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Abstract
We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator
coupled to a general quantum systemwith arbitrary interaction strengths. The generalized theoretical
analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum
electrodynamics: from theweak to the strong, ultrastrong, and deep coupling regimes. For coupling
rates comparable or larger then the cavity resonance frequency, the standard input–output theory for
optical cavities fails to calculate the variance of outputfield-quadratures and predicts a non-negligible
amount of output squeezing, even if the system is in its ground state. Herewe show that, for arbitrary
interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in
the output-field quadratures if the system is in its ground state.We also apply the proposed theoretical
approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a
coherently-excited cavity; and (ii) a cascade-type three-level system interactingwith a cavity field
mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity
dressed states. This work extends the possibility of predicting and analyzing the results of continuous-
variable optical quantum-state tomographywhen optical resonators interact very strongly with other
quantum systems.

1. Introduction

Recently, a new regime of cavity quantum electrodynamics (QED) has been experimentally reached in different
solid state systems and spectral ranges [1–8]. In this so-called ultrastrong coupling (USC) regime, where the
light–matter coupling rate becomes an appreciable fraction of the unperturbed resonance frequency of the
system, the routinely invoked rotatingwave approximation (RWA) is no longer applicable and the antiresonant
terms significantly change the standard cavity-QED scenarios [9–18].

It has been shown that, in thisUSC regime, the correct description of the output photon flux, aswell as of
higher-order Glauber’s normal-order correlation functions, requires a proper generalization of the input–
output theory for resonators [13, 19, 20]. Application of the standard input–output picture to theUSC regime
would predict an unphysical continuous streamof output photons for a system in its ground state ñ∣G . This
result stems from the finite number of photonswhich are present in the ground state due to the counter-rotating
terms in the interactionHamiltonian [21]. Specifically, it has been shown [13, 22] that the photon rate emitted
by a resonator and detectable by a photo-absorber is no longer proportional to á ñˆ ( ) ˆ ( )†a t a t (as predicted by the
standard input–output theory), where â and ˆ†a are the photon destruction and creation operators of the cavity
mode, but to á ñ- +ˆ ( ) ˆ ( )x t x t , where +ˆ ( )x t is the positive frequency component of the quadrature operator
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= +ˆ ( ) ˆ ( ) ˆ ( )†x t a t a t and =- +ˆ ( ) ( ˆ ( ))†x t x t , which can be different from the bare photon creation an
destruction operators.When the coupling rate is not a negligible fraction of the bare resonance frequencies, the
correct separation into positive and negative frequency operators can be performed only by including the
influence of the interactionHamiltonian. This separation can be easily performed after the diagonalization of
the total systemHamiltonian.

Direct photon counting experiments provide information about themean photon number and higher-
order normal-order correlations.However a complete quantum tomography of the electro-magnetic field (see,
e.g., [23]) requires phase-sensitivemeasurements which are based on homodyne or heterodyne detection
[24, 25]. These techniques enable themeasurements of themeanfield quadratures and their variance, e.g., á ñx̂
and á ñ - á ñˆ ˆx x2 2.More generally, for an electro-magnetic field-mode, it is possible to define two complementary

field-quadratures Q̂1 and Q̂2 with =[ ˆ ˆ ]Q Q, 11 2 , as = +f f-ˆ ˆ ˆ†Q a ae e1
i i and = - -f f-ˆ ( ˆ ˆ )†Q a ai e e2

i i . In a
coherent state of an electro-magnetic fieldmode, the quantumfluctuations of the twofield-quadratures Q̂1 and

Q̂2 are equal (D = D =ˆ ˆQ Q 11 2 , whereD = á ñ - á ñˆ ˆ ˆQ Q Qi i i
2 2) andminimize the uncertainty product given by

Heisenberg’s uncertainty relationD D =ˆ ˆQ Q 11 2 (weuse  = 1). These zero-point fluctuations represent the
standard quantum limit to the reduction of noise in a signal. Otherminimum-uncertainty states are possible,
and these occurwhenfluctuations in one quadrature are squeezed at the expense of increased fluctuations in the
other one [26]. Light squeezing can be realized in various nonlinear optical processes, such as parametric down-
conversion, parametric amplification, and degenerate four-wavemixing [27–31] or in presence of time-
dependent boundary conditions [32–35]. Squeezed states of light belong to the class of nonclassical states of
light. Having a less noisy quadrature, squeezed light has applications in optical communication [36] and
measurements [36–40] and is a primary resource in continuous variable quantum information processing [38].
Squeezing of the electromagnetic field has been achieved in a variety of systems operating in the optical and
microwave regimes. A noise reduction of−10 dB (−13 dB is the estimation of squeezing after correction for
detector inefficiency) has been achieved in the experiment [41].More recently, a few experiments with
superconducting circuits [34, 42] have demonstrated the possibility of obtainingmuch stronger squeezing in
microwavefields [43].

Here we present a theory of quadraturemeasurements of the outputfield escaping from a resonator coupled
to a genericmatter systemwith arbitrary interaction strength, andwe apply it to the analysis of squeezing. In
cavity-QED systems, the squeezing effect has been usually studied by using the rotating-wave approximation
[44–49].While in theUSC regime the positive frequency component +x̂ is different from â (itmay contain
contributions from the creation operator of the cavity field), the quadrature operator = + = ++ -ˆ ˆ ˆ ˆ ˆ†x a a x x is
independent of the light–matter interaction strength.Hence, at afirst sight, onemay expect that, in contrast to
Glauber’s correlation functions, quadraturemeasurements can be analyzed by applying the standard input–
output theory [50, 51]. Herewe show that this is not the case: application of the standard input–output picture to
the analysis of quadraturemeasurements in theUSC regime leads to incorrect results.We also observe that the
calculation of quadrature expectation values bymeans of the generalized input–output relations (working for
arbitrary light–matter coupling) presents some additional complications compared to that of normal-order
correlations. In particular, the resulting quadrature expectation values contain products of system and input
operators and thus cannot be directly derivedwithin themaster equation approach. The present analysis is of
particular interest for the description ofmeasurements in circuit-QED systems, where output quadrature
measurements are generally employed since efficientmicrowave photon-counting detectors are not currently
available.However, well-developed linear amplifiers allow for the efficientmeasurement of thefield-quadrature
amplitudes [25, 42, 52, 53]. Using input–output theory [51], one can show that the full information about the
intracavity field-mode is contained in themoments and cross-correlations of the time-dependent output
quadrature amplitudes. It has been demonstrated experimentally that correlation-functionmeasurements
based on quadrature amplitude detection are a powerful tool to characterize quantumproperties of propagating
microwave-frequency radiation fields [52]. Hence a generalmethod to calculate these time-dependent
moments, when the resonator interacts with one ormore artificial atoms in theUSC regime, is highly desirable
for the analysis of the outputmicrowave field in circuit-QED systems.

We apply the theoretical framework developed here to analyze three different cases: (i)we analyze the output
field-quadratures for a system in its ground state. It is know that the ground state of a system in theUSC regime is
a squeezed vacuum state [19], where the amount of squeezing depends on the coupling strength and on the
detuning between the cavitymode and thematter-system resonances. A correlation-function analysis of the
quadratures ofmicrowave fields has been exploited formeasurements of vacuum fluctuations andweak thermal
fields [54]. Hence the question arises if it is possible to detect such vacuum squeezing.Here, under quite general
hypotheses, we demonstrate that for arbitrary cavity-embedded quantum systems, independently on the
coupling rate, no squeezing can be found in the output field quadratures if the system is in its ground state. (ii)
We study a coherently excited cavity interactingwith an artificial two-level atom. Recently, it has been shown
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that superconducting artificial atoms, subject to parity-symmetry-breaking and ultrastrong coupled to
superconducting resonators, can display two-photon vacuumRabi oscillations [22]. However, two-photon
correlations cannot directly be detected in these systems.We show that quadrature-noisemeasurements can
provide an alternative direct probe. This process can give rise to a high degree of squeezing in presence of a single
two-level system, just exciting the qubit with a classicalmicrowave pulse. (iii)As a further example of the
developed framework, we analyze the output squeezing froma resonator interactingwith a cascade-type three-
level system.

We start out, in section 2, with the squeezing of the ground state of the RabiHamiltonian. In section 3we
present a theoretical framework of the output field quadratures. In section 4 this theoretical approach is applied
to single-atomUSC cavity-QED systems. Finally, in section 5we present our conclusions.

2. Squeezing of the ground state of theRabiHamiltonian

TheHamiltonian of the quantumRabimodel ( = 1) [55, 56] is given by

w
w

s s= + + W +ˆ ˆ ˆ ˆ ( ˆ ˆ) ˆ ( )† †H a a a a
2

, 1z xR c
q

R

where â and ˆ†a are, respectively, the annihilation and creation operators for the cavity field of frequency wc. The
Paulimatrices are defined as s = ñá - ñáˆ ∣ ∣ ∣ ∣e e g gz and s s s= + = ñá + ñá+ -ˆ ˆ ˆ ∣ ∣ ∣ ∣e g g ex , in terms of the atomic
ground ( ñ∣g ) and excited ( ñ∣e ) states. The parameter wq describes the transition energy of the two-level system
and WR is the coupling energy between the atomic transition and the cavityfield.

Owing to the presence of the so-called counter-rotating terms, s-ˆ ˆa and s+ˆ ˆ†a , in the RabiHamiltonian, the
operator describing the total number of excitations, = + ñáˆ ˆ ˆ ∣ ∣†N a a e e , does not commutewith ĤR and as a

consequence the eigenstates of ĤR do not have a definite number of excitations [21], however the system
described by theHamiltonian in equation (1) conserves the parity of the number of excitations. For instance the
resulting ground state, in terms of the bare cavity and qubit states, is a superposition of an even number of
excitations [21],

åñ º ñ = ñ + + ñ
=

¥

∣ ∣˜ ( ∣ ∣ ) ( )˜ ˜
G c g k c e k0 , 2 , 2 1 , 2

k
g k e k

0
,2

0
,
0

where the second entry in the kets provides the photon number. The coefficients of this expansion can be
calculated diagonalizing numerically the RabiHamiltonian in equation (1) (see, e.g., [21, 22]).When the
coupling rate WR ismuch smaller than the bare resonance frequencies of the two subsystems wc and wq , only

˜cg ,0
0

is significantly different from zero and the ground state reduces to ñ ñ∣˜ ∣g0 , 0 , which is that of the Jaynes–
Cummingsmodel, derived from the RabiHamiltonian after dropping the counter-rotating terms.When the
coupling rate WR approaches and exceed 10% of the bare frequencies of the subsystems, that is USC regime,
contributions with ¹k 0 in equation (2) become not negligible. One consequence is that themean photon
number in the ground state á ñ˜∣ ˆ ˆ∣˜†a a0 0 becomes different from zero.Moreover, the ground state displays a certain
amount of photon squeezing. Considering the intracavity-field quadrature = -ˆ ( ˆ ˆ)†q a ai2 , its variance

= á ñ - á ñ˜∣ ˆ ∣˜ ˜∣ ˆ ∣˜s q q0 0 0 02 2
2

2
2 (notice that á ñ =˜∣ ˆ ∣˜q0 0 02 ) turns out to be below the standard quantum limit value 1.

Figure 1 displays the numerically calculated = -( )s s 1n
2 2 as a function of the normalized coupling wWR c

and detuning w w w wD = -( )c q c c. For small values of the normalized coupling, the variance approaches the
standard quantum limit.

We notice that, increasing wWR c, the variance decreases below the standard quantum limit, reaching a
lowest value of about−0.35, at wW  1.05R c and at a positive detuning wD  0.76c . Further increasing the
coupling, especially at zero and negative detuning, results into an increase of the variance s2, caused by quite large
contributions in ñ∣0̃ of termswith an oddnumber of photons.

This noise increase can be understood noticing that the noise reduction originates from the terms y yá ñ∣ ˆ ∣a2 ,
and the operator â2 connects only terms in the quantum states yñ∣ differing by two photons.Hence squeezing
can be larger for states with either an even or an odd number of photons. In the next sectionwewill show that
such a ground-state squeezing actually does not give rise to an observable output squeezing.

3.Outputfield quadratures

According to the input–output theory for general localized quantum systems interactingwith a propagating
quantumfield, the outputfield operator can be related through a boundary condition to a systemoperator and
the inputfield operators [57]. In order to be specific, we consider the case of a system coupled to a semi-infinite
transmission line [57], although the results obtained can be applied or extended to a large class of systems.While
the resonator can be ultrastrongly coupled to a localized quantum system, its interactionwith the propagating
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quantumfield (e.g., the transmission line) is weak. To derive the input–output relationswe couple the system to a
quantumfieldmade of an assembly of harmonic oscillators. The totalHamiltonian of the system can bewritten
as

= + +ˆ ˆ ˆ ˆ ( )H H H H , 3S F SF

where ĤS and ĤF are the system andfieldHamiltonian andwhere the interaction between the system and the
field can be expressed in the rotatingwave approximation as


ò w w

w
w w= -

¥ - +ˆ ( ) [ ˆ ˆ ( ) ˆ ˆ ( )] ( )†
H k

v
X b X bi d

2
, 4SF

0

where v is the speed of the traveling field, e.g., the speed of light in the transmission line.
In the above equation, wˆ ( )b and w( )k are the annihilation operator and the spectral density for the

harmonic oscillators that describe the output field,
+

X̂ and
-

X̂ are the positive and negative frequency
components of the generic systemoperator X̂ coupled to thefield. These components can be obtained
expressing X̂ in the eigenvectors basis of ĤS as

å= ñá+

<

ˆ ∣ ∣ ( )X X i j , 5
i j

ij

and =- +ˆ ( ˆ )†X X . Here the eigenstates of ĤS are labeled according to their eigenvalues such that w w>k j for
>k j.We observe that the rotatingwave approximation used in equation (A4) is based on the separation into

positive and negative frequency operators of the systemoperator X̂ after the systemdiagonalization. The
standard RWA is instead based on the separation into bare positive (destruction) and negative (creation)
components of thefield operator coupled to the externalmodes, without including its interactionwith other
components of the system.

The positive frequency component of the input and output fields can bewritten as


ò w

pw
w w= ¢ - - ¢

+ ¥
ˆ ( ) ˆ ( ) [ ( ] ( )( )A t b t t t

1

2
d , exp i , 6in out

0

while the negative frequency component =
- +ˆ ( ˆ )( ) ( )

†A Ain out in out , so that = +
+ -ˆ ( ) ˆ ( ) ˆ ( )( ) ( ) ( )A t A t A tin out in out in out , in

which ¢ <t t (the input) is afixed initial time and ¢ >t t (the output) is assumed to be in the remote future [57].
Formally solving theHeisenberg equations ofmotion for wˆ ( )b , the input–output relations for the positive and
negative components of thefields can be obtained [22]

g= -
  ˆ ( ) ˆ ( ) ˆ ( ) ( )A t A t X t , 7out in

where for the sake of simplicity the firstMarkov approximation, w g p=( )k 2 , has been adopted.However,
the present analysis can be easily extended beyond this approximation. Equation (7) shows that the positive
frequency output operator can be expressed in terms of the positive frequency input operator and the positive
frequency systemoperator coupled to the propagating field. If the system consists of an empty single-mode
resonator, then µ+ˆ ˆX a, being â the destruction operator of the cavitymode. If instead the cavitymode is

Figure 1.Normally-ordered variance = -( )s s 1n
2 2 of the cavity-field quadrature = -ˆ ( ˆ ˆ)†x a ai2 , calculated in the ground state ñ∣0̃ of

the RabiHamiltonian, as a function of the normalized coupling rate wWR c and cavity-atomdetuning w w w wD = -( )c q c c.
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coupled to another quantum system, e.g., an atom,
+

X̂ will be different from â, andmay also contain
contributions from ˆ†a . In this case, the positive component of the outputfieldmay contain contributions from
the creation operator of the cavity field, in contrast to ordinary quantumoptical input–output relation-
ships [27, 51].

We define the output quadrature operators ˆ ( )Q t1 and ˆ ( )Q t2 as

= +

=- -

+ - G - G

+ - G - G

ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) [ ˆ ( ) ˆ ( ) ] ( )

( ) ( )

( ) ( )

Q t A t A t

Q t A t A t

e e

i e e 8

t t

t t

1 out
i

out
i

2 out
i

out
i

so that

=  G
ˆ ( ) [ ˆ ( ) ˆ ( )] [ ( )] ( )A t Q t Q t t

1

2
i exp i , 9out 1 2

where jG = W +( )t t . HereΩ andj are, respectively, the frequency and the phase of the local oscillator field
employed for the squeezingmeasurements [29]. It is possible to change fromone quadrature to the other by
applying a p 2 rotation to one of the two quadratures, e.g., by changing the reference phasej.

Let us now consider thefield-quadrature variance t t= á + ñ( ) ˆ ( ) ˆ ( )S t Q t Q t, ,i i i . Using equation (9), it can
be expressed in terms of the output operators,

t t t

t t

= á + ñ + á + ñ

+ á + ñ + á + ñ

+ + - G - - G

+ - - +

( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

S t A t A t A t A t

A t A t A t A t

, e e

. 10

i out out
2i

out out
2i

out out out out

By using the input–output relation (7), each term in the above equation can bewritten in terms of input and
systemoperators. For example, thefirst expectation value in the r.h.s. of equation (10) becomes,

t t g t

g t g t

á + ñ= á + ñ + á + ñ

- á + ñ - á + ñ

+ + + + + +

+ + + +

ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )

A t A t A t A t X t X t

A t X t X t A t . 11

out out in in

in in

Weobserve that equation (11) contains expectation values involving products of input and systemoperators.

Even considering the important case of a vacuum input port, themixed term tá + ñ
+ +ˆ ( ) ˆ ( )A t X tin is in general

different from zero and cannot be directly calculated by themaster equation approach, which does not calculate
mixed bath-system correlations. This problem can be solved by deriving the commutation relations between
system and input operators. By using equation (6) and the expression of the field operator wˆ ( )b , obtained from
solving theHeisenberg equation, we arrive at the following commutation relation between any system variable
ˆ ( )Y t and the inputfields

ˆ ( )A tin

g= -
 [ ˆ ( ) ˆ ( )] ( )[ ˆ ( ) ˆ ( )] ( )Y t A s u t s Y t X s, , , 12in

where -( )u t s is equal to 1 if >t s, 1

2
if t=s, and 0 if <t s. This commutation relation, which holds for

arbitrary light–matter couplings, can be considered to be the generalization of an analogous commutation
relation obtainedwithin the standard input–output framework [50]. Its derivation is described in appendix A.

Making use of the input–output relations (7) and of the commutation relations (12), we can proceed to
calculate the outputfield quadrature variances t t= á + ñ( ) ˆ ( ) ˆ ( )S t Q t Q t, ,i i i in terms of correlation functions

involving only input operators or systemoperators. Here we used á ñ = á ñ - á ñá ñˆ ˆ ˆ ˆ ˆ ˆA B AB A B, . Considering an
input in a vacuumor a coherent state, thefield-quadrature variances can be expressed as

 t g t t

t t

t

= á + ñ + á + ñ

+ á + ñ + á + ñ

+ á + ñ

+ + - G - - G

- + - +

+ -

( ) [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ]
ˆ ( ) ˆ ( ) ( )

( ) ( )S t X t X t X t X t

X t X t X t X t

A t A t

, , e , e

, ,

, , 13

t t
1

2i 2i

in in

where  is the time-ordering operator that rearranges the creation operators in the forward time, and also the
annihilation operators in the backward temporal order. To obtain S2 we can apply a p 2 rotation to
equation (13). For equal-time correlation functions (t = 0), we have

g= á ñ + á ñ + á ñ

+ á ñ

+ + - G - - G - +

+ -

( ) [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ]
ˆ ( ) ˆ ( ) ( )

( ) ( )S t X t X t X t X t X t X t

A t A t

, e , e 2 ,

, . 14

t t
1

2i 2i

in in

The last term in equation (14) á ñ
+ -ˆ ˆA A,in in describes the quantumnoise of the input in the vacuum state.We

observe that, according to equation (5), the operator +
X̂ can induce only downward transitions fromhigher

energy to lower energy levels. Hence, when it is applied to the ground state, it automatically gives zero:

ñ =+ˆ ∣ ( )X G 0. 15
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If the system starts in its ground state, in the presence of a vacuum input, it will remain there. Using then
equation (15), the term á ñ- +ˆ ( ) ˆ ( )X t X t, in equation (14) becomes zero and the output noise in equation (14)
coincides with the input one: = á ñ

+ -( ) ˆ ( ) ˆ ( )S t A t A t1 in in . From equations (14) and (15)we can thus formulate the

following general statement:Any open system in its ground state, i.e., ñ =+ˆ ∣X 0 0, does not display any output
squeezing, even if its ground state is a squeezed state. Equation (14) holds for general open quantum systems,
independently on their composition in subsystems and the degree of interaction among the different subsystems.
This absence of output ground-state squeezing has been previously shown in different interacting harmonic
systems [19, 58, 59].

In order to compare this result with previous descriptions for optical resonators, we consider the case where
X̂ describes thefield of a single-mode cavity: = = +ˆ ˆ ( ˆ ˆ )†X X x X a a0 0 . HereX0 denotes the zero-point
fluctuation amplitude of the resonator. Equation (14) can be expressed as

g= á ñ + á ñ + á ñ

+ á ñ

+ + - G - - G - +

+ -

( ) [ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ]
ˆ ( ) ˆ ( )

( )
( ) ( )S t X x t x t x t x t x t x t

A t A t

, e , e 2 ,

, .
16

t t
1 0

2 2i 2i

in in

If the interaction of the resonatorwith other quantum systems is not in theUSC regime, =+ˆ ˆx a and =-ˆ ˆ†x a .
The noise reductionwith respect to the vacuum input can be expressed in terms of the following normally-
ordered variance

g
=

- á ñ
+ -

( ) ( ) ˆ ( ) ˆ ( ) ( )( )S t
S t A t A t

X

,
. 17i

n i in in

0
2

For a resonator not in theUSC regime, an ideally squeezed quadrature corresponds to = -( )S 1i
n , while for a

resonator in the ground state =( )S 0i
n .

4. Squeezing of outputfield-quadratures in theUSC regime

Herewe apply the theoretical framework developed in section 3 to study the outputfield-quadrature variances
in single-atomUSC cavity-QED systems.Wefirst consider the case of aflux qubit artificial atom coupled to a
l 2 superconducting transmission-line resonator, when the frequency of the resonator is near one-half of the
atomic transition frequency (see figure 2). Recently it has been shown [60] that this regime can stronglymodify
the concept of vacuumRabi oscillations, enabling two-photon exchanges between the qubit and the resonator.
Herewe show that such configuration can provide a very large amount of squeezing, although the systemhas
only one artificial atom anddisplays amoderate coupling rate wW ~ 0.1R c . Then, wewill study the output
squeezing of a cascade three-level systemwhere only the upper transition is coupled to the optical resonator.

In order to describe a realistic system, the dissipation channels need to be taken into account. For this reason
all the dynamical evolutions displayed belowhave been numerically calculated solving themaster equation

r r r= + åˆ̇ ( ) [ ˆ ( ) ] ˆ ( )t t H ti , i i [22, 61, 62], where i is a Liouvillian superoperator describing the cavity and
atomic system losses (see appendix A). All calculations have been carried out by considering zero temperature
reservoirs.

4.1. Two-photonRabi oscillations
Wenow consider aflux qubit ultrastrongly coupled to a coplanar resonator [2]. This quantum circuit is
analogous to a cavity-QED system,where the flux qubit with its discrete anharmonic energy levels represents the
artificial atom and the coplanar resonator the optical cavity (see figure 2). Recently it has been shown that this
systempaves theway to anomalous vacuumRabi oscillations, where two ormore photons are jointly and
reversibly emitted and reabsorbed by the qubit [60, 63].

This quantum circuit can be described by the following extendedRabiHamiltonian [2]

w w s s q s q s¢ = + + W + ++ -ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ)( ˆ ˆ ) ( )† †H a a a a cos sin . 18x zR c q R

In this systemboth the number of excitations and parity symmetry are no longer conserved and transitions
which are forbidden in natural atoms become available [64]. The angle θ aswell as the qubit resonance frequency
depend on theflux offset dF º F - Fq ext 0, where Fext is the externalmagnetic flux threading the qubit and F0 is
theflux quantum.Aflux offset dF = 0q implies q = 0. In this case ¢HR reduces to the standard Rabi
Hamiltonian (1).We choose the labeling of the eigenstates ñ∣ĩ and eigenvalues w j̃ of ¢HR such that w w>˜ ˜k j

for >˜ ˜k j .
The lowest eigenenergy offsets with respect to the ground energy w w-˜ ˜j 0 as a function of the qubit

transition frequency wq are shown infigure 2. Looking at the numerically calculated eigenvectors, the first

excited state, ñ∣1̃ , contains a dominant contribution from the bare state ñ∣g , 1 , ( ñ ñ∣ ˜ ∣g1 , 1 ). Thefigure also
shows an avoided crossing when w w» 2q c. The splitting can be attributed to the resonant coupling of the states
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ñ∣e, 0 and ñ∣g , 2 , although theUSC regime implies that the resulting dressed states ñ∣2̃ and ñ∣3̃ contain also small
contributions fromother bare states, as ñ∣g , 1 and ñ∣e, 1 . This splitting cannot be found in the rotatingwave
approximation, where the coherent coupling between states with a different number of excitations is not
allowed, nor does it occur with the standard RabiHamiltonian (q = 0).

We consider a system initially in the ground state. Excitation occurs by direct optical driving of the qubit via a
microwave antenna. The corresponding drivingHamiltonian is

 w s=ˆ ( ) ( ) ˆ ( )H t tcos , 19xd

where  t t p= - -( ) [ ( ) ( )] ( )t A t texp 2 20
2 2 describes aGaussian pulse.HereA and τ are the amplitude

and the standard deviation of theGaussian pulse, respectively.We consider the zero-detuning case,
corresponding to theminimumenergy splitting W2 eff between the two split levels ( ñ∣2̃ and ñ∣3̃ ) infigure 2(b). The
central frequency of the pulse has been chosen to be in themiddle of the two split transition energies:
w w w w= + -( )˜ ˜ ˜23 2 0. If τ ismuch smaller than the effective Rabi period, t p= W T 2R eff , the driving
pulse is able to generate an initial superpositionwith equal weights of the states ñ∣2̃ and ñ∣3̃ , whichwill evolve
displaying two-photon quantumvacuumoscillations [60]. Figure 3(a)displays the resulting qubit population
(red dashed curve) andmean photon number (blue continuous) after a pulsed excitationwith an effective pulse
area p= 3. Figure 3(b) shows the normally-ordered variance of the two orthogonal outputfield quadratures

( )S n
1 (blue continuous curve) and ( )S n

2 (dotted red). Both the two quadratures display a significant amount of
squeezingwhen themean photon number ismaximum. It is interesting to see that the periodicity of the two
variances is twice the Rabi period TR. This can be understood noticing that after the excitation, the quantum state
is a superposition of the ground state ñ∣0̃ and the excited states ñ∣2̃ and ñ∣3̃ . After one Rabi oscillation, the excited
states acquire aπ phase shift. A secondRabi oscillation is needed to recover the initial phase. The dynamics of the
corresponding variances (not shown here) calculated by using â and ˆ†a , instead of +x̂ and -x̂ , are affected by fast
oscillations.

Figure 2. (a) Sketch of a cavity-embedded two-level system. (b) Frequency differences with respect to the ground state:
w w w= -˜ ˜ ˜ ˜k k0 0 for the lowest-energy dressed states of ¢ĤR as a function of the qubit transition frequency w wq c.We consider a
normalized coupling rate wW = 0.15R c between the qubit and the resonator. In correspondence of the avoided level crossing (at
w w» 2q c) aGaussian pulse is sent with central frequency in themiddle of the two split transition energies (black arrow).
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This periodic and alternating squeezing of the two quadratures can be better understood by a simplified
effectivemodel assuming that

ñ ñ + ñ

ñ ñ - ñ





∣˜ (∣ ∣ )

∣˜ (∣ ∣ ) ( )

e g

e g

2
1

2
, 0 , 2 ,

3
1

2
, 0 , 2 . 20

Considering the qubit initially prepared in the superposition state y a b= ñ = ñ + ñ∣ ( ) ∣ ∣t g e0 , 0 , 0 (with
a b+ =∣ ∣ ∣ ∣ 12 2 ), the resulting time evolution of the system state is, to a good approximation,

y a bñ = ñ + W ñ + W ñ∣ ( ) ∣ [ ( )∣ ( )∣ ] ( )t g t e t g, 0 cos , 0 sin , 2 , 21eff eff

where W2 eff is theminimumenergy splitting infigure 2(b). At p= W( )t 2 eff , the resulting state is
a bñ ñ + ñ∣ ( ∣ ∣ )g 0 2 , which is a squeezed photon state, reaching amaximum squeezing for a  1 3.

4.2. Cascade three-level system
Weconsider a three-level ñ ñ(∣ ∣s g, and ñ∣ )e atom-like systemwith the upper transition ñ « ñ(∣ ∣ )g e ultrastrongly
coupledwith amode of the resonator and a lower transitionwhich does not interact with the resonator, as
schematically shown infigure 4. The peculiar optical properties of this systemhave been analyzed calculating the
dynamics of the populations and of normal-order correlation functions [15, 65, 66]. The systemHamiltonian is

åw w s s s= + + W + +
a

a aa
=

ˆ ˆ ˆ ˆ ( ˆ ˆ )( ˆ ˆ ) ( )† †H a a a a , 22
s g e

eg gec
, ,

R

where wa (a = s g e, , ) are the bare frequencies of the atom-like relevant states, and s a b= ñáab ∣ ∣describes the
transition operators (projection operators if a b= ) involving the levels of the quantum emitter. The
Hamiltonian can be separated as = +ˆ ˆ ˆH H HsR , where ĤR is thewell knownRabiHamiltonian, equation (1),
and w s=ˆ ˆHs s ss. As a consequence, the totalHamiltonian is block-diagonal and its eigenstates can be separated

Figure 3. (a)Temporal evolution of the cavitymean photon number á ñ- +ˆ ˆX X (blue continuos curve) after the arrival of a Gaussian
pulse exciting the qubit. The pulse has an affective area p 3 and central frequency w w+( )˜ ˜ 23 2 . (b)Time evolution of the normally-
ordered variances ( )( )S tn

1 (blue continuos curve) and ( )( )S tn
2 (red dashed curve). Here, the resonator and qubit damping rates are

g g w= = ´ -1.8 10c q
4

c. The yellow background, (shaded region) shows the regionwith negative ordinates corresponding to
squeezed states.
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into a non-interacting sector ñ∣s n, , with energy w w+ ns c, where n labels the cavity photon number, and into
dressed atom-cavity states ñ∣ j̃ , resulting from the diagonalization of the RabiHamiltonian.We consider the
system initially prepared in the ñ∣0̃ state. Preparation can be accomplished by simply exciting the system initially
in the ground state ñ∣s, 0 with aπ pulse of central frequency w w-˜ s0 . Then the qubit is excited by two additional
pulses with central frequencies w w w= -˜ 21 0 c and w w w= -˜ s2 0 . The drivingHamiltonian is

 w w s s= + +ˆ [ ( ) ( ) ( ) ( )]( ˆ ˆ ) ( )H t t t tcos cos , 23gs sgd 1 1 2 2

where  t t p= - -( ) [ ( ) ( )] ( )t A t texp 2 21,2 1,2 0
2 2 describes Gaussian pulses.While the transition

ñ  ñ∣˜ ∣s0 , 0 is allowed in theweak-coupling regime or even in the absence of a resonator, thematrix element for
the transition ñ  ñ∣˜ ∣s0 , 2 vanishes for a zero coupling rate and is negligible until WR reaches at least 10% of wc.
Specifically:

s s

s s

á + ñ=

á + ñ=

∣( ˆ ˆ )∣˜

∣( ˆ ˆ )∣˜ ( )

˜

˜

s c

s c

, 0 0 ,

, 2 0 . 24

gs sg g

gs sg g

,0
0

,2
0

In order to obtain a quantum superposition f fñ + ñ∣ ∣s scos , 0 sin , 2 via the dressed vacuum state ñ∣0̃ , the

pulse amplitudes have to satisfy the following relationship: f=˜ ˜A c A c tang g1 ,0
0

2 ,2
0 . In order to obtain large

squeezing, we choose the driving amplitude such that f »tan 2 2, corresponding to the angle where
squeezing for this superposition state ismaximal.

Figure 5 shows the time evolution of the normally-ordered variances ( )S n
1 (blue upper curve) and ( )S n

2 (red
lower curve) calculated using the correct positive and negative operators +X and -X , with reference frequency

wW = c. The squeezing displayed infigure 5 starts with the exact value for t=0, = =( ) ( )S S 0n n
1 2 , and it

does not present anyfictitious fast oscillation. On the contrary, with the use of the standard operators, see
appendix C, the squeezing starts with a fictitious value less than zero and shows largefictitious oscillations.

Figure 4. (a) Sketch of a cavity-embedded three-level system.Only the upper transition ñ « ñ∣ ∣g e interacts with the cavitymode. The
lowest energy state of the three-level system is ñ∣s . (b)Energy spectrumof Ĥ as a function of the coupling strength wWR c, with
w w= 3.5gs c and w w=eg c. The red horizontal lines represent the non-interacting states ñ∣s n, , the blue curve is the lowest-energy
atom-cavity dressed state ñ∣0̃ . The black arrows indicate the transitions stimulated by the driving pulses.
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5. Conclusions

Wehave derived a generalized theory of the outputfield-quadraturemeasurements and squeezing in cavity-
QED systems, valid for arbitrary cavity-atom coupling rates. In theUSC regime, where the counter-rotating
terms cannot be ignored, the standard theory predicts a large amount of squeezing in the outputfield, evenwhen
the system is in its ground state. Herewe have shown that, in this case, no squeezing can be detected in the output
field-quadratures, independently of the systemdetails.We have applied our theoretical approach to study the
output squeezing produced by an artificial two-level atom embedded in a coherently excited cavity.We showed
that, a large degree of squeezing can be obtainedwith this elementary quantum system.We also studied the
outputfield-quadratures from a cavity interacting in theUSC regimewith the upper transition of a cascade-type
three-level system. The numerical results have been comparedwith the standard calculations of output
squeezing (see figure 5). The approach proposed here can be directly applied also to resonators displaying
ultrastrong optical nonlinearities [67]. This work extends the possibilty of predicting and analyzing output-field
correlationswhen optical resonators interact very strongly with other quantum systems.
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AppendixA. Commutation relations

Herewe derive the commutation relation (12) among the positive component of the inputfield
+ˆ ( )A tin and any

systemoperator ˆ ( )Y t . The calculation for the negative component can then be obtained simply byHermitian
conjugation. The totalHamiltonian that describes the coupling between the system and a bath of harmonic
oscillators is

= + +ˆ ˆ ˆ ˆ ( )H H H H , A1S F SF

where ĤS is an arbitrary systemHamiltonian, ĤF is theHamiltonian that describes the bath:

å w= +⎜ ⎟⎛
⎝

⎞
⎠ˆ ˆ ˆ ( )

†
H b b

1

2
, A2

n
n n nF

Figure 5.Time evolution of the normally-ordered variances ( )S n
1 (blue upper curve) and ( )S n

2 (red lower curve) calculated using the
correct positive and negative operators for reference frequency wW = c. The system is initially prepared in the lowest-energy dressed
state ñ∣0̃ . The qubit is excited by twopulses with central frequencies w w w= -˜ 21 0 c and w w w= -˜ s2 0 , at the time
g = ´ -t 2.6 100 1

2 and g = ´ -t 3.8 100 2
2, respectively, andwith amplitude such that f »tan 2 2. The damping rates are

g g g w= = = ´ -2 10eg gsc
4

c, and the coupling constant is wW = 0.4R c. Other parameters are the same as infigure 4(b).
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and the interactionHamiltonian ĤSF is

å w
= -ˆ ( ˆ ˆ ) ˆ ( )H k b b Xi

2
, A3

n
n

n
n nSF

where X̂ is the system variable that interacts with the bath. In the basis that diagonalizes the systemHamiltonian
ĤS, we have = ++ -ˆ ˆ ˆX X X , with = å ñá+

<
ˆ ∣ ∣X X i ji j ij and =- +ˆ ( ˆ )†X X . In the continuum limit for n and in the

RWA, the interactionHamiltonian in equation (A3), can be expressed as


ò w w

w
w w= -

¥ - +ˆ ( ) [ ˆ ˆ ( ) ˆ ˆ ( )] ( )†
H k X b X bi d

2
. A4SF

0

Weobserve that the RWAhas been applied only after expressing the systemoperators in equation (A3) in the
dressed basis, so that the resulting operators


X̂ have a definite positive/negative frequency. Observing that the

inputfield
+ˆ ( )A tin is a continuous superposition of the initial-time destruction operators wˆ ( )b t, 0 (see

equation (6)), we can obtain an expression for it by solving the followingHeisenberg equation ofmotion:


w w=ˆ̇ ( ) [ ˆ ˆ ( )] ( )b H b

i
, . A5

Weobtain:

 òw w w
w

= + ¢ ¢w w- - - ¢ +ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( )( ) ( )b t b t k t X t, , e
2

d e . A6t t

t

t
t t

0
i i0

0

0

Nowwe can calculate 
+[ ˆ ( ) ˆ ( )]Y t A t, in . From the definition of the positive-frequency component of the input

field
+ˆ ( )A tin , we obtain:


ò w

pw
w = w+ ¥

- -[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )( )Y t A t
v

Y t b t,
1

2
d e , , . A7t t

in
0

i
0

0

Replacing wˆ ( )b t, 0 from equation (A6):

ò òp
w w = ¢ ¢w+ ¥

- - ¢ +[ ˆ ( ) ˆ ( )] ( ) [ ˆ ( ) ˆ ( )] ( )( )Y t A t
v

k t Y t X t,
1

2 2
d d e , . A8

t

t
t t

in
0

i

0

Applying thefirstMarkov approximation w g p=( )k 2 , the above expression becomes

ò òp
g

w = ¢ ¢ w+ + ¥
- - ¢[ ˆ ( ) ˆ ( )] [ ˆ ( ) ˆ ( )] ( )( )Y t A t

v
t Y t X t,

1

2
d , d e . A9

t

t
t t

in
0

i

0

Wenotice that the positive-frequency operator ¢+( )X t on the r.h.s. of equation (A9) is a superposition of
oscillating phases w- ¢ ¢e ti (being w¢ a generic positive frequency). Hence the time integral on the r.h.s. of
equation (A9) contains terms oscillating as w w- ¢ ¢( )e ti . Those slowly-oscillating termswith w w» ¢ provide the
larger contributions to the integral. If we extend the frequency integral to the-¥ limit, we are adding rapidly-
oscillating terms w w- + ¢ ¢( )e ti , which provide negligible contributions. After the integral is extended to the-¥
limit, we observe that theω-integral is now equal to pd - ¢( )t t2 , andwefinally obtain:

g
= -

+ +[ ˆ ( ) ˆ ( )] ( )[ ˆ ( ) ˆ ( )] ( )Y t A s
v

u t s Y t X t, , , A10in

where -( )u t s is equal to 1 if >t s, 1

2
if t=s, and 0 if <t s.

Appendix B.Master equation

In theUSC regime, owing to the high ratio wWR c, the standard approach fails to correctly describe the
dissipation processes and leads to unphysical results as well. In particular, it predicts that even atT=0,
relaxationwould drive the systemout of its ground state ñ∣G generating photons in excess to those already
present.

The right procedure that solves such issues consists in taking into account the atom-cavity couplingwhen
deriving themaster equation after expressing theHamiltonian of the system in a basis formed by the eigenstates
ñ∣ j of the RabiHamiltonian ĤR. The dissipation baths are still treated in the Born-Markov approximation.

Following this procedure it is possible to obtain themaster equation in the dressed picture [62]. For aT=0
reservoir, one obtains:

 r r r r= - + +˙̂ ( ) [ ˆ ˆ ( )] ˆ ( ) ˆ ( ) ( )t H t t ti , . B1xS a
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Here a and x are the Liouvillian superoperators correctly describing the losses of the systemwhere

 r r= å G ñá>ˆ ( ) [∣ ∣] ˆ ( )t j k ts j k j s
jk

, for s= -s a, and  r r r r= - -[ ˆ ] ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ )† † †
O O O O O O O21

2
. In the limit

W  0R , standard dissipators are recovered.
The relaxation rates p aG = D D( ) ( )∣ ∣d C2s

jk
s kj s kj jk

s2 2 depend on the density of states of the baths D( )d kjs and

the system-bath coupling strength a D( )kjs at the respective transition frequency w wD º -kj k j aswell as on

the transition coefficients s= á + ñ = -∣ˆ ˆ ∣ (ˆ ˆ ˆ )†C j s s k s a,jk . These relaxation coefficients can be interpreted as the

full width at halfmaximumof each ñ  ñ∣ ∣k j transition. In the Born-Markov approximation the density of
states of the baths can be considered a slowly varying function of the transition frequencies, so thatwe can safely
assume it to be constant as well as the coupling strength.

AppendixC. Standard numerically-calculated squeezing

In section 4.2we have numerically calculated the squeezing for the outputfield generated by the dynamics of a
three-level systemwhen the two upper levels are ultrastrongly coupledwith a cavitymode.We obtain a quantum
superposition between the ñ∣s, 0 and ñ∣s, 2 states via the dressed vacuum state ñ∣0̃ sending two pulses with central
frequencies w w w= -˜ 21 0 c and w w w= -˜ s2 0 .

Figures C1(a) and (b) display the time evolution of the variances ( )S n
2 calculated by using the standard

quadrature-field operators in terms of the destruction and creation operators â and ˆ†a for the cavityfield.
This result can be comparedwithfigure 5 displaying the time evolution of the variances ( )S n

1 (blue curve) and
( )S n
2 (red curve) obtained using the correct positive and negative field operators. The behavior of ( )( )S tn

2 in

figureC1(a) starts with afictitious value less than zero, while infigure 5 correctly starts from0. The variance ( )S n
2

infigureC1(a)has been calculated by using the reference frequency W = 0. Figure C1(b) has been obtained by
using wW = c. Figures C1(a) and (b) show that it is not possible to eliminate fast and large-amplitude fictitious
oscillations, as well as the fictious initial squeezingwithin the standard approach.

FigureC1.Time evolution of the normally-ordered variances ( )S n
2 in the case discussed in section 4.2, calculatedwith the standard

operators ( =+ˆ ˆx a). The parameters are the same used in figure 5 in section 4.2. The variances ( )S n
2 are calculatedwith reference

frequency (a) W = 0 and (b) wW = c.
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