresponding nonperturbative
numerical calculations can be found in figure B1.

Appendix C. Additional perturbation \Zg allowing transitions from |g) to |s)

Using equation (B1), the correction to the JC eigenstate |£,) up to the first order in the non-resonant potential
becomes,
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Figure C1. (a) Comparison between the exact (numerical, blue continuous curve) and approximated (diagrammatic, red dotted
curve) calculation of the transition element | (s, 2| \Zg|E0) between the state |s, 2) (where |s) is now the real ground state) and |E) (the
cavity-dressed ground state) due to the additional ng potential as a function of the coupling parameter normalised to the cavity
resonance frequency. (b) Comparison between the exact (numerical) and approximated (diagrammatic) calculation of the transition
element | (s, 3|ng|E1) | between the state |s, 3) (where |s) is now the real ground state) and |E;) (the cavity-dressed first excited state)
due to the additional \Zg potential as a function of the coupling parameter, normalised to the cavity resonance frequency. This
comparison confirms the validity of the approximate diagrammatic approach. For the sake of simplicity, here we used Qg 1, = 1.

IED) = QuG(EDVidlE). (1
We now consider the direct excitation of the artificial atom by applied electromagnetic pulses, described by
the Hamiltonian
Hy = £0)(Vy + Vao), (C2)

where V, = tsg (18) (s1 + 1s) (gD Vie = p1,(le) (s| + s)(e]),and fsg and g, are the dipole moments (here
assumed to be real) for the transitions |s) < |g)and |s) < |e), respectively.

First, we consider the case with the system prepared in the state |€;) = |g, 0). The time-dependent
perturbation can induce additional transitions whose rate can be evaluated with the Fermi golden rule.

In the absence of the counter-rotating interaction terms V,;, Hy can induce only zero-cavity-photon
transitions |g, 0) < |s, 0). When including the counter-rotating terms, additional transitions are activated. For
example, the transition |Ey) <> [s, 2) acquires a nonzero matrix element (s, 2 | Vig| Eo), where |Eg) is the lowest
energy state of the Rabi Hamiltonian. It can be calculated perturbatively in V., approximating |E,) to first order

in \A/m (see equation (B3)):

|Eo) = |g, 0) + G (&) Virlg, 0). (C3)
We obtain
(s,2 |ng| Eg) = (s, 2 |‘Zgé(50)\21r| g 0) = QRng (g2 |G(50)| e, 1). (C4)

The corresponding Dyson series is
(8 21G(E e 1) = (g, 2 |1Go(Ep)| & 1) + (g, 2 |Go(ED) Vi Go(En)] €, 1)+ ...
V2 V2 (C5)

(& — 2w)? — 20 4w’ — 203

The comparison between the exact (numerical) and approximated (diagrammatic) calculation of this matrix

element is shown in figure C1.
We now consider the case with the system prepared in the state |£]) = % (—lg, 1) + le, 0)), whose energy

is £ = w. — Qg. The time-dependent perturbation can induce additional transitions whose rate can be
evaluated with the Fermi golden rule. In the presence of \7m, additional transitions, such as |E;) < |[s, 3), become
activated. The matrix element for this transition is (s, 3 | ng | E;). It can be calculated perturbatively in Virs

approximating |E;) to first order in V.. (see equation (B3)):

IE) ~ 1E7) + GEDVadr). (Ce)
Observing that
~ 1 A ~
Vnr57 = = Vnr , 1 *Vnre>0 = -0 e 2), Cc7
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where we have used the relations Vg, 1) = V2 Ogle, 2)and Viiles 0) = 0, we obtain
(5,3 Vil B) = (5,3 [VgG(ED Vil E) = —Qmpr (85 3 1G(ED)| e, 2). (C8)

The corresponding Dyson series is (see appendix E and equation (E12))

(€ 31GED] & 2)=(g 3 1Go(EDI & 2) + (g, 3 |Go(ENViGo(ED] € 2)+...

B V30 ©9)
(& —3w)? — 302 (O + 2wo)? — 302

Appendix D. Additional perturbation V,, allowing transitions from |¢) to |s)

We now consider a situation similar to the one analysed previously. In this case, a transition |s) < |e) is detuned
atamuch higher energy than the cavity resonance. The part of the time-dependent potential inducing the
|s) < |e) transitions is V'(t) = E(t) V. In the absence of the counter-rotating interaction terms Virs V' () can
induce zero-cavity-photon transitions |e, 0) < |[s, 0).

In the presence of V..., additional transitions, such as |Eg) < |s, 1), can be activated. The matrix element for
this transition is (s, 1 | V| Eo). It can be calculated perturbatively in V., approximating |E,) to the first order in
V., (see equation (B3)):

|Eo) ~ g, 0) + G (o) Vilg, 0). (D1)
We have
(s, 1 |Viel Eo) = (5, 1 [VieGo(E0) Vir| & 0) = Qrpa, (e, 1 |Go(En)] e 1). (D2)

Exploiting the Dyson series for the Green’s function, we obtain

(e, 11G (&) e 1) = (&, 1 Go(ED)] & 1) + (e, 1 1Go(E) iGo(E] € 1) + .. (D3)
In this series, owing to the nature of the resonant potential, only the odd terms are non-zero. We have:

(e, 11G (] e 1) = (e, 1 |Go(E e, 1) + Z<e, 1 [Go(E)(ViGo(E0))*| e, 1). (D4)
n=1

The diagrammatic analysis of this process is shown in figure 5 of the main part of the paper. Using the results
of appendix E, the Dyson series calculation of equation (D2), at resonance (w, 2~ wyy), gives

QR We

_—. D5
B 20 (03)

<51 1 |Vse| E0> = QRuse <€, 1 |é(80)| e, 1> = Mg

Appendix E. Calculation of the G matrix elements using the Dyson equation

In this section, we perform all the calculations for the determination of the correction to the self-energy to
second order in V;,,. We have to sum all the elements of the infinite series. The generic matrix element is

(e, 11Go@[V;Go(2)]'| e 1). (E1)
We observe that the matrix element will be zero if \7r appears an odd number of times, i.e.,
(e, 11Go(@)[ViGo(2)"*! e,1) =0  for n > 0. (E2)

Hence we may perform the calculation for the self-energy considering only the even-power terms. In
addition, we observe that

(en+1|Vilen =(n|V]gn+1)=Jn+1 Q% (E3)
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We then obtain

(611Gl e 1) = > (e, 1|Go@[ViGo(@ "] e, 1)
n=0

(e, 11Go(2)] e,

(e, 1 [[V;Go(2) "] e, 1)
|

DY
n=0
(e, 11Go@)] e 1) D 1{e, 11Vi] & 2)P"((e, 1 |Go(2)] &, 1)) ((g, 2 |Go(2)| &, 2))"
n=0

DY

n=0

= (& 1|Go@)] e 1) XS0,
(E4)
where
o=1(e 11Vl g 2)Pe 1G] e 1)
=20 (e, 1 |Go(@)| & 1) (8, 2 1Go(2)] & 2)- (ES)
Following [72], the Green’s function operator relative to a generic differential operator [ satisfies the
relation
[z - L1G(2) =1, (E6)
with za convenient parameter. Therefore, for the cases [ =Handl = Ho, we have, respectively:
G@=1[z—-HI'', Go(2) =z~ Hl . (E7)

In our calculation, we choose z = &, (hence Gy (z) is the resolvent of the free Hamiltonian eigenvalue
problem):

A A 1 ({g, 2 1Go(2)] g, 2))!
> 1 IG( )I > 1) = > 1 IG ( )| > 1 = ~ =~
e 116@1e 1) = (o LG @] e 1) = o e 1) (6,2 1o 1 2 — 20

(z — 2w,)

(2 = Weg — w(z — 2we) — 2Q12{'

(E8)
For the sake of completeness, we now calculate the other non-zero matrix elements:
(6116@182) = > (e 11G@[ViGo@ " g, 2)
n=0
- <ga 2 |GO(Z)| 4 2> <€, 1 |GO(Z)| [ 1> <€, 1 |‘7r| g 2> Z<ea 1 |[\ZGO(Z)]2M| [ 1>
n=0
= (£21Go(2)] & 2) (e, 1 [Vi] & 2) (e, 1 |G(2)] e, 1)
= (82160 & 2) (e, 1|Vil & 2) (e, 1 1Go(@)] e, 1) D (0)"
n=0
. . J2Q
= (& 11G@] e 1)@ 216 & 2) 77—
B 6%
(e 11Go(2)| & 1))71((g, 2 [Go(2)] g 2))" — 205
_ V20
(z2 — Weg — W)z — 2we) — 203
(E9)
and
a a 1
(& 216@)1 8 2)= (821G (@] 8 2) 7—
_ (e 116@] e 1)
(e, 11Go@ e, 1) (g, 2 1Go(@)] & 2))7" — 2%
(z — Weg — we) (E10)

- (2 — weg — W (z — 2we) — ZQZR'
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The generalisation of the above matrix elements to all # subspaces is straightforward. Actually, all the
contributions of the self-energy can be easily calculated because the JC Hamiltonian divides the entire Hilbert
space into disjoint 2D subspaces (labelled by n) spanned by (le, 1), |g, n + 1)). For the generic nth subspace we
have
(e, n |G (2)| e, n) = =+ Dwd = (E11)
(z — Wy — nw)(z — (n + Dwo) — (n + Qg

Jn + 10y
(2 = Weg — nw)(z — (n + Dw) — (n + I)Qﬁ)
(2 — Wy — nw,)
(Z2 — Wy — W)z — (1 + Dw) — (n+ D

(e,n|G@)| g n+1) = (E12)

(Gn+1|G@|gn+1)= (E13)
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