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Abstract
In quantum field theory, bare particles are dressed by a cloud of virtual particles to formphysical
particles. The virtual particles affect properties such as themass and charge of the physical particles,
and it is only thesemodified properties that can bemeasured in experiments, not the properties of the
bare particles. The influence of virtual particles is prominent in the ultrastrong-coupling regime of
cavity quantum electrodynamics (QED), which has recently been realised in several condensed-matter
systems. In some of these systems, the effective interaction between atom-like transitions and the
cavity photons can be switched on or off by external control pulses. This offers unprecedented
possibilities for exploring quantum vacuum fluctuations and the relation between physical and bare
particles.We consider a single three-level quantum system coupled to an optical resonator. Here we
show that, by applying external electromagnetic pulses of suitable amplitude and frequency, each
virtual photon dressing a physical excitation in cavity-QED systems can be converted into a physical
observable photon, and back again. In this way, the hidden relationship between the bare and the
physical excitations can be unravelled and becomes experimentally testable. The conversion between
virtual and physical photons can be clearly pictured using Feynman diagramswith cut loops.

1. Introduction

In quantumfield theory (QFT), the creation and annihilation operators in the Lagrangian describe the creation
and destruction of bare particles which, however, can not be directly observed in experiments (see, e.g., [1, 2]).
Bare particles, due to the interaction terms in the Lagrangian, are actually dressed by virtual particles and become
real physical particles which can be detected. The interactionmodifies the properties of the particles, e.g., giving
rise to the Lamb shift of electronic energy levels [3, 4] and affecting the charge,mass, andmagneticmoment of
the electron [1, 5, 6]. The predictions of the theorymust be expressed in terms of the properties of the physical
particles, not of the non-interacting (or bare) particles [1, 2]. The relations between the bare and the physical
particles are unobservable.

The influence of virtual particles features prominently in the ultrastrong coupling (USC) regime of cavity
quantum electrodynamics (QED) [7, 8]. In cavityQED [9], the interaction between light confined in a reflective
cavity and natural or artificial atoms is studied in conditions where the quantumnature of light is important.
The system enters theUSC regimewhen the light–matter coupling rate becomes an appreciable fraction of the
unperturbed resonance frequencies of the photons and the atom. In this regime, the routinely-invoked rotating
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wave approximation (RWA) is no longer applicable and the counter-rotating terms in the light–matter
interaction significantly change the standard cavityQED scenario [7, 8, 10–22]. For example, very recently it has
been shown that, in theUSC regime, a single photon can excite two ormore atoms [21]. This effect can occur
because the atom-cavity system can essentially borrow the needed second virtual photon from the quantum
vacuum. In the past few years, theUSC regime has been reached experimentally in a variety of solid-state systems
and spectral ranges [23–37].

The need to distinguish between virtual and physical particles in theUSC regime of cavityQED is
exemplified by the fact that the correct description of the output photon flux from the cavity, as well as of higher-
orderGlauber normal-order correlation functions, requires a proper generalisation of input–output theory
[15, 38]. Due to the contribution from counter-rotating terms in the interactionHamiltonian, the ground state

ñ∣E0 of the system contains a finite number of photons [39], i.e.,

á ñ ¹∣ ˆ ˆ ∣†E a a E 0,0 0

where â and ˆ†a are the annihilation and creation operators for the cavitymode.However, the ground state can
not emit energy, so the output photon flux can not be proportional to á ñˆ ˆ†a a , as in standard input–output theory.
Instead, it has been shown [15, 40] that the cavity output (which can be detected by a photo-absorber) is
proportional to á ñ- +ˆ ˆx x , where +x̂ is the positive frequency component of the quadrature operator = +ˆ ˆ ˆ†x a a
and =- +ˆ ( ˆ )†x x . The result

á ñ =- +∣ ˆ ˆ ∣E x x E 00 0

demonstrates that the photons that contribute to the ground state are not observable physical particles. An
analogous situation arises when the photons are coupled to collectivematter excitations described by bosonic
fields [41]. It can also be shown that the (physical) system excitations are enriched by unobservable virtual
particles. For instance, the first excited state, corresponding to a single physical particle,may contain
contributions from an odd number of excitations. All these unobservable contributions, however, are significant
only in theUSC regime, not at weaker coupling strengths. An interesting feature of these condensed-matter
systems is that the effective interaction between atom-like transitions and the cavity field can be switched on and
off by applying external drives. This offers the opportunity to convert the virtual excitations into real particles
which can then be detected. Both spontaneous [7] and optically [42] or electrically [43] stimulated conversion of
virtual photons from the ground state of a cavityQED system in theUSC regime have recently been analysed.
Also, virtual photon pairs are converted into real ones in the dynamical Casimir effect (DCE) [44], which has
been analysed [45–47] and experimentally demonstrated [48] in circuit QED. Potentially, a propermodulation
of an effectivemirror (i.e., an oscillating boundary condition) in aDCE setup could also allow for absorption of
photon pairs [49].

Here we showhow to convert various numbers of virtual photons into real ones and back, both for the
dressed vacuum state and for a dressed excited state, in a three-level systemwith one transition ultrastrongly
coupled to an optical resonator.We also show that the corresponding Feynman diagrams can be obtained by
cutting the loop diagrams describing the energy correction of a physical excitation. Specifically, conversion of
virtual photons dressing a physical excitation into real ones is described by thefirst half of cut loop-diagrams
(photon emission). Similarly, the conversion of real photons back into virtual ones bound to a physical
excitation corresponds to the second half (photon absorption).Moreover, the proposed scheme does not
require the ultrafastmodulation of boundary conditions and it can give rise to a conversion probability close
to one.

2. Results

2.1. The quantumRabimodel
The simplest cavity-QEDmodel beyond the RWA is the quantumRabimodel [50, 51]. TheHamiltonian is
( = 1) = +ˆ ˆ ˆH H VR 0 , where w w w= + ñá + ñáˆ ˆ ˆ ∣ ∣ ∣ ∣†H a a e e g ge g0 c is the bareHamiltonian in the absence of

interaction.Here, â and ˆ†a are the photon destruction and creation operators for the cavitymodewith
resonance frequency w ;c ñ∣g and ñ∣e are the ground and excited atomic states, respectively, and w ( )e g are the
corresponding energy eigenvalues. The interactionHamiltonian is

s= W +ˆ ( ˆ ˆ) ˆ ( )†V a a , 1xR

where WR is the coupling strength and s s s= + = ñá + ñá+ -ˆ ˆ ˆ ∣ ∣ ∣ ∣e g g ex .When w w w w» º -eg e gc , the

interactionHamiltonian can be separated into a resonant and a non-resonant part: = +ˆ ˆ ˆV V Vr nr, where
s s= W +- +ˆ ( ˆ ˆ ˆ ˆ )†V a ar R , and s s= W ++ -ˆ ( ˆ ˆ ˆ ˆ )†V a anr R . The counter-rotating terms do not conserve the number of

excitations. They can be neglectedwhen w wW + ( ) 1egR c . The interactionHamiltonian has a structure
which is very similar to that of theQED interaction potential, although it is less complicated. The quantumRabi
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model can be viewed as a very simpleQED system, where there is only a single photonmode and a two-state
electron. As a consequence, wewould expect that Feynman diagrams for the RabiHamiltonianwill be a
simplified version ofQEDdiagrams.One such diagram, for the counter-rotating transition ñ  ñ∣ ∣g e, 0 , 1 (the
second entry in the ket denotes the photon number), is shown infigure 1(a).

However, some caremust be takenwhen drawing diagrams for processes involvingmore than one photon in
the samemode [52], which occur in cavityQED. Stimulated emission [53], themechanismbehind laser action, is
one such process. It is a one-photon process ñ  + ñ∣ ∣e n g n, , 1 , where the n photons in the initial state
stimulate the downward transition of the atom, affecting the transition ratewhich becomes proportional to
+n 1. This factormust be included in the rules for the diagrams in order for calculations to be correct. An

example of a diagram showing the stimulated-emission process ñ  ñ∣ ∣e g, 1 , 2 is presented infigure 1(b). A
more detailed discussion about diagrams for stimulated emission can be found in appendix A.

2.2. Bare versus physical excitations
Owing to the presence of V̂nr in the RabiHamiltonian, the operator describing the total number of excitations,

= + ñáˆ ˆ ˆ ∣ ∣†N a a e e , does not commutewith ĤR and as a consequence the eigenstates of ĤR do not have a definite

number of excitations [39].When V̂nr can be neglected, theHamiltonian becomes block-diagonal and easy to
diagonalize (this is the Jaynes–Cummings (JC)model [54]). The resulting eigenstates can be labelled according
to their definite number of excitations n. The ground state (zero excitations) is simply  ñ = ñ∣ ∣g , 00 , and the

n 1 excitation states  ñ∣ n , obtained by diagonalization of 2×2 subspaces, can bewritten as

     ñ = ñ + - ñ ñ = - ñ + - ñ+ -∣ ∣ ∣ ∣ ∣ ∣ ( )g n e n g n e n, , 1 , , 1 , 2n n n n n n

where n and n are amplitudes determined by WR and the detuning w w- egc . The eigenstates ñ∣Ei of the full
RabiHamiltonian, however, are expressed as a superposition of bare states with varying numbers of bare
excitations (see, e.g., [40]):

åñ = ñ + ñ
=

¥

∣ ( ∣ ∣ ) ( )E c g k d e k, , , 3i
k

g k
i

e k
i

0
, ,

where the coefficients cg k
i
, and de k

i
, are determined by WR, wc and weg .When w wW  , egR c , the Rabi eigenstates

reduce to the JC ones. Note that while N̂ is not conservedwith the RabiHamiltonian, the parity (even or odd
number of excitations) still is [10, 55–57].

Themean photon number for the system in its ground state is

åá ñ = +∣ ˆ ˆ ∣ (∣ ∣ ∣ ∣ ) ( )†E a a E k c d . 4
k

g k e k0 0 ,
0 2

,
0 2

These ground-state photons cannot be detected yet. Otherwise the system, emitting a continuous streamof
photons from its ground state, would be a perpetual-motionmachine. However, the ground-state photons affect
vacuumfluctuations (temporary random changes of thefield amplitude) even if thefield is in its lowest energy
state. Thesefluctuations can be quantified considering the variance of afield quadrature, e.g.,
D = á ñ - á ñˆ ˆx x x2 2 2. For the empty cavity, or for the JC ground state, it is easy tofind thatD =x 12 . For the
ground state of the quantumRabimodel,D >x 12 , owing to the additional contribution of the photon number
states which are present in ñ∣E0 .Moreover,Dx2 increases with increasing coupling strength WR. Hence, we can
conclude that the photons in ñ∣E0 , although not being observable in photon-counting experiments, contribute to
vacuumfluctuations, which is a feature of virtual particles. The virtual nature of these photons is further shown
in the next subsection.

As discussed in the introduction, the output emission rate from a single-mode resonator is proportional to
á ñ- +ˆ ˆx x [15, 40]. Forweak coupling (or neglecting counter-rotating terms), á ñˆ ˆ†a a and á ñ- +ˆ ˆx x coincide; but in the

Figure 1.Diagrams for processes in the quantumRabimodel. The horizontal lines, coloured blue for ñ∣e and green for ñ∣g , represent
the qubit states and thewavy lines are the cavity photons. (a)Diagram for the transition ñ  ñ∣ ∣g e, 0 , 1 , induced by the counter-
rotating term s+ˆ ˆ†a . The filled vertex is used tomark counter-rotating processes. (b)Diagram for the transition ñ  ñ∣ ∣e g, 1 , 2 . This is
a resonant process, induced by the term s-ˆ ˆ†a , marked by an empty vertex. For a process with stimulated emission, such as this one,
each photon involved is represented by a separate wavy line. This is the convention used in the rest of this article.
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USC regime they can differmarkedly. The components +x̂ and -x̂ are obtained in the eigenvector basis of ĤR as
= å ñá+

<ˆ ∣ ∣x x E Ei j ij i j , where = á ñ∣ ˆ ∣x E x Eij i j , if the eigenstates of ĤR are labelled according to their

eigenvalues such that >E Ek j for >k j.As expected, wefind that

á ñ =- +∣ ˆ ( ) ˆ ( )∣E x t x t E 0,0 0

which demonstrates that the photonic Fock states enriching the quantumRabi ground state are actually virtual.
This reasoning can be generalised to the excited states of the system. For thefirst excited state, the one-photon
correlation is different from zero:

á ñ ¹- +∣ ˆ ( ) ˆ ( )∣E x t x t E 0.1 1

However, the output coincidence rate from this state, proportional to the physical two-photon correlation
function á ñ- +∣( ˆ ) ( ˆ ) ∣E x x E1

2 2
1 , is equal to zero.On the contrary, the correlation functions for n 2 bare photons

in the first excited state are different from zero; e.g.,

á ñ ¹∣( ˆ ) ( ˆ) ∣†E a a E 0.1
2 2

1

Wecan conclude that ñ∣E1 , like the corresponding JC eigenstate  ñ-∣ 1 , contains a single physical excitation.
However, unlike the JC eigenstates, it is enriched by a larger number of virtual photons. In table 1we summarise,
for the JC ground state  ñ∣ 0 and for the lowest-energy states ñ∣Ei ( =i 0, 1, 2, 3) of the quantumRabimodel,
when the nth-order photonic correlations (for bare and dressed photons) are zero or havefinite values. Table 1
also shows that thefield vacuumfluctuations are affected by the bare photons present in the ground state.

2.3. Energy corrections and loop diagrams
The analytical spectrumof HR is defined in terms of the power series of a transcendental function [51].
Moreover, the eigenstates of the quantumRabimodel can be easily derived numerically with high accuracy.
However, approximate forms, which can be derived by a perturbative approach (see, e.g., [58]), can provide
more insight. Specifically, wewill show below that a perturbative diagrammatic approach provides a direct
visualisation of virtual and physical photons involved in the physical processes. Let us consider the correction to
the ground state energy D º -E0 0 0. The lowest nonzero-order (in the counter-rotating potential)
contribution can be expressed as

D = á ñ∣ ˆ ˆ ( ) ˆ ∣ ( )( ) g V G V g, 0 , 0 , 50
2

nr 0 nr

where = - - -ˆ ( ) ( ˆ ˆ )G z z H V0 r
1 is the JCGreen’s function. TheGreen’s function ˆ ( )G z can be directly calculated

by using the JC eigenstates from equation (2). Alternatively, it can be expressed in aDyson series containing V̂r

and theGreen’s function = - -ˆ ( ) ( ˆ )G z z H0 0
1 in the absence of interaction:

= + + +ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆG G G V G G V G V G ...0 0 r 0 0 r 0 r 0 . Thus, equation (5) can be expanded as

  D = á ñ + á ñ + ¼∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ∣ ( )( ) g V G V g g V G V G V g, 0 , 0 , 0 , 0 . 60
2

nr 0 0 nr nr 0 0 r 0 0 nr

Adirect inspection of the terms in the series shows that only the termswith an even number ofVr are different
from zero. It is possible to associate a diagramwith each of the terms in the series appearing in equation (6).
Figure 2(a) shows thefirst three diagrams providing a nonzero contribution. Thefirst one corresponds to the
first term on the rhs of equation (6). The second diagramdescribes the third term in the series:

  á ñ∣ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( ) ˆ ∣g V G V G V G V g, 0 , 0nr 0 0 r 0 0 r 0 0 nr . Each bubble diagram, corresponding to amatrix element of Ĝ0,
describes intermediate virtual excitations. This can be explicitly shown by inserting identity operators in each
termof the series in equation (6). In this way, we obtain products involving only off-shell nonsingular

Table 1.Bare and physical photonic correlation functions for the ground state
of the JCmodel and for the four lowest-energy states of the quantumRabi
model. The table provides information on the number of real photons and on
the existence of bare photons in these states. The last column shows the
deviation of the ground-state variance from that of a noninteracting cavity
mode. In the row for ñ∣E0 , we note that the nonzero expectation value for
á ñˆ ˆ†a an n indicates that this state contains a nonzero number of bare photons.
Moreover, this state displays no detectable photons (á ñ =- +ˆ ˆx x 0n n ) together
with amodification of the amplitude of vacuum fluctuations (á ñ - ¹x̂ 1 02 ); a
clear indication that the bare photons are virtual particles.

State á ñˆ ˆ†a an n á ñ- +ˆ ˆx x á ñ- +ˆ ˆx x2 2 á ñ- +ˆ ˆx x3 3 á ñ -x̂ 12

 ñ∣ 0 =0 =0 =0 =0 =0

ñ∣E0 ¹0 =0 =0 =0 ¹0

ñ∣E1 ¹0 ¹0 =0 =0 —

ñ∣E2 ¹0 ¹0 =0 =0 —

ñ∣E3 ¹0 ¹0 ¹0 =0 —

4
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propagators: á ñ∣ ˆ ( )∣g G g, 2 , 20 0 and á ñ∣ ˆ ( )∣e G e, 1 , 10 0 (see also appendix A). InQFT, virtual particles,
corresponding to nonsingular internal propagators in the Feynman diagrams, are termed off-shell because they
do not obey the energy–momentum relation. In our case, the virtual excitations induce a shift of the energy
levels, in analogywith the Lamb shift inQED. The latter result originates from the interaction between an
orbiting electron and the virtual particles in the surrounding vacuum.All the resulting bubble diagrams contain
atmost two photonwaves, sincewe considered only the lowest nonzero-order corrections in the counter-
rotating potential. Four andmore photonwaves arise when going beyond second-order perturbation theory in
V̂nr. As inQFT, physical particles are described by external (incoming or outgoing) lines in Feynman diagrams.
The absence of external photon (wavy) lines infigure 2(a) confirms the absence of real particles in the ground
state.

This approach can also be applied to the excited states. Considering the first excited state, we obtain

    D = á ñ = á ñ+ + + +∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ( )( ) V G V g V G V g, 1 , 1 . 71
2

1 nr 1 nr 1 1
2

nr 1 nr

Themean value over the state ñ∣g , 1 in equation (7) can be expanded by exploiting theDyson series. The
corresponding first three diagrams providing a nonzero contribution are displayed infigure 2(b). Analogously to
whatwas discussed above, the terms of the series contain only nonsingular internal propagators in the Feynman
diagrams, in this case corresponding to the off-shell nonsingular propagators á ñ∣ ˆ ( )∣g G g, 3 , 30 1 and

á ñ∣ ˆ ( )∣e G e, 2 , 20 0 (see appendix E). They are described by diagramswith internal loops where one or two
additional virtual photons are created and finally reabsorbed. The Feynman diagrams infigure 2(b) display only
one external photon line. This confirms that the first excited state contains only one physical photon. The energy
correctionsD( )

0
2 andD( )

1
2 can be easily evaluated by directly using ˆ ( )G z or by summing up the infinite

contributions arising from theDyson series anddescribed by the diagrams. These calculations, and a comparison
between the approximate analytical energy corrections and the corresponding nonperturbative numerical
calculations, can be found in appendix B.We observe that the analysis, carried outwith the help of Feynman
diagrams for the ground and the first excited states, provides a powerful tool to directly discern between real and
virtual excitations in the eigenstates of the quantumRabiHamiltonian. Belowwewill showhow this
diagrammatic analysis also provides a clear picture of the conversion from virtual to real photons.

2.4. Three-level atom
Wenow consider a system consisting of a single-mode cavity interactingwith the upper two levels ñ∣e and ñ∣g of a
three-level atom [59, 60]. The energy difference Egs between themiddle level ñ∣g and the bottom level ñ∣s is

Figure 2. Feynman diagrams contributing to the energy correction of the ground state (a), and of thefirst excited state (b) of the Rabi
Hamiltonian. Each bubble diagram, corresponding to amatrix element of Ĝ0, describes the intermediate virtual excitations enriching
the ground and thefirst excited states. The virtual excitations originate from the counter-rotating terms in the interaction
Hamiltonian.
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assumed to bemuch larger than the cavity-mode resonance frequency such that the cavity does not interact
significantly with the atom in the lowest energy state ñ∣s (see figure 3(a)). The interaction of this transitionwith
tha cavity can be further reduced considering three-level atomswith dipolemoments m m m,sg se ge. Aswewill

show, the additional state ñ∣s enables an effective on/off-switch of the atom-cavity interaction. The system

Hamiltonian is simply w= + ñáˆ ˆ ∣ ∣H H s ssC R . ThisHamiltonian is block-diagonal and its eigenstates can be
separated into a non-interacting sector ñ∣s n, , with energy w w+ ns c, where n labels the cavity photon number,
and dressed atom-cavity states ñ∣Ei , resulting from the diagonalization of the RabiHamiltonian (see figure 3(b)).

The direct excitation of the atomby applied electromagnetic pulses is described by theHamiltonian

= +ˆ ( )( ˆ ˆ ) ( )H t V V , 8sg sed d

where m= ñá + ñáˆ (∣ ∣ ∣ ∣)V g s s gsg sg , m= ñá + ñáˆ (∣ ∣ ∣ ∣)V e s s ese se , and msg and mse are the dipolemoments (here
assumed to be real) for the transitions ñ « ñ∣ ∣s g and ñ « ñ∣ ∣s e , respectively.We consider quasi-monochromatic
pulses  w=( ) ( ) ( )t A t tcosd , where ( )A t is aGaussian envelope.We only consider pulses which are out of
resonancewith the transition ñ « ñ∣ ∣g e and neglect this transition in equation (8). If the system is prepared in a
dressed state ñ∣Ei , the drivingHamiltonian Ĥd can induce transitions towards the noninteracting states ñ∣s m, :

 å m mñ = ñ + ñ
=

¥
ˆ ∣ ( ) ( ∣ ∣ ) ( )H E t c s k d s k, , . 9i

k
sg g k

i
se e k

i
d d

0
, ,

Thus Ĥd, when applied to a dressed state, is able to convert the virtual photons enriching the physical excitations
into real oneswhich can be detected. This is possible because Ĥd induces transitions from the atomic states ñ∣g
and ñ∣e (coupled to the cavity) to the noninteracting state ñ∣s . Of course, the transitions only occur if the driving-
field frequencyω is resonant with the frequency of the corresponding transition ñ  ñ∣ ∣E s m,i . Note also that, if
the artificial atomdisplays parity symmetry, only one of the two dipolemoments (msg and mse)will be nonzero.
However, in artificial atoms (e.g., flux qubits), parity symmetry can be easily broken [61].

In the absence of counter-rotating terms, a JC eigenstate with n excitations can only undergo transitions
towards states with n photons: ñ  ñ∣ ∣E s n,n (for m ¹ 0sg ), or -n 1photons: ñ  - ñ∣ ∣E s n, 1n (for m ¹ 0se ).

2.5. Stimulated emission and reabsorption of virtual particles
Wefirst consider the systemprepared in the ground state ñ∣E0 of the quantumRabiHamiltonian. This state can
be easily reached from the ground state ñ∣s by directly exciting the artificial atomwith a resonantπ-pulse [7]. As

Figure 3. (a) Schematic of the system inwhich a three-level atom is placed in a cavity. The upper two levels ñ∣e and ñ∣g of the atom
resonantly couple to a single cavitymode. The effective atom-cavity interaction can be controlled by external electromagnetic pulses
(arrowwith aGaussian pulse) inducing transitions from the cavity-interacting levels ñ∣g and ñ∣e to the noninteracting level ñ∣s and
vice versa. These pulses can induce the emission of photons (red arrows) enriching the ground or the excited states of the Rabi
Hamiltonian. (b) Lowest energy-levels of the system as a function of the normalised coupling strength wWR c and the transitions
stimulated by the external pulses. Yellow arrowsmark transitions induced by V̂sg and green arrowsmark transitions induced by V̂se.
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long as the system remains in the state ñ∣E0 (even if it is not the ground state of the totalHamiltonian

w+ ñáˆ ∣ ∣H s ssR ), no cavity photons can be observed, since the photons in ñ∣E0 are virtual. An input pulse of
central frequency w w w- - E 2s0 c can induce a transition ñ  ñ∣ ∣E s, 20 , corresponding to a stimulated

emission process (seefigure 3(b)). The correspondingmatrix element má ñ = á ñ∣ ˆ ∣ ∣s V E g E, 2 , 2sg sg0 0 ,

determining the transition probability, is proportional to the probability amplitude = á ñ∣c g E, 2g ,2
0

0 that in the
Rabi ground state there are two virtual photons. By exploiting perturbation theory (see appendix C), thismatrix
element can be approximated as á ñ∣ ˆ ˆ ( ) ˆ ∣s V G V g, 2 , 0sg 0 nr . From theDyson series, we obtain

   

  

á ñ = á ñ + á ñ

+ á ñ + ¼

∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ∣

∣ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ˆ ( ) ˆ ∣ ( )

s V G V g s V G V g s V G V G V g

s V G V G V G V g

, 2 , 0 , 2 , 0 , 2 , 0

, 2 , 0 . 10

sg sg sg

sg

0 nr 0 0 nr 0 0 r 0 0 nr

0 0 r 0 0 r 0 0 nr

Figure 4(a) displays the diagrams describing thefirst nonzero terms in this series. The red crosses represent
the action of the perturbation V̂sg . These Feynman diagrams provide a clear interpretation of the emission
process. The loops infigure 2 contain virtual photonswhich contribute to the energy correction of the state ñ∣E0

and ñ∣E1 . As shown in figure 4, the time-dependent perturbation V̂sg is able to cut these loops. These diagrams
show that the virtual photons in the loops are not just a technical feature of perturbation theory but describe
internal physical processes, which can be interrupted by a suitable perturbation able to convert each virtual
photon into an observable physical photon. Specifically, diagrams infigure 4(a) together with the rightward
time-arrowdescribe the transition ñ  ñ∣ ∣E s, 20 , where two cavity photons are emitted. The same diagrams, but
with a leftward time-arrow, describe the transition ñ  ñ∣ ∣s E, 2 0 , where two cavity photons are reabsorbed into

the Rabi ground state. The potential V̂sg induces the breaking of two-photon loops, converting virtual photon

Figure 4. (a)Diagrams contributing to the transitionmatrix element á ñ∣ ˆ ∣s V E, 2 sg 0 , associatedwith the transition ñ  ñ∣ ∣E s, 20

(rightward time-arrow)where two cavity photons are emitted. The same diagrams but with a leftward time-arrow describe the reverse
transition ñ  ñ∣ ∣s E, 2 0 , where two cavity photons get trapped into the Rabi ground state. (b)Diagrams contributing to thematrix
element á ñ∣ ˆ ∣s V E, 3 sg 1 , associatedwith the transitions ñ « ñ∣ ∣E s, 31 , where three photons enriching the lowest-energy excited state of
the RabiHamiltonian are emitted or reabsorbed back. The red crosses represent the perturbation V̂sg . (c)Numerical calculations of
themean cavity-photon number (continuous black curve), and of the two-photon correlation function (dashed blue curve)
corresponding to diagrams infigure 4(a). The system is initially prepared in the state ñ∣E0 . Aπ pulse, resonantly exciting the system
from ñ∣E0 to ñ∣s, 2 , is then sent. A second (red) pulse induces the transition back from ñ∣s, 2 to ñ∣E0 . (d)Numerical calculations of the
mean cavity-photon number (continuous black curve), and of the three-photon correlation function (dashed blue curve)
corresponding to diagrams infigure 4(b). The system is initially prepared in the state ñ∣E1 . Aπ pulse (filled curve), resonantly exciting
the system from ñ∣E1 to ñ∣s, 3 , is then sent. A second pulse induces the transition back from ñ∣s, 3 to ñ∣E1 . Herewe used wW = 0.15R c ,
w w=eg c, and g g g w= = = ´ -2 10eg gs c

5
c, where gc is the decay rate for the cavity photons and g g,eg gs are the decay rates for the

atom transitions ñ  ñ∣ ∣e g and ñ  ñ∣ ∣g s .
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pairs into real ones. It is not able, however, to break one-photon loops. These can be broken by the potential V̂se

as shown below.
It is evenmore interesting to undress the excited states of the quantumRabimodel. This can provide access

to the relationship between bare and physical excitations. Let us consider the lowest-energy excited state ñ∣E1

which, as we have shown in section 2.2, is a single-particle state. Following the same steps as used in obtaining the
series in equation (10), the diagrams infigure 4(b) can be drawn. According to the Fermi golden rule, an input
pulse of central frequency w w w- - E 3s1 c can induce a transition ñ  ñ∣ ∣E s, 31 . The correspondingmatrix

element má ñ =∣ ˆ ∣s V E c, 3 sg sg g1 ,3
1 is proportional to the probability amplitude that in the state ñ∣E1 there are three

bare photons. By applying perturbation theory, it can be approximated as (see appendix C)

 á ñ = - á ñ-∣ ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ( )s V E s V G V g, 3 , 3 , 1 . 11sg sg1 1 1 nr

The analytical perturbative calculations of thematrix elements á ñ∣ ˆ ∣s V E, 2 sg 0 and á ñ∣ ˆ ∣s V E, 3 sg 1 are described in
appendix C.

We complete the above analysis by presenting nonperturbative numerical calculations which accurately
describe the dynamics of the undressing and re-dressing of the Rabi vacuum and of the Rabi lowest-energy
excitation.

The spectrum and the eigenstates of the quantumRabiHamiltonian ĤR have been obtained by standard
numerical diagonalization in a truncated finite-dimensionalHilbert space. The truncation is realised by
including only theN lowest-energy Fock states for the cavitymode. The truncation numberN is chosen in order
to ensure that the lowestM energy eigenvalues and corresponding eigenvectors, which are involved in the
dynamical processes investigated here, are not affected significantly when increasingN. These results have been
obtained usingN=30, although numerical stability can also be achievedwith a lowerN.

We take into account the presence of dissipation channels, the presence of higher energy levels in the Rabi
Hamiltonian, and the non-monochromaticity of the driving pulses. All the dynamical evolutions displayed in
figures 4(c) and (d)have been calculated numerically solving themaster equation

r r r= + åˆ̇ ( ) [ ˆ ( ) ˆ ] ˆ ˆ ( )t t H ti , j jC [40, 62, 63], where ̂j are Liouvillian superoperators describing the different
(atomic and photonic) dissipation channels. All calculations have been carried out with zero-temperature
reservoirs, which is a reasonable assumption for systems at very low temperatures. For instance, for a system
with a resonator at frequency w p =( )2 10 GHzc and temperatureT=40mK, the number of thermal
photons is lower than 10−5. All the numerical calculations have been performed using
g g g w= = = ´ -2 10eg gs c

5
c, where gc is the decay rate for the cavity photons and g g,eg gs are the decay rates for

the atomic transitions ñ  ñ∣ ∣e g and ñ  ñ∣ ∣g s . These small decay rates are still shorter than the typical decay
rates experimentally observed in state-of-the-art circuit QED systems (e.g., [64]). The densitymatrix, expressed
in the basis of the system eigenstates, is truncated in order to exclude all the higher-energy eigenstates which are
not populated during the dynamical evolution. The systemof differential equations resulting from themaster
equation is solved by using a standard Runge–Kuttamethodwith step control.

We consider the system initially prepared in the state ñ∣E0 (preparation starting from the ground state ñ∣s, 0
can be easily achieved by sending a suitableπ pulse). Then, aGaussian pulse with central frequency
w w w= - -E 2s0 c induces the transition ñ  ñ∣ ∣E s, 20 . Specifically, the pulse area required to obtain a

complete transition is p á ñ∣ ∣ ˆ ∣ ∣s V E, 2 sg 0 . The pulse arrival-time corresponds to the timewhen the loops in the
Feynman diagrams are cut. Figure 4(c) displays the dynamics of the intracavitymean excitation number á ñ- +ˆ ˆx x ,
which is directly related to the output photonflux gF = á ñ- +( ) ˆ ( ) ˆ ( )t x t x tout c (where gc is the photon escape rate
through the cavity boundary), as well as the equal-time second-order correlation function

= á ñ- +( ) ( ˆ ( )) ( ˆ ( ))( )G t x t x t2 2 2 [15]. Before the arrival of theGaussian pulse (shaded red curve), the output photon
flux is zero, since á ñ =- +∣ ˆ ˆ ∣E x x E 00 0 . After the arrival of the pulse, the photon flux becomes nonzero and

á ñ- +( ) ˆ ˆ( )G t x x2 , confirming that a two-photon state is actually generated as expected from the diagrams in
figure 4(a).When a second pulse is sent, the two photons are reabsorbed almost completely into the Rabi ground
state: ñ  ñ∣ ∣s E, 2 0 (diagrams infigure 4(a)with the leftward time-arrow). Figure 4(c) shows that a residual small
excitation remains in the system after the arrival of the second pulse. This can be attributed to the influence of
cavity losses which give rise to a spontaneous transition ñ  ñ∣ ∣s s, 2 , 1 . As a result, a small butfinite population
in ñ∣s, 1 leads to á ñ ¹- +ˆ ˆx x 0with =( )G 02 . As expected, this residual excitation disappears in absence of
dissipation.

Figure 4(d)displays the dynamics starting from the systemprepared in the state ñ∣E1 . If the dipolemoment
m ¹ 0es , this state can be reached directly from the ground state ñ∣s, 0 by exciting the artificial atomwith a
resonantπ-pulse. If m = 0es , it is possible to reach the state in two steps ( ñ  ñ  ñ∣ ∣ ∣s E E, 0 0 1 ).We observe that,

after the arrival of theGaussian pulse (with central frequency w w w= - -E 3s1 c, and area p á ñ∣ ∣ ˆ ∣ ∣s V E, 3 sg 1 ),
the initially zero third-order correlation function ( )G 3 approaches 6, the value corresponding to a three-photon
state. This result confirms the occurrence of the transition ñ  ñ∣ ∣E s, 31 . Also in this case, the emitted photons
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are reabsorbed by sending an additional identical Gaussian pulse.We observe that, within the standard RWA,
 á ñ =+ - + +∣ ˆ ( ) ˆ ( )∣x t x t 0.51 1 . Figure 4(d) at t=0 displays a higher value. This is a peculiar effect of theUSC
regime, where the intracavitymean excitation number is quadrature-dependent. In particular, it increases for x̂
measurements and decreases formeasurements of the conjugate quadrature = -ˆ ( ˆ ˆ)†y a ai .

Having studied the above processes induced by V̂sg , we now turn to those involving V̂se instead. Specifically,
we consider the case where the dipole transitionmoment mse is different from zero. Figure 5 shows these

processes, with the action of V̂se represented in the diagrams by blue crosses. These processes are able to break
one-photon loops, as illustrated infigure 5(a), which shows the diagrams associatedwith the transition

ñ  ñ∣ ∣E s, 10 , where a cavity photon is emitted (rightward time-arrow) and reabsorbed (leftward time-arrow).
Figure 5(b) shows the diagrams associatedwith the transitions ñ « ñ∣ ∣E s, 21 , where two photons enriching the
lowest-energy excited state ñ∣E1 of the RabiHamiltonian are emitted or reabsorbed. The analytical perturbative

calculations of thematrix elements á ñ∣ ˆ ∣s V E, 1 se 0 and á ñ∣ ˆ ∣s V E, 2 se 1 are described in appendixD. In complete
analogywithwhatwas shown infigures 4(c) and (d), we present infigures 5(c) and (d)nonperturbative
numerical calculations describing the dynamics of the undressing and re-dressing of the quantumRabi vacuum
and of the quantumRabi lowest-energy excitation, taking into account the presence of dissipation channels, the
presence of higher-energy levels, and the non-monochromaticity of the driving pulses.Wefirst consider the
system starting in the state ñ∣E0 , corresponding to an intracavitymean excitation number á ñ =- +ˆ ˆx x 0. Then, a
Gaussian pulse with central frequency w w w= - -E s0 c induces a transition ñ  ñ∣ ∣E s, 10 . Specifically, the

pulse area required to obtain a complete transition is p á ñ∣ ∣ ˆ ∣ ∣s V E, 1 se 0 . The pulse arrival-time corresponds to
the timewhen the loops in the Feynman diagrams are cut. Figure 5(c) displays the time evolution of á ñ- +ˆ ˆx x .

Figure 5. (a)Diagrams contributing to thematrix element á ñ∣ ˆ ∣s V E, 1 se 0 , associatedwith the transition ñ  ñ∣ ∣E s, 10 (rightward
time-arrow)where a cavity photon is emitted. The same diagrams butwith a leftward time-arrowdescribe the reverse transition

ñ  ñ∣ ∣s E, 1 0 , where a cavity photon is absorbed into the Rabi ground state. (b)Diagrams contributing to thematrix element
á ñ∣ ˆ ∣s V E, 2 se 1 , associatedwith the transitions ñ « ñ∣ ∣E s, 21 , where two photons enriching the lowest-energy excited state ñ∣E1 of the
RabiHamiltonian are emitted or reabsorbed back. The blue crosses represent the perturbation V̂se. (c)Numerical calculations of the
mean cavity-photon number (continuous black curve) corresponding to diagrams infigure 5(a). The system is initially prepared in the
state ñ∣E0 . Aπ pulse (shown in red), resonantly exciting the system from ñ∣E0 to ñ∣s, 1 , is then sent. A second pulse induces the
transition back from ñ∣s, 1 to ñ∣E0 . (d)Numerical calculations of themean cavity-photon number (continuous black curve), and of the
three-photon correlation function (dashed blue curve) corresponding to diagrams in figure 5(b). The system is initially prepared in the
state ñ∣E1 . Aπ pulse (red filled curve), resonantly exciting the system from ñ∣E1 to ñ∣s, 2 , is then sent. A second pulse induces the
transition back from ñ∣s, 2 to ñ∣E1 . For the other parameters of the simulation not specified here, the same values as infigure 4were
used.

9

New J. Phys. 19 (2017) 053010 ODStefano et al



After the arrival of the first pulse, á ñ- +ˆ ˆx x jumps and almost reaches the value 1. The equal-time second-order
correlation function ( )( )G t2 , not displayed, remains zero, confirming that a single-photon state is generated.

Figure 5(d)displays the dynamics starting from the systemprepared in the state ñ∣E1 .We observe that, after

the arrival of theGaussian pulse (with central frequency w w w= - -E 2s1 c and area p á ñ∣ ∣ ˆ ∣ ∣s V E, 2 se 1 ), the
initially zero second-order correlation function ( )G 2 approaches 2, the value corresponding to a two-photon
state. This result confirms the occurrence of the transition ñ  ñ∣ ∣E s, 21 . Also in this case, the emitted photons
are reabsorbed after an additional identical Gaussian pulse is sent.

We observe that both infigures 4 and 5, a normalised coupling strength wW = 0.15R c is sufficient to break
one-, two-, and three-photon loops, converting virtual photons into real ones with probability close to one. This
value of the normalised coupling strength is wWR c roughly equal to the experimentally demonstrated values in
circuit-QED systems [24].We note that ce,1

0 and ce,2
1 are significantly larger than cg ,2

0 and cg ,3
1 , respectively. Hence

the process induced by V̂se can be observed even for smaller coupling strenghts.

3.Discussion

The results presented here show that theUSC regime of cavityQED can be used to observe, in a direct way, how
interactions dress the observable particles by a cloud of virtual particles. Such particle dressing is a general
feature ofQFT andmany-body quantum systems.We have shown that, by applying external electromagnetic
pulses of suitable amplitude and frequency, each virtual photon enriching a physical excitation can be converted
into a physical observable photon. In this way, the hidden relationship between the bare and physical excitations
can be unravelled and becomes experimentally testable. Virtual particles are represented by internal loops in
Feynman diagrams. These loop or bubble diagrams describe internal processes where virtual photons are
created and reabsorbed. The diagrams representing the conversion of virtual photons, dressing a physical
excitation, into real ones can be obtained by cutting the loop diagrams describing energy corrections and taking
thefirst half.Moreover, the stimulated reabsorption of real photons into the physical excitation, converting
them to virtual photons, corresponds to the second half of the loop diagrams.

We limited our analysis to the dressed vacuumand to a one-particle state. It can be easily extended to study
higher-energy excitations.Moreover, we considered only processes up to second-order perturbation theory in
the counter-rotating potential V̂nr. The present analysis can be generalised to describe higher-order processes,
involvingmore than three photons, which can take place if the light–matter interaction is sufficiently
strong [35].

Themost promising candidates for an experimental realisation of the proposed stimulated conversion
effects are superconducting quantum circuits [65] and intersubband quantum-well polaritons. In particular,
phase-biased flux qubits can reach theUSC regime in circuit QED [66], as has been shown in experiments
[23, 24, 35, 67]. Very recently, hybrid quantum circuits [68]with wW egR ranging from0.72 to 1.34 have been
realised [35] bymaking use of themacroscopicmagnetic dipolemoment of aflux qubit, large zero-point-
fluctuation current of an LCoscillator, and large Josephson inductance of a coupler junction. Influx qubits, an
externally appliedmagnetic flux can be changed such that these artificial atoms acquire both the quantised level
structure and the transitionmatrix elements required for the observation of the stimulated emission and
reabsorption of virtual particles [7]. Specifically, the supplementarymaterial of [7] contains a sectionwhere
numerical calculations showhow an artificial atom (aflux qubit)with a specificflux offset can provide the
required level spacing and dipolemoments to observe the effect.We have checked thatworking far from the
sweet spot (around zeroflux-offset) does not affect the results significantly. In addition, we observe that it is not
necessary that level ñ∣s has lower energy than ñ∣g . In this case, the standard configuration offlux qubits near the
sweet spot can provide the required level structure and dipolemoments [23, 24, 35]. The description of the
stimulated emission and reabsorption of virtual photons presented here also holds if ñ∣s has higher energy than
the ñ∣g and ñ∣e states.

TheUSC regime can also be reached for intersubband transitions in undoped quantumwells [69]. In this
system, an optical resonator in the terahertz spectral range is resonantly coupled to transitions between the two-
lowest energy conduction subbands of a large number of identical undoped quantumwells. In this case, the
upper valence subband plays the role of the lowest energy state ñ∣s (see figure 3). Ultrafast optical pulses can
induce transitions between the valence and conduction subbands prompting the conversion from virtual to real
photons and vice versa.

Such experiments would provide deep insight into fundamental aspects of interaction processes inQFT and
quantummany-body systems. Theywould pave the route for quantum emulation [70, 71] of fundamental
processes inQED.
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Appendix

In these appendix sections, wefirst restate some properties of the quantumRabimodel and its diagrammatic
representation, expanding on the discussion in themain text.We then proceed to explicitly calculate analytically
the second-order correction to the lowest energy eigenvalues and comparing them to full numerical
calculations.We also calculatematrix elements associatedwith the external drive used to stimulate the emission
and reabsorption of the virtual particles dressing the excitations in the system.

AppendixA.Hamiltonian and basic diagrams

The interactionHamiltonian of the quantumRabimodel is

s= W +ˆ ( ˆ ˆ) ˆ ( )†V a a , A1xR

where WR is the coupling strength and s s s= + = ñá + ñá+ -ˆ ˆ ˆ ∣ ∣ ∣ ∣e g g ex . Referring to the case
w w w w» º -eg e gc , the interactionHamiltonian can be separated into a resonant and a nonresonant

contribution: = +ˆ ˆ ˆV V Vr nr, where s s= W +- +ˆ ( ˆ ˆ ˆ ˆ )†V a ar R , and s s= W ++ -ˆ ( ˆ ˆ ˆ ˆ )†V a anr R . This interaction term
has a structurewhich is very similar to that of theQED interaction potential, although it is simpler. The quantum
Rabimodel can be viewed as a prototypical QED systemwhere there is only one photonmode and a two-state
electron. Therefore, we expect that the Feynman diagrams for the RabiHamiltonianwill be a simplified version
of theQEDdiagrams.

As inQED, there is only one vertex typewith three lines: onewavy (photonic) line, one solid linewith an
incoming arrow, and one solid line with an outgoing arrow. The vertices (of the same type) corresponding to the
four terms in the interactionHamiltonian are displayed infigure A1. The upper diagram infigure A1(a)
describes the spontaneous emission process and the lower one the absorption process. Starting from these four
building blocks, it is possible to describe higher-order processes as inQED.However, in cavityQED there are
processes that are not described in a complete way by Feynman diagrams directly derived from this formof the
interactionHamiltonian. Specifically, the presence of a resonator supporting discretemodes opens up the
possibility of observing processes involvingmore than one photon in the samemode. Stimulated emission, the
process underlying laser action, is one of these. It is a one-photon process ñ  + ñ∣ ∣e n g n, , 1 , where, however,
the n photons in the initial state stimulate the downward transition of the atom, affecting the transition rate

Figure A1.Diagrams corresponding to the four terms in the interactionHamiltonian of the quantumRabimodel. The horizontal
lines represent the qubit states and thewavy lines the cavity photons. (a)Diagrams corresponding to those terms in the interaction
Hamiltonian that conserve energywhen w w= egc . (b)Diagrams for the terms sµ +ˆ ˆ†a and s-ˆ ˆa , which conserve neither energy nor the
number of excitations. Their elimination corresponds to the RWA.
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which becomes proportional to +n 1. The Feynman diagramdescribing the process is the same one describing
spontaneous emission (n = 0), shown infigure A1(a). However, the transition rate for stimulated emission is
+n 1 times larger than that of spontaneous emission.Hence the Feynman diagram in the absence of additional

rules is not able to uniquely determine the transition amplitude for this process.
A possible solution is to expand the photon creation and destruction operators in equation (A1) in the Fock

basis. The resulting interaction operator is

å a a s s= W + +
=

¥

+ - + -ˆ ( ˆ ˆ )( ˆ ˆ ) ( )( ) ( )V , A2
n

n n
R

0

where a = ñá = + + ñá+ˆ ˆ ∣ ∣ ∣ ∣( ) †a n n n n n1 1n , and a = ñá = - ñá-ˆ ˆ ∣ ∣ ∣ ∣( ) a n n n n n1n (notice that
a =-ˆ ( ) 00 ). This formof the interactionHamiltonian consists of a sumof products of (upward or downward)
atomic and photonic transition operators; thus photonic and atomic transitions are treated on an equal footing.
In this case, each vertex is associated to two transition operators. For example, the vertex describing the
transition ñ  ñ∣ ∣e g, 1 , 2 is shown infigure A2(a): thewavy lines describe the incoming and the outgoing
photon states, while the continuous linewith the arrows describes the incoming and outgoing electronic states.
The vertex infigure A2(a)describes a stimulated emission process. Since the photonwavy lines are labelled by
the photon number, an alternative (perhapsmore visual)way to drawdiagrams is to drop the photon label and
draw awavy line for each incoming or outgoing photon line as shown infigure A2(b). In this case, the vertices
will have =n nin incoming and = n n 1out outgoingwavy lines. Each vertex (full/empty circle) contributes
with a factor ∣ ˆ ∣n Vr nr , where = ( )n n nmax ,in out .

TheGreen’s function for the system in the absence of interaction,

w w
º á ñ =

- +
ˆ ( ) ∣ ˆ ∣

( )
( )( )

G z q n G q n
z n

, ,
1

, A3q
n

qg
0

c

where w w w= -qg q g , with =q e g, , corresponds to a loop diagramwith nwavy lines and one straight arrow.

Infigure A3, we show the two loop diagrams corresponding to ( )Ge
2 and ( )Gg

1 .

Appendix B. Second-order correction to the energy eigenvalues

Thewell-known second-order correction to the nth energy eigenvalue is

åD = ¢ á ñ
-

∣ ∣ ˆ ∣ ∣ ( )( )E
E V E

E E
, B1n

k

k n

n k

2
2

0 0

Figure A2.Diagrams corresponding to the the transition ñ  ñ∣ ∣e g, 1 , 2 . (a)Diagramwith one incoming and one outcomingwavy
line, each labelled respectively with the number of photons involved in the process. (b)Diagram for the same process, but in this case
eachwavy line represents one single photon.

Figure A3.Examples of diagrams corresponding to theGreen’s function. (a)Diagram for á ñ∣ ˆ ∣e G e, 2 , 20 . (b)Diagram for
á ñ∣ ˆ ∣g G g, 1 , 10 .
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where the prime in the summationmeans that the values k=n have to be excluded. For thefirst-order
correction to the eigenfunctionwe have

åñ = ¢á ñ
-

ñ∣ ∣ ˆ ∣ ∣ ( )( )E
E V E

E E
E . B2n

k

k n

n k
k

1
0 0

Following [58], defining the projection operator onto the space orthogonal to ñ∣n , = - ñáˆ ˆ ∣ ∣Q n n1n ,
equation (B2) becomes

ñ = ñ∣ ˆ ˆ ( ) ˆ ˆ ∣ ( )( )E Q G E Q V E , B3n n n n n
1 0

where

=
-

ˆ ( ) ˆ ( )G E
E H

1
B4n

n
0

0
0

0

is the unperturbedGreen’s function calculated for E0n, the unperturbed eigenenergy of the system.
Using the definition of theGreen’s function from equation (B4) and the projection operators, equation (B1)

becomes

D = á ñ∣ ˆ ˆ ˆ ( ) ˆ ˆ ∣ ( )( )E E VQ G E Q V E . B5n k n n n n
2

Weapply these results to the JCHamiltonian perturbed by the non-resonant potential V̂nr. In this case, the
unperturbedHamiltonian Ĥ0 becomes = +ˆ ˆ ˆH H VJC 0 r, whose eigenvalues and eigenstates are 


n and  ñ∣ n ,

respectively.We have

     ñ = ñ + - ñ ñ = - ñ + - ñ+ -∣ ∣ ∣ ∣ ∣ ∣ ( )g n e n g n e n, , 1 , , 1 . B6n n n n n n

The action of the non-resonant potential on these eigenstates is

  ñ = W + ñ + - ñ+ˆ ∣ ( ∣ ∣ ) ( )V e n g n, 1 , 2 B7n n nnr R

and

  ñ = W - + ñ + - ñ-ˆ ∣ ( ∣ ∣ ) ( )V e n g n, 1 , 2 . B8n n nnr R

From the last two equations, we deduce that the non-resonant potential V̂nr determines transitions from the
subspace n (spanned by 

n ) to (n+2) or (n−2) subspaces. As a consequence, we have

 ñ = ñ ˆ ˆ ∣ ˆ ∣ ( )Q V V . B9n n nnr nr

Owing to this property, equation (B5) becomes

   D = D = á ñ    ∣ ˆ ˆ ( ) ˆ ∣ ( )( ) ( ) V G V , B10n n n n
2 2

nr nr

where

  = - = - -  -  -ˆ ( ) ( ˆ ) ( ˆ ˆ ) ( )G H H V B11n n nJC
1

0 r
1

is the JCGreen’s function. Equation (B10) can be easily calculated exploiting thematrix elements of the JC
Green’s function by using the JC eigenstates.We do not follow this procedure because our scope is to show,
through a diagrammatic analysis, the structure of the virtual processes that contribute to such a correction. For
this purpose, we exploit theDyson equation for the JCGreen’s function, considering now the resonant potential
V̂r as the perturbation, and theGreen’s function in the absence of interaction  = - -ˆ ( ) ( )G Hn n0 0

1:
= + +ˆ ˆ ˆ ˆ ˆG G G V G ...0 0 r 0 . Equation (B10) can thus be expanded as

      D = á ñ + á ñ +       ∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ˆ ( ) ˆ ∣ ( )( ) V G V V G V G V .... B12n n n n n n n n
2

nr 0 nr nr 0 r 0 nr

Using equation (B12), the lowest-order (second-order) correction to the ground state ñ∣g , 0 energy due to

the non-resonant potential V̂nr can be expressed as

D = á ñ = á ñ + á ñ +∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ˆ ∣ ∣ ˆ ˆ ˆ ˆ ˆ ∣ ( )( ) g V G E V g g V G V g g V G V G V g, 0 , 0 , 0 , 0 , 0 , 0 .... B130
2

nr 0 nr nr 0 nr nr 0 r 0 nr

By using the identity operator and exploiting the explicit expression of V̂nr, equation (B13) can be expressed as

D = á ñá ñá ñ = W á ñ∣ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ∣ ˆ ∣ ( )( ) g V e e G e e V g e G e, 0 , 1 , 1 , 1 , 1 , 0 , 1 , 1 . B140
2

nr nr R
2

In order to calculateD( )
0
2 , we observe that

á ñ = á ñ = W∣ ˆ ∣ ∣ ˆ ∣ ( )g V e e V g, 0 , 1 , 1 , 0 . B15nr nr R

The remaining term, á ñ∣ ˆ ∣e G e, 1 , 1 , is a convergent geometric series that is calculated in appendix E.We
obtain
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w w
D =

W
W -

( )( )

2

1

2 1
. B160

2 R
2

c R
2

c
2

For wW < 1R c ,D( )
0
2 can be approximated to second order in WR:

w
D » -

W ( )( )

2
. B170

2 R
2

c

Infigure B1, we show the comparison between the exact (numerical) and approximated (diagrammatic)
calculation of the correction term to the ground state energy.

This approach can also be applied to the excited states.We consider the first excited state. Using
equation (B10), we are able to calculate the correction up to second order in the potential V̂sg toE1; we have

    D = á ñ = á ñ- - - -∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ( )( ) V G V g V G V g, 1 , 1 . B181
2

1 nr 1 nr 1 1
2

nr 1 nr

Observing that ñ =ˆ ∣V e, 0 0nr , ñ = W ñˆ ∣ ∣V g e, 1 2 , 2nr R , and   ñ = - ñ + ñ-∣ ∣ ∣g e, 1 , 01 1 1 , we have

 ñ = - W ñ-ˆ ∣ ∣ ( )V e2 , 2 . B19nr 1 1 R

Equation (B18) becomes

    

 

D = á ñ = á ñ

= W á ñ

- - - -

-

∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣
∣ ˆ ( )∣ ( )

( ) V G V g V G V g

e G e

, 1 , 1

2 , 0 , 0 . B20

1
2

1 nr 1 nr 1 1
2

nr 1 nr

1
2

R
2

1

The energy correctionD( )
1
2 can be easily evaluated by directly using ˆ ( )G z or by summing up the infinite

contributions arising from theDyson series, described by the diagrams (see appendix E, equation (E11)).
In the absence of detuning, we have for thefirst excited state

 ñ = - ñ + ñ-∣ ( ∣ ∣ ) ( )g e
1

2
, 1 , 0 , B211

with energy

 w= - W- ( ). B221 c R

Weobtain

w
w w

D = -W
W +
- W - W

( )( ) 2

4 4 2
. B231

2
R
2 R c

c
2

R c R
2

For wW < 1R c ,D( )
1
2 can be approximated to second order in WR:

w
D » -

W ( )( )

2
. B241

2 R
2

c

A comparison between the approximate analytical energy corrections and the corresponding nonperturbative
numerical calculations can be found infigure B1.

AppendixC. Additional perturbation V̂sg allowing transitions from ñ∣g to ñ∣s

Using equation (B1), the correction to the JC eigenstate  ñ∣ n up to thefirst order in the non-resonant potential
becomes,

Figure B1.Comparison between the exact (numerical) and approximated (diagrammatic) calculation of the correction terms for (a)
the ground-state energy and (b) thefirst excited state. The blue continuous lines describe the numerical calculation, while the red
dotted lines describe the approximate one.
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 ñ = ñ∣ ˆ ˆ ( ) ˆ ∣ ( )( )E Q G V . C1n n n n
1

nr

Wenow consider the direct excitation of the artificial atomby applied electromagnetic pulses, described by
theHamiltonian

= +ˆ ( )( ˆ ˆ ) ( )H t V V , C2sg sed

where m= ñá + ñáˆ (∣ ∣ ∣ ∣)V g s s gsg sg , m= ñá + ñáˆ (∣ ∣ ∣ ∣)V e s s ese se , and msg and mse are the dipolemoments (here
assumed to be real) for the transitions ñ « ñ∣ ∣s g and ñ « ñ∣ ∣s e , respectively.

First, we consider the casewith the systemprepared in the state  ñ = ñ∣ ∣g , 00 . The time-dependent
perturbation can induce additional transitions whose rate can be evaluatedwith the Fermi golden rule.

In the absence of the counter-rotating interaction terms V̂nr, Ĥd can induce only zero-cavity-photon
transitions ñ « ñ∣ ∣g s, 0 , 0 .When including the counter-rotating terms, additional transitions are activated. For

example, the transition ñ « ñ∣ ∣E s, 20 acquires a nonzeromatrix element á ñ∣ ˆ ∣s V E, 2 sg 0 , where ñ∣E0 is the lowest

energy state of the RabiHamiltonian. It can be calculated perturbatively in V̂nr, approximating ñ∣E0 tofirst order

in V̂nr (see equation (B3)):

ñ ñ + ñ∣ ∣ ˆ ( ) ˆ ∣ ( )E g G V g, 0 , 0 . C30 0 nr

Weobtain

 má ñ = á ñ = W á ñ∣ ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ( )∣ ( )s V E s V G V g g G e, 2 , 2 , 0 , 2 , 1 . C4sg sg sg0 0 nr R 0

The correspondingDyson series is

   

 w w

á ñ = á ñ + á ñ+ ¼

=
W

- - W
=

W
- W

∣ ˆ ( )∣ ∣ ˆ ( )∣ ∣ ˆ ( ) ˆ ˆ ( )∣

( )
( )

g G e g G e g G V G e, 2 , 1 , 2 , 1 , 2 , 1

2

2 2

2

4 2
. C5

0 0 0 0 0 r 0 0

R

0 c
2

R
2

R

c
2

R
2

The comparison between the exact (numerical) and approximated (diagrammatic) calculation of thismatrix
element is shown infigure C1.

Wenow consider the case with the systemprepared in the state  ñ = - ñ + ñ-∣ ( ∣ ∣ )g e, 1 , 01
1

2
, whose energy

is  w= - W-
1 c R. The time-dependent perturbation can induce additional transitions whose rate can be

evaluatedwith the Fermi golden rule. In the presence of V̂nr, additional transitions, such as ñ « ñ∣ ∣E s, 31 , become

activated. Thematrix element for this transition is á ñ∣ ˆ ∣s V E, 3 sg 1 . It can be calculated perturbatively in V̂nr,

approximating ñ∣E1 tofirst order in V̂nr (see equation (B3)):

  ñ ñ + ñ- - -∣ ∣ ˆ ( ) ˆ ∣ ( )E G V . C61 1 1 nr 1

Observing that

 ñ = - ñ - ñ = -W ñ-ˆ ∣ ( ˆ ∣ ˆ ∣ ) ∣ ( )V V g V e e
1

2
, 1 , 0 , 2 , C7nr 1 nr nr R

FigureC1. (a)Comparison between the exact (numerical, blue continuous curve) and approximated (diagrammatic, red dotted
curve) calculation of the transition element á ñ∣ ∣ ˆ ∣s V E, 2 sg 0 between the state ñ∣s, 2 (where ñ∣s is now the real ground state) and ñ∣E0 (the
cavity-dressed ground state) due to the additional V̂sg potential as a function of the coupling parameter normalised to the cavity
resonance frequency. (b)Comparison between the exact (numerical) and approximated (diagrammatic) calculation of the transition
element á ñ∣ ∣ ˆ ∣ ∣s V E, 3 sg 1 between the state ñ∣s, 3 (where ñ∣s is now the real ground state) and ñ∣E1 (the cavity-dressed first excited state)
due to the additional V̂sg potential as a function of the coupling parameter, normalised to the cavity resonance frequency. This
comparison confirms the validity of the approximate diagrammatic approach. For the sake of simplicity, here we used mW = 1sgR .
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wherewe have used the relations ñ = W ñˆ ∣ ∣V g e, 1 2 , 2nr R and ñ =ˆ ∣V e, 0 0nr , we obtain

  má ñ = á ñ = -W á ñ- - -∣ ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ( )∣ ( )s V E s V G V g G e, 3 , 3 , 3 , 2 . C8sg sg sg1 1 nr 1 R 1

The correspondingDyson series is (see appendix E and equation (E12))

   

 w w

á ñ = á ñ + á ñ+¼

=
W

- - W
=

W
W + - W

- - - -∣ ˆ ( )∣ ∣ ˆ ( )∣ ∣ ˆ ( ) ˆ ˆ ( )∣

( ) ( )
( )

g G e g G e g G V G e, 3 , 2 , 3 , 2 , 3 , 2

3

3 3

3

2 3
. C9

1 0 1 0 1 r 0 1

R

1 c
2

R
2

R

R c
2

R
2

AppendixD. Additional perturbation V̂se allowing transitions from ñ∣e to ñ∣s

Wenow consider a situation similar to the one analysed previously. In this case, a transition ñ « ñ∣ ∣s e is detuned
at amuch higher energy than the cavity resonance. The part of the time-dependent potential inducing the
ñ « ñ∣ ∣s e transitions is ¢ =ˆ ( ) ( ) ˆV t t Vse. In the absence of the counter-rotating interaction terms V̂nr, ¢ˆ ( )V t can

induce zero-cavity-photon transitions ñ « ñ∣ ∣e s, 0 , 0 .

In the presence of V̂nr, additional transitions, such as ñ « ñ∣ ∣E s, 10 , can be activated. Thematrix element for

this transition is á ñ∣ ˆ ∣s V E, 1 se 0 . It can be calculated perturbatively in V̂nr, approximating ñ∣E0 to thefirst order in

V̂nr (see equation (B3)):

ñ ñ + ñ∣ ∣ ˆ ( ) ˆ ∣ ( )E g G V g, 0 , 0 . D10 0 nr

Wehave

 má ñ = á ñ = W á ñ∣ ˆ ∣ ∣ ˆ ˆ ( ) ˆ ∣ ∣ ˆ ( )∣ ( )s V E s V G V g e G e, 1 , 1 , 0 , 1 , 1 . D2se se se0 0 0 nr R 0 0

Exploiting theDyson series for theGreen’s function, we obtain

   á ñ = á ñ + á ñ +∣ ˆ ( )∣ ∣ ˆ ( )∣ ∣ ˆ ( ) ˆ ˆ ( )∣ ( )e G e e G e e G V G e, 1 , 1 , 1 , 1 , 1 , 1 .... D30 0 0 0 0 r 0 0

In this series, owing to the nature of the resonant potential, only the odd terms are non-zero.We have:

   åá ñ = á ñ + á ñ
=

¥

∣ ˆ ( )∣ ∣ ˆ ( )∣ ∣ ˆ ( )( ˆ ˆ ( )) ∣ ( )e G e e G e e G V G e, 1 , 1 , 1 , 1 , 1 , 1 . D4
n

n
0 0 0

1
0 0 r 0 0

2

The diagrammatic analysis of this process is shown infigure 5 of themain part of the paper. Using the results
of appendix E, theDyson series calculation of equation (D2), at resonance (w w egc ), gives

m m
w
w

á ñ = W á ñ =
W

W -
∣ ˆ ∣ ∣ ˆ ( )∣ ( )s V E e G e, 1 , 1 , 1

2
. D5se se se0 R 0

R c

R
2

c
2

Appendix E. Calculation of the Ĝ matrix elements using theDyson equation

In this section, we perform all the calculations for the determination of the correction to the self-energy to
second order in V̂nr.We have to sum all the elements of the infinite series. The genericmatrix element is

á ñ∣ ˆ ( )[ ˆ ˆ ( )] ∣ ( )e G z V G z e, 1 , 1 . E1n
0 r 0

Weobserve that thematrix elementwill be zero if V̂r appears an odd number of times, i.e.,

á ñ = >+∣ ˆ ( )[ ˆ ˆ ( )] ∣ ( )e G z V G z e n, 1 , 1 0 for 0. E2n
0 r 0

2 1

Hencewemay perform the calculation for the self-energy considering only the even-power terms. In
addition, we observe that

á + ñ = á + ñ = + W∣ ˆ ∣ ∣ ˆ ∣ ( )g n V e n e n V g n n, 1 , , , 1 1 . E3r r R
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We then obtain

å

å

å

å s

á ñ = á ñ

= á ñ á ñ

= á ñ á ñ á ñ á ñ

= á ñ

=

¥

=

¥

=

¥

=

¥

∣ ˆ ∣ ∣ ˆ ( )[ ˆ ˆ ( )] ∣

∣ ˆ ( )∣ ∣[ ˆ ˆ ( )] ∣

∣ ˆ ( )∣ ∣ ∣ ˆ ∣ ∣ ( ∣ ˆ ( )∣ ) ( ∣ ˆ ( )∣ )

∣ ˆ ( )∣ ( )

( )

e G e e G z V G z e

e G z e e V G z e

e G z e e V g e G z e g G z g

e G z e

, 1 , 1 , 1 , 1

, 1 , 1 , 1 , 1

, 1 , 1 , 1 , 2 , 1 , 1 , 2 , 2

, 1 , 1 ,

E4

n

n

n

n

n

n n n

n

n

0
0 r 0

2

0
0

r 0
2

0
0

r
2

0 0

0
0

where

s = á ñ á ñ

= W á ñá ñ

∣ ∣ ˆ ∣ ∣ ∣ ˆ ( )∣
∣ ˆ ( )∣ ∣ ˆ ( )∣ ( )

e V g e G z e

e G z e g G z g

, 1 , 2 , 1 , 1

2 , 1 , 1 , 2 , 2 . E5

r
2

0

R
2

0 0

Following [72], theGreen’s function operator relative to a generic differential operator L̂ satisfies the
relation

- =[ ˆ] ˆ ( ) ˆ ( )z L G z I , E6

with z a convenient parameter. Therefore, for the cases =ˆ ˆL H and =ˆ ˆL H0, we have, respectively:

= - = -- -ˆ ( ) [ ˆ ] ˆ ( ) [ ˆ ] ( )G z z H G z z H, . E71
0 0

1

In our calculation, we choose =z 0 (hence ˆ ( )G z0 is the resolvent of the freeHamiltonian eigenvalue
problem):

s
w

w w w

á ñ = á ñ
-

=
á ñ

á ñ á ñ - W

=
-

- - - - W

-

- -
∣ ˆ ( )∣ ∣ ˆ ( )∣ ( ∣ ˆ ( )∣ )

( ∣ ˆ ( )∣ ) ( ∣ ˆ ( )∣ )
( )

( )( )
( )

e G z e e G z e
g G z g

e G z e g G z g

z

z z

, 1 , 1 , 1 , 1
1

1

, 2 , 2

, 1 , 1 , 2 , 2 2

2

2 2
.

E8
eg

0
0

1

0
1

0
1

R
2

c

c c R
2

For the sake of completeness, we now calculate the other non-zeromatrix elements:

å

å

å s

s

w w w

á ñ = á ñ

= á ñá ñá ñ á ñ

= á ñá ñá ñ

= á ñá ñá ñ

= á ñá ñ
W

-

=
W

á ñ á ñ - W

=
W

- - - - W

=

¥
+

=

¥

=

¥

- -

∣ ˆ ( )∣ ∣ ˆ ( )[ ˆ ˆ ( )] ∣

∣ ˆ ( )∣ ∣ ˆ ( )∣ ∣ ˆ ∣ ∣[ ˆ ˆ ( )] ∣

∣ ˆ ( )∣ ∣ ˆ ∣ ∣ ˆ ( )∣

∣ ˆ ( )∣ ∣ ˆ ∣ ∣ ˆ ( )∣ ( )

∣ ˆ ( )∣ ∣ ˆ ( )∣

( ∣ ˆ ( )∣ ) ( ∣ ˆ ( )∣ )

( )( )
( )

e G z g e G z V G z g

g G z g e G z e e V g e V G z e

g G z g e V g e G z e

g G z g e V g e G z e

e G z e g G z g

e G z e g G z g

z z

, 1 , 2 , 1 , 2

, 2 , 2 , 1 , 1 , 1 , 2 , 1 , 1

, 2 , 2 , 1 , 2 , 1 , 1
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1
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n

n

n

n
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r 0
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s

w w

w w w

á ñ = á ñ
-

=
á ñ
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=
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The generalisation of the abovematrix elements to all n subspaces is straightforward. Actually, all the
contributions of the self-energy can be easily calculated because the JCHamiltonian divides the entireHilbert
space into disjoint 2D subspaces (labelled by n) spanned by ( ñ∣e n, , + ñ∣g n, 1 ). For the generic nth subspacewe
have

w
w w w

á ñ =
- +

- - - + - + W
∣ ˆ ( )∣ ( ( ) )

( )( ( ) ) ( )
( )e n G z e n

z n

z n z n n
, ,

1

1 1
, E11

eg

c

c c R
2

w w w
á + ñ =

+ W
- - - + - + W

∣ ˆ ( )∣
( )( ( ) ) ( )

( )e n G z g n
n

z n z n n
, , 1

1

1 1
, E12

eg

R

c c R
2

w w

w w w
á + + ñ =

- -

- - - + - + W
∣ ˆ ( )∣

( )
( )( ( ) ) ( )

( )g n G z g n
z n

z n z n n
, 1 , 1

1 1
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