10P Publishing

@ CrossMark

OPENACCESS

RECEIVED
2 October 2016

ACCEPTED FOR PUBLICATION
10 November 2016

PUBLISHED
2 December 2016

Original content from this
work may be used under
the terms of the Creative
Commons Attribution 3.0
licence.

Any further distribution of
this work must maintain
attribution to the
author(s) and the title of
the work, journal citation
and DOL.

NewJ. Phys. 18 (2016) 123005 doi:10.1088/1367-2630/18/12/123005

H eutsche Physikalische Gesellscha Published in partnership
New journal Of PhYSlCS st M(I)DPG with: Deutsche Physikalische
IOP Institute of Physics | Gesellschaft and the Institute

The open access journal at the forefront of physics .
of Physics

PAPER

Output field-quadrature measurements and squeezing in ultrastrong
cavity-QED

Roberto Stassi'*°

1

, Salvatore Savasta™’, Luigi Garziano™’, Bernardo Spagnolo"* and Franco Nori*”

Dipartimento di Fisica e Chimica, Group of Interdisciplinary Theoretical Physics, Universita di Palermo and CNISM, Viale delle Scienze,
Edificio 18,1-90128 Palermo, Italy

? CEMS, RIKEN, Saitama 351-0198, Japan

* Dipartimento di Fisica e di Scienze della Terra, Universita di Messina, Viale F. Stagno d’Alcontres 31,1-98166 Messina, Italy

Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Italy

> Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040, USA

¢ Author to whom any correspondence should be addressed.

4

E-mail: rstassi@unime.it

Keywords: quadrature measurements, squeezing, ultrastrong cavity-QED

Abstract

We study the squeezing of output quadratures of an electro-magnetic field escaping from a resonator
coupled to a general quantum system with arbitrary interaction strengths. The generalized theoretical
analysis of output squeezing proposed here is valid for all the interaction regimes of cavity-quantum
electrodynamics: from the weak to the strong, ultrastrong, and deep coupling regimes. For coupling
rates comparable or larger then the cavity resonance frequency, the standard input—output theory for
optical cavities fails to calculate the variance of output field-quadratures and predicts a non-negligible
amount of output squeezing, even if the system is in its ground state. Here we show that, for arbitrary
interaction strength and for general cavity-embedded quantum systems, no squeezing can be found in
the output-field quadratures if the system is in its ground state. We also apply the proposed theoretical
approach to study the output squeezing produced by: (i) an artificial two-level atom embedded in a
coherently-excited cavity; and (ii) a cascade-type three-level system interacting with a cavity field
mode. In the latter case the output squeezing arises from the virtual photons of the atom-cavity
dressed states. This work extends the possibility of predicting and analyzing the results of continuous-
variable optical quantum-state tomography when optical resonators interact very strongly with other
quantum systems.

1. Introduction

Recently, a new regime of cavity quantum electrodynamics (QED) has been experimentally reached in different
solid state systems and spectral ranges [1-8]. In this so-called ultrastrong coupling (USC) regime, where the
light—matter coupling rate becomes an appreciable fraction of the unperturbed resonance frequency of the
system, the routinely invoked rotating wave approximation (RWA) is no longer applicable and the antiresonant
terms significantly change the standard cavity-QED scenarios [9-18].

It has been shown that, in this USC regime, the correct description of the output photon flux, as well as of
higher-order Glauber’s normal-order correlation functions, requires a proper generalization of the input—
output theory for resonators [13, 19, 20]. Application of the standard input—output picture to the USC regime
would predict an unphysical continuous stream of output photons for a system in its ground state | G). This
result stems from the finite number of photons which are present in the ground state due to the counter-rotating
terms in the interaction Hamiltonian [21]. Specifically, it has been shown [13, 22] that the photon rate emitted
by a resonator and detectable by a photo-absorber is no longer proportional to (4" (¢)a (¢) ) (as predicted by the
standard input—output theory), where @ and a" are the photon destruction and creation operators of the cavity
mode, butto (£ ()X (¢)), where £¥(¢) is the positive frequency component of the quadrature operator
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() =at) + a'(t)and £(t) = (*(¢))', which can be different from the bare photon creation an
destruction operators. When the coupling rate is not a negligible fraction of the bare resonance frequencies, the
correct separation into positive and negative frequency operators can be performed only by including the
influence of the interaction Hamiltonian. This separation can be easily performed after the diagonalization of
the total system Hamiltonian.

Direct photon counting experiments provide information about the mean photon number and higher-
order normal-order correlations. However a complete quantum tomography of the electro-magnetic field (see,
e.g., [23]) requires phase-sensitive measurements which are based on homodyne or heterodyne detection
[24, 25]. These techniques enable the measurements of the mean field quadratures and their variance, e.g., (X)
and (%) — (X)?. More generally, for an electro-magnetic field-mode, it is possible to define two complementary
field-quadratures Q; and Q, with [Q;, Q,] = L,as Q; = de ¥ + 4'e?and Q, = —i(de ¢ — d%e?).Ina
coherent state of an electro-magnetic field mode, the quantum fluctuations of the two field-quadratures Q, and
Q, areequal (AQ, = AQ, = 1,where AQ; = <Q‘2> — (Q;)?) and minimize the uncertainty product given by
Heisenberg’s uncertainty relation AQ; AQ, = 1(weuse %z = 1). These zero-point fluctuations represent the
standard quantum limit to the reduction of noise in a signal. Other minimum-uncertainty states are possible,
and these occur when fluctuations in one quadrature are squeezed at the expense of increased fluctuations in the
other one [26]. Light squeezing can be realized in various nonlinear optical processes, such as parametric down-
conversion, parametric amplification, and degenerate four-wave mixing [27-31] or in presence of time-
dependent boundary conditions [32—35]. Squeezed states of light belong to the class of nonclassical states of
light. Having a less noisy quadrature, squeezed light has applications in optical communication [36] and
measurements [36—40] and is a primary resource in continuous variable quantum information processing [38].
Squeezing of the electromagnetic field has been achieved in a variety of systems operating in the optical and
microwave regimes. A noise reduction of —10 dB (—13 dB is the estimation of squeezing after correction for
detector inefficiency) has been achieved in the experiment [41]. More recently, a few experiments with
superconducting circuits [34, 42] have demonstrated the possibility of obtaining much stronger squeezing in
microwave fields [43].

Here we present a theory of quadrature measurements of the output field escaping from a resonator coupled
to a generic matter system with arbitrary interaction strength, and we apply it to the analysis of squeezing. In
cavity-QED systems, the squeezing effect has been usually studied by using the rotating-wave approximation
[44-49]. While in the USC regime the positive frequency component £ is different from 4 (it may contain
contributions from the creation operator of the cavity field), the quadrature operator £ = @ + 47 = £ + £~ is
independent of the light—matter interaction strength. Hence, at a first sight, one may expect that, in contrast to
Glauber’s correlation functions, quadrature measurements can be analyzed by applying the standard input—
output theory [50, 51]. Here we show that this is not the case: application of the standard input—output picture to
the analysis of quadrature measurements in the USC regime leads to incorrect results. We also observe that the
calculation of quadrature expectation values by means of the generalized input—output relations (working for
arbitrary light-matter coupling) presents some additional complications compared to that of normal-order
correlations. In particular, the resulting quadrature expectation values contain products of system and input
operators and thus cannot be directly derived within the master equation approach. The present analysis is of
particular interest for the description of measurements in circuit-QED systems, where output quadrature
measurements are generally employed since efficient microwave photon-counting detectors are not currently
available. However, well-developed linear amplifiers allow for the efficient measurement of the field-quadrature
amplitudes [25, 42, 52, 53]. Using input—output theory [51], one can show that the full information about the
intracavity field-mode is contained in the moments and cross-correlations of the time-dependent output
quadrature amplitudes. It has been demonstrated experimentally that correlation-function measurements
based on quadrature amplitude detection are a powerful tool to characterize quantum properties of propagating
microwave-frequency radiation fields [52]. Hence a general method to calculate these time-dependent
moments, when the resonator interacts with one or more artificial atoms in the USC regime, is highly desirable
for the analysis of the output microwave field in circuit-QED systems.

We apply the theoretical framework developed here to analyze three different cases: (i) we analyze the output
field-quadratures for a system in its ground state. It is know that the ground state of a system in the USC regime is
asqueezed vacuum state [19], where the amount of squeezing depends on the coupling strength and on the
detuning between the cavity mode and the matter-system resonances. A correlation-function analysis of the
quadratures of microwave fields has been exploited for measurements of vacuum fluctuations and weak thermal
fields [54]. Hence the question arises if it is possible to detect such vacuum squeezing. Here, under quite general
hypotheses, we demonstrate that for arbitrary cavity-embedded quantum systems, independently on the
coupling rate, no squeezing can be found in the output field quadratures if the system is in its ground state. (ii)
We study a coherently excited cavity interacting with an artificial two-level atom. Recently, it has been shown
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that superconducting artificial atoms, subject to parity-symmetry-breaking and ultrastrong coupled to
superconducting resonators, can display two-photon vacuum Rabi oscillations [22]. However, two-photon
correlations cannot directly be detected in these systems. We show that quadrature-noise measurements can
provide an alternative direct probe. This process can give rise to a high degree of squeezing in presence of a single
two-level system, just exciting the qubit with a classical microwave pulse. (iii) As a further example of the
developed framework, we analyze the output squeezing from a resonator interacting with a cascade-type three-
level system.

We sstart out, in section 2, with the squeezing of the ground state of the Rabi Hamiltonian. In section 3 we
present a theoretical framework of the output field quadratures. In section 4 this theoretical approach is applied
to single-atom USC cavity-QED systems. Finally, in section 5 we present our conclusions.

2.Squeezing of the ground state of the Rabi Hamiltonian

The Hamiltonian of the quantum Rabi model (% = 1) [55, 56] is given by
N aia | W, At an
Hp = wc.d'a + 702 + Qr(a@" + a)éy, (1)

where 4 and @' are, respectively, the annihilation and creation operators for the cavity field of frequency w,. The
Pauli matrices are defined as 6, = |e) (| — |g) (gland 6, = &, + & = |e) (g] + |g) (el, in terms of the atomic
ground (|g)) and excited (le)) states. The parameter w, describes the transition energy of the two-level system
and {2y is the coupling energy between the atomic transition and the cavity field.

Owing to the presence of the so-called counter-rotating terms, 4 and a%6,, in the Rabi Hamiltonian, the
operator describing the total number of excitations, N = a'd + |e) (¢], does not commute with Hy and as a
consequence the eigenstates of Hy do not have a definite number of excitations [21], however the system
described by the Hamiltonian in equation (1) conserves the parity of the number of excitations. For instance the
resulting ground state, in terms of the bare cavity and qubit states, is a superposition of an even number of
excitations [21],

0) Z( 2,<|g, 2k) +cek|e, 2k + 1)), )

where the second entry in the kets provides the photon number. The coefficients of this expansion can be
calculated diagonalizing numerically the Rabi Hamiltonian in equation (1) (see, e.g., [21, 22]). When the i
coupling rate €y is much smaller than the bare resonance frequencies of the two subsystems w, and wg, only cg 0
is significantly different from zero and the ground state reduces to |0) =~ |g, 0), which is that of the Jaynes—
Cummings model, derived from the Rabi Hamiltonian after dropping the counter-rotating terms. When the
coupling rate {2y approaches and exceed 10% of the bare frequencies of the subsystems, that is USC regime,
contributions with k = 0 in equation (2) become not negligible. One consequence is that the mean photon
number in the ground state (0]ad|0) becomes different from zero. Moreover, the ground state displays a certain
amount of photon squeezing. Considering the intracavity-field quadrature §, = i(4" — 4), its variance

s, = (014,10) — (014,|0)? (notice that (0]4,|0) = 0) turns out to be below the standard quantum limit value 1.

Figure 1 displays the numerically calculated s{” = s, — 1asa function of the normalized coupling Qg /.
and detuning A /w, = (wq — w.)/w.. For small values of the normalized coupling, the variance approaches the
standard quantum limit.

We notice that, increasing (g /w,, the variance decreases below the standard quantum limit, reaching a
lowest value of about —0.35, at {2z /w, >~ 1.05 and at a positive detuning A /w. =~ 0.76. Further increasing the
coupling, especially at zero and negative detuning, results into an increase of the variance s,, caused by quite large
contributions in |0) of terms with an odd number of photons.

This noise increase can be understood noticing that the noise reduction originates from the terms (1a2[¢)),
and the operator 4% connects only terms in the quantum states 1)) differing by two photons. Hence squeezing
can be larger for states with either an even or an odd number of photons. In the next section we will show that
such a ground-state squeezing actually does not give rise to an observable output squeezing.

3. Output field quadratures

According to the input—output theory for general localized quantum systems interacting with a propagating
quantum field, the output field operator can be related through a boundary condition to a system operator and
the input field operators [57]. In order to be specific, we consider the case of a system coupled to a semi-infinite
transmission line [57], although the results obtained can be applied or extended to a large class of systems. While
the resonator can be ultrastrongly coupled to alocalized quantum system, its interaction with the propagating
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Figure 1. Normally-ordered variance s{" = s, — 1ofthe cavity-field quadrature % = (4" — @), calculated in the ground state |0) of
the Rabi Hamiltonian, as a function of the normalized coupling rate Qr /w, and cavity-atom detuning A /w. = (wq — we)/we.

quantum field (e.g., the transmission line) is weak. To derive the input—output relations we couple the system to a
quantum field made of an assembly of harmonic oscillators. The total Hamiltonian of the system can be written
as

H = As + A + Hgp, (3)

where Hs and Hy are the system and field Hamiltonian and where the interaction between the system and the
field can be expressed in the rotating wave approximation as

HSF—lf dwk(w),/ R bw) — X W], )

where v is the speed of the traveling field, e.g., the speed oflight in the transmission line.

In the above equation, b (w) and k (w) are the annihilation operator and the spectral density for the
harmonic oscillators that describe the output field, X "and X arethe positive and negative frequency
components of the generic system operator X coupled to the field. These components can be obtained
expressing X in the eigenvectors basis of H as

T=37%5 1) (il (5)
i<j
and X~ = (X")". Here the eigenstates of Hj are labeled according to their eigenvalues such that wy > w; for

k > j.We observe that the rotating wave approximation used in equation (A4) is based on the separation into
positive and negative frequency operators of the system operator X after the system diagonalization. The
standard RWA is instead based on the separation into bare positive (destruction) and negative (creation)
components of the field operator coupled to the external modes, without including its interaction with other
components of the system.

The positive frequency component of the input and output fields can be written as

Ai:(out)(t) = % fo ¥ dw /:—wé(w, " exp[—iw (t — 1], (6)

while the negative frequency component Am(out) = (Am(out)) so that Am(out) ) = m(out) ) + Am(out) (t),in
which ¢/ < t (the input) is a fixed initial time and ' > t (the output) is assumed to be in the remote future [57].
Formally solving the Heisenberg equations of motion for b (w), the input—output relations for the positive and
negative components of the fields can be obtained [22]

A = Aps (1) — A=), @

where for the sake of simplicity the first Markov approximation, k (w) = ,/27/7, has been adopted. However,
the present analysis can be easily extended beyond this approximation. Equation (7) shows that the positive
frequency output operator can be expressed in terms of the positive frequency input operator and the positive
frequency system operator coupled to the propagating field. If the system consists of an empty single-mode
resonator, then X o 4, being d the destruction operator of the cavity mode. If instead the cavity mode is

4



10P Publishing

NewJ. Phys. 18 (2016) 123005 R Stassi et al

coupled to another quantum system, e.g., an atom, X will be different from d, and may also contain
contributions from @. In this case, the positive component of the output field may contain contributions from
the creation operator of the cavity field, in contrast to ordinary quantum optical input—output relation-
ships [27,51].

We define the output quadrature operators O, (t)and Q, (¢) as

Q1(1) = A (e TO 4 A (1)elT®
Qu ()=~ ilAg (e — Ay (1)) ®)

so that
AL = %[@(t) + 0, (0] exp[iT(1)], ©)

where I'(t) = Qt + ¢.Here 2 and  are, respectively, the frequency and the phase of the local oscillator field
employed for the squeezing measurements [29]. It is possible to change from one quadrature to the other by
applyinga /2 rotation to one of the two quadratures, e.g., by changing the reference phase .

Let us now consider the field-quadrature variance S; (t, 7) = (é, ), Qi(t + 7) ). Using equation (9), it can
be expressed in terms of the output operators,

Si(ty ) = (Agu () Ague(t + 7)) e 2T 4 (Ao (DA ot + 7)) 2T
+ (A (D At + 7)) + (Agu(D)Ague(t + 7). (10)

By using the input—output relation (7), each term in the above equation can be written in terms of input and
system operators. For example, the first expectation value in the r.h.s. of equation (10) becomes,

(At A ot + D) = (An DALt + 1)) + v X Ot + 7))
— FAa X+ 1) — FEOAG ¢ + 7). (11)

We observe that equation (11) contains expectation values involving products of input and system operators.
Even considering the important case of a vacuum input port, the mixed term <Aij(t))2 e+ 1) )isin general
different from zero and cannot be directly calculated by the master equation approach, which does not calculate
mixed bath-system correlations. This problem can be solved by deriving the commutation relations between
system and input operators. By using equation (6) and the expression of the field operator b (w), obtained from
solving the Heisenberg equation, we arrive at the following commutation relation between any system variable

Y (t) and the input fields Ai(t)
[V (), A (5)] = 7 u(t — $)[T (1), XX )], (12)

where u(t — s)isequalto Lift > s, Lift = s,and 0if t < s. This commutation relation, which holds for
arbitrary light-matter couplings, can be considered to be the generalization of an analogous commutation
relation obtained within the standard input—output framework [50]. Its derivation is described in appendix A.

Making use of the input—output relations (7) and of the commutation relations (12), we can proceed to
calculate the output field quadrature variances S; (t, 7) = (Q, ), Qi (t + 7)) in terms of correlation functions
involving only input operators or system operators. Here we used (A, B) = (AB) — (A) (B). Consideringan
inputinavacuum or a coherent state, the field-quadrature variances can be expressed as

Si(t, )=y [TR(t + 1), X' () e 2O + TR (1), X (1 + 7)) 2O
+ (X_(t + 1), X+(t)> + (X_(t), e+ )]
+ (A (0, At + 1), (13)

where 7 is the time-ordering operator that rearranges the creation operators in the forward time, and also the
annihilation operators in the backward temporal order. To obtain S, we can apply a 7 /2 rotation to
equation (13). For equal-time correlation functions (7 = 0), we have

$i1() = v[(X®), X)) e O + (X(1), X7 (0)eO + 2(X(1), X (1)]
+ (A (1), A (). (14)

. . Atoa— . . . .
The last term in equation (14) (A;, , A, ) describes the quantum noise of the input in the vacuum state. We

observe that, according to equation (5), the operator X * caninduce only downward transitions from higher
energy to lower energy levels. Hence, when it is applied to the ground state, it automatically gives zero:

X7G) = o. (15)
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If the system starts in its ground state, in the presence of a vacuum input, it will remain there. Using then
equation (15), theterm (X (¢), X +(1‘)) in equation (14) becomes zero and the output noise in equation (14)
coincides with the input one: S (t) = (Ai:(t)z@i;(t) ). From equations (14) and (15) we can thus formulate the
following general statement: Any open system in its ground state, i.e., X * |0) = 0, does not display any output
squeezing, even if its ground state is a squeezed state. Equation (14) holds for general open quantum systems,
independently on their composition in subsystems and the degree of interaction among the different subsystems.
This absence of output ground-state squeezing has been previously shown in different interacting harmonic
systems [19, 58, 59].

In order to compare this result with previous descriptions for optical resonators, we consider the case where
X describes the field of a single-mode cavity: X = Xo% = Xo(a + a%). Here X, denotes the zero-point
fluctuation amplitude of the resonator. Equation (14) can be expressed as

Si(t) = AXGLEF®), 27(1)) e 2O + (1), £7(1)) X + 2(R7(1), £7(1))]

P (16)
+ <Ain (t)’ Ain (t) > .
If the interaction of the resonator with other quantum systems is not in the USC regime, £* = dand £~ = a'.
The noise reduction with respect to the vacuum input can be expressed in terms of the following normally-
ordered variance
A4+ A —
Si(t) — (A (D), A (¢
Si(n)(t): i (1) < 1n(2) m( )> (17)
Xo
For aresonator not in the USC regime, an ideally squeezed quadrature corresponds to S = —1, while fora

resonator in the ground state S/ = 0.

4. Squeezing of output field-quadratures in the USC regime

Here we apply the theoretical framework developed in section 3 to study the output field-quadrature variances
in single-atom USC cavity-QED systems. We first consider the case of a flux qubit artificial atom coupled to a
A/2 superconducting transmission-line resonator, when the frequency of the resonator is near one-half of the
atomic transition frequency (see figure 2). Recently it has been shown [60] that this regime can strongly modify
the concept of vacuum Rabi oscillations, enabling two-photon exchanges between the qubit and the resonator.
Here we show that such configuration can provide a very large amount of squeezing, although the system has
only one artificial atom and displays a moderate coupling rate 2 /w. ~ 0.1. Then, we will study the output
squeezing of a cascade three-level system where only the upper transition is coupled to the optical resonator.

In order to describe a realistic system, the dissipation channels need to be taken into account. For this reason
all the dynamical evolutions displayed below have been numerically calculated solving the master equation
o) =i[p@t), H] + > Lip(t)[22,61,62], where L; is a Liouvillian superoperator describing the cavity and
atomic system losses (see appendix A). All calculations have been carried out by considering zero temperature
reservoirs.

4.1. Two-photon Rabi oscillations
We now consider a flux qubit ultrastrongly coupled to a coplanar resonator [2]. This quantum circuit is
analogous to a cavity-QED system, where the flux qubit with its discrete anharmonic energy levels represents the
artificial atom and the coplanar resonator the optical cavity (see figure 2). Recently it has been shown that this
system paves the way to anomalous vacuum Rabi oscillations, where two or more photons are jointly and
reversibly emitted and reabsorbed by the qubit [60, 63].

This quantum circuit can be described by the following extended Rabi Hamiltonian [2]

Hy = we 8'a + wg06~ + Qp (@' + a)(cos O &, + sin6 &,). (18)

In this system both the number of excitations and parity symmetry are no longer conserved and transitions
which are forbidden in natural atoms become available [64]. The angle 6 as well as the qubit resonance frequency
depend on the flux offset 6&; = Py — Py, where P.y is the external magnetic flux threading the qubit and @, is
the flux quantum. A flux offset 6&; = 0 implies & = 0. In this case Hj, reduces to the standard Rabi
Hamiltonian (1). We choose the labeling of the eigenstates |1 ) and eigenvalues w7 of Hy such that wg > w H

fork > .

The lowest eigenenergy offsets with respect to the ground energy w; — wgasa function of the qubit
transition frequency wq are shown in figure 2. Looking at the numerically calculated eigenvectors, the first
excited state, | 1), contains a dominant contribution from the bare state |g, 1), (1) = |g, 1)). The figure also
shows an avoided crossing when wy ~ 2w,. The splitting can be attributed to the resonant coupling of the states
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Figure 2. (a) Sketch of a cavity-embedded two-level system. (b) Frequency differences with respect to the ground state:

Wiy = wi — wp for the lowest-energy dressed states of ﬁé as a function of the qubit transition frequency wq/w.. We consider a
normalized coupling rate {2 /w. = 0.15 between the qubit and the resonator. In correspondence of the avoided level crossing (at
wq & 2w.) a Gaussian pulse is sent with central frequency in the middle of the two split transition energies (black arrow).

- O

le, 0)and |g, 2), although the USC regime implies that the resulting dressed states |2) and |3) contain also small
contributions from other bare states, as |g, 1) and |e, 1). This splitting cannot be found in the rotating wave
approximation, where the coherent coupling between states with a different number of excitations is not
allowed, nor does it occur with the standard Rabi Hamiltonian (0 = 0).

We consider a system initially in the ground state. Excitation occurs by direct optical driving of the qubit viaa
microwave antenna. The corresponding driving Hamiltonian is

Hy = E(t)cos(wt) by, (19)

where £(t) = Aexp[—(t — ty)*/(27%)]/(7~/27) describes a Gaussian pulse. Here A and T are the amplitude
and the standard deviation of the Gaussian pulse, respectively. We consider the zero-detuning case,
corresponding to the minimum energy splitting 22¢ between the two split levels (2) and |3)) in figure 2(b). The
central frequency of the pulse has been chosen to be in the middle of the two split transition energies:

w = (w3 + w3)/2 — wq. If 7is much smaller than the effective Rabi period, 7 < Ty = 27/, the driving
pulse is able to generate an initial superposition with equal weights of the states |2) and |3), which will evolve
displaying two-photon quantum vacuum oscillations [60]. Figure 3(a) displays the resulting qubit population
(red dashed curve) and mean photon number (blue continuous) after a pulsed excitation with an effective pulse
area A = 7 /3. Figure 3(b) shows the normally-ordered variance of the two orthogonal output field quadratures
S™ (blue continuous curve) and S{" (dotted red). Both the two quadratures display a significant amount of
squeezing when the mean photon number is maximum. It is interesting to see that the periodicity of the two
variances is twice the Rabi period Tg. This can be understood noticing that after the excitation, the quantum state
is a superposition of the ground state |0) and the excited states |2) and |3). After one Rabi oscillation, the excited
states acquire a 7 phase shift. A second Rabi oscillation is needed to recover the initial phase. The dynamics of the
corresponding variances (not shown here) calculated by using 4 and a7, instead of £ and X7, are affected by fast
oscillations.
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Figure 3. (a) Temporal evolution of the cavity mean photon number (X "X ) (blue continuos curve) after the arrival of a Gaussian
pulse exciting the qubit. The pulse has an affective area /3 and central frequency (w3 + w3)/2. (b) Time evolution of the normally-
ordered variances S (t) (blue continuos curve) and S (¢) (red dashed curve). Here, the resonator and qubit damping rates are
Y= =18x 10~*w. The yellow background, (shaded region) shows the region with negative ordinates corresponding to
squeezed states.

This periodic and alternating squeezing of the two quadratures can be better understood by a simplified
effective model assuming that

3) %ue, 0) + Ig, 2)),
~ 1
3) ~ f(le, 0) — g, 2)). (20)

Considering the qubit initially prepared in the superposition state [¢) (t = 0)) = alg, 0) + [le, 0) (with
la? + |8 = 1), the resulting time evolution of the system state is, to a good approximation,

W}(t)) = 04|g, 0> + ﬁ[COS(Qefft)le’ 0> + Sin(Qefft) |g) 2>]) (21)

where 2€). is the minimum energy splitting in figure 2(b). At t = 7 /(2{), the resulting state is
|g) (|0) + f]2)), which is a squeezed photon state, reaching a maximum squeezing for o ~ 1/3.

4.2. Cascade three-level system

We consider a three-level (|s), |¢) and |e) ) atom-like system with the upper transition (|g) < |e)) ultrastrongly

coupled with a mode of the resonator and a lower transition which does not interact with the resonator, as

schematically shown in figure 4. The peculiar optical properties of this system have been analyzed calculating the

dynamics of the populations and of normal-order correlation functions [15, 65, 66]. The system Hamiltonian is
H=wd'a+ 3 waboa+ W@+ a) (G + &) (22)

a=s,g,e
where w, (@ = s, g, e) are the bare frequencies of the atom-like relevant states, and 0,5 = |a) (| describes the
transition operators (projection operators ifa=0) 1nV01V1ng thelevels of the quantum emitter. The

Hamiltonian can be separated as H = Hy + H,, where Hy is the well known Rabi Hamiltonian, equation (1),
and H, = w,6,. Asa consequence, the total Hamiltonian is block-diagonal and its eigenstates can be separated
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(@)
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0
3 5,3)
2 57)

1 5, 1)
v

0 5,0)
0 0.4 0.8

QR/WC

Figure 4. (a) Sketch of a cavity-embedded three-level system. Only the upper transition |g) < |e) interacts with the cavity mode. The
lowest energy state of the three-level system is |s). (b) Energy spectrum of H as a function of the coupling strength Qg /w,, with

Wes = 3.5w, and w,, = w,. The red horizontal lines represent the non-interacting states s, 1), the blue curve is the lowest-energy
atom-cavity dressed state |0). The black arrows indicate the transitions stimulated by the driving pulses.

Eigenvalues a.u.

into a non-interacting sector |s, n), with energy w, + nw,, where nlabels the cavity photon number, and into
dressed atom-cavity states | 7), resulting from the diagonalization of the Rabi Hamiltonian. We consider the
system initially prepared in the |0) state. Preparation can be accomplished by simply exciting the system initially
in the ground state |s, 0) with a 7 pulse of central frequency wg — ws. Then the qubit is excited by two additional
pulses with central frequencies w; = wp — 2w and w; = wiy — w;. The driving Hamiltonian is

Hy = [Ei(t)cos(wit) + Ex(t)cos(wat)](Gys + b5p), (23)

where & ,(t) = Ay, exp[—(t — t9)?/(27%)]/(7+/27) describes Gaussian pulses. While the transition

|0) — |s, 0)is allowed in the weak-coupling regime or even in the absence of a resonator, the matrix element for
the transition [0) — |s, 2) vanishes for a zero coupling rate and is negligible until {0y reaches at least 10% of w.
Specifically:

(s, 01(8s + ) 10) = L,
(s, 21(Gs + 59 10) = 0. (24)

In order to obtain a quantum superposition cos ¢ |s, 0) + sin¢ |s, 2) via the dressed vacuum state |0), the
pulse amplitudes have to satisfy the following relationship: A; Cg,o / A cg’ , = tan ¢. In order to obtain large
squeezing, we choose the driving amplitude such that tan ¢ ~ /2 /2, corresponding to the angle where
squeezing for this superposition state is maximal.

Figure 5 shows the time evolution of the normally-ordered variances S (blue upper curve) and S{" (red
lower curve) calculated using the correct positive and negative operators X+ and X, with reference frequency
Q = w,. The squeezing displayed in figure 5 starts with the exact value fort = 0, ${” = S{” = 0,andit
does not present any fictitious fast oscillation. On the contrary, with the use of the standard operators, see
appendix C, the squeezing starts with a fictitious value less than zero and shows large fictitious oscillations.
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Figure 5. Time evolution of the normally-ordered variances S™ (blue upper curve) and S{" (red lower curve) calculated using the
correct positive and negative operators for reference frequency {2 = w;. The system is initially prepared in the lowest-energy dressed
state |6>. The qubit is excited by two pulses with central frequencies w; = wp — 2w, and w, = wj — w, at the time

Yot = 2.6 X 107%2and vyt = 3.8 x 1072, respectively, and with amplitude such that tan ¢ ~ 2 /2. The damping rates are
Y=g = Vo = 2 X 10~*w, and the coupling constant is Qx = 0.4w.. Other parameters are the same as in figure 4(b).

5. Conclusions

We have derived a generalized theory of the output field-quadrature measurements and squeezing in cavity-
QED systems, valid for arbitrary cavity-atom coupling rates. In the USC regime, where the counter-rotating
terms cannot be ignored, the standard theory predicts a large amount of squeezing in the output field, even when
the system is in its ground state. Here we have shown that, in this case, no squeezing can be detected in the output
field-quadratures, independently of the system details. We have applied our theoretical approach to study the
output squeezing produced by an artificial two-level atom embedded in a coherently excited cavity. We showed
that, alarge degree of squeezing can be obtained with this elementary quantum system. We also studied the
output field-quadratures from a cavity interacting in the USC regime with the upper transition of a cascade-type
three-level system. The numerical results have been compared with the standard calculations of output
squeezing (see figure 5). The approach proposed here can be directly applied also to resonators displaying
ultrastrong optical nonlinearities [67]. This work extends the possibilty of predicting and analyzing output-field
correlations when optical resonators interact very strongly with other quantum systems.
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Appendix A. Commutation relations

. . . . . At
Here we derive the commutation relation (12) among the positive component of the input field A;, (¢) and any
system operator Y (¢). The calculation for the negative component can then be obtained simply by Hermitian
conjugation. The total Hamiltonian that describes the coupling between the system and a bath of harmonic
oscillators is

A = As + A + Hgy, (A1)

where H is an arbitrary system Hamiltonian, Hy is the Hamiltonian that describes the bath:

fy = Zmn(af b, + %) (A2)
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and the interaction Hamiltonian Hgg is

e = 150k [ 222 6, — b, (A3)

where X is the system variable that interacts with the bath. In the basis that diagonalizes the system Hamiltonian
Ag,wehave X = X" 4+ X", with X = Y Xijli) (jland X~ = (XY, In the continuum limit for # and in the
RWA, the interaction Hamiltonian in equation (A3), can be expressed as

O = i fo Y dw k@), % (XDw) — X5 W) (A4)

We observe that the RWA has been applied only after expressing the system operators in equation (A3) in the
dressed basis, so that the resulting operators X * have a definite positive/negative frequency. Observing that the
input field Ai:(t) is a continuous superposition of the initial-time destruction operators b (w, to) (see

equation (6)), we can obtain an expression for it by solving the following Heisenberg equation of motion:

bw) = /ii[ﬁ, b(w)l. (A5)
We obtain:
b(w, to) = b(w, Hew =1 4+ k(w) |~ f L dre WO () (A6)
> b0 ) Zﬁ o .

Now we can calculate [Y (t), Ai: (t")]. From the definition of the positive-frequency component of the input
field Ai:(t), we obtain:

[?U%AJU@L:%lﬁdwtfgfmw””WU%5WJwL (A7)

Replacing b (w, tp) from equation (A6):
1
221y

Applying the first Markov approximation k (w) = /2/7, the above expression becomes
A ~ 2 A A S H " r
(7@, Ag @ == |7 [Tae @, 3@ [T doe @, (49)
2N v Jy 0

Y ,A.+ my — o0 ! Ie—iw =t r{ ’Xv+ "1 A
[V (), A (t1)] L muwﬁgm [¥ (1), X (1] (A8)

We notice that the positive-frequency operator X*(¢') on the r.h.s. of equation (A9) is a superposition of
oscillating phases e W (being w’ a generic positive frequency). Hence the time integral on the r.h.s. of
equation (A9) contains terms oscillating as @ Those slowly-oscillating terms with w & w’ provide the
larger contributions to the integral. If we extend the frequency integral to the — o0 limit, we are adding rapidly-
oscillating terms e~ '1“1*“)*' which provide negligible contributions. After the integral is extended to the — o0

limit, we observe that the w-integral is now equal to 276 (+ — '), and we finally obtain:
[?ULAJQM::J?uu—»n?uxﬁ*un, (A10)

where u(t — s)isequalto 1if¢ > s,%ift =s,and0ift < s.

Appendix B. Master equation

In the USC regime, owing to the high ratio 2 /w,, the standard approach fails to correctly describe the
dissipation processes and leads to unphysical results as well. In particular, it predicts thatevenat T = 0,
relaxation would drive the system out of its ground state | G) generating photons in excess to those already
present.

The right procedure that solves such issues consists in taking into account the atom-cavity coupling when
deriving the master equation after expressing the Hamiltonian of the system in a basis formed by the eigenstates
| j) of the Rabi Hamiltonian Hy. The dissipation baths are still treated in the Born-Markov approximation.
Following this procedure it is possible to obtain the master equation in the dressed picture [62]. ForaT = 0
reservoir, one obtains:

p(t) = —i[Hs, p(] + Lap@t) + Lo p (1) (B1)

11
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Figure C1. Time evolution of the normally-ordered variances S{" in the case discussed in section 4.2, calculated with the standard
operators (X* = &). The parameters are the same used in figure 5 in section 4.2. The variances S{" are calculated with reference
frequency (a) 2 = O and (b) Q = w.

Here £, and L, are the Liouvillian superoperators correctly describing the losses of the system where
Lp(t) = ¥, TEDIL) (K p (1) for s = a, o and D[O]p = 220p0" — pO'O — 0'Op). Inthelimit
Qr — 0, standard dissipators are recovered.

The relaxation rates Fﬁk = 2md; (Ayj) o? (Al ;k |* depend on the density of states of the baths d, (Aj) and
the system-bath coupling strength o, (Ay)) at the respective transition frequency Ay = wy — wjaswellas on
the transition coefficients Cjy = (j|$ + §7|k) (§ = @, &). These relaxation coefficients can be interpreted as the
full width at half maximum of each |k) — |j) transition. In the Born-Markov approximation the density of
states of the baths can be considered a slowly varying function of the transition frequencies, so that we can safely
assume it to be constant as well as the coupling strength.

Appendix C. Standard numerically-calculated squeezing

In section 4.2 we have numerically calculated the squeezing for the output field generated by the dynamics of a
three-level system when the two upper levels are ultrastrongly coupled with a cavity mode. We obtain a quantum
superposition between the |s, 0) and |s, 2) states via the dressed vacuum state |0) sending two pulses with central
frequencies w; = wj — 2w and wy = wW§ — W

Figures C1(a) and (b) display the time evolution of the variances S{" calculated by using the standard
quadrature-field operators in terms of the destruction and creation operators 4 and 4" for the cavity field.

This result can be compared with figure 5 displaying the time evolution of the variances S\ (blue curve) and
S" (red curve) obtained using the correct positive and negative field operators. The behavior of S{” () in
figure C1(a) starts with a fictitious value less than zero, while in figure 5 correctly starts from 0. The variance S{"
in figure C1(a) has been calculated by using the reference frequency 2 = 0. Figure C1(b) has been obtained by
using 2 = w.. Figures C1(a) and (b) show that it is not possible to eliminate fast and large-amplitude fictitious
oscillations, as well as the fictious initial squeezing within the standard approach.

12



I0OP Publishing NewJ. Phys. 18 (2016) 123005 R Stassi et al

References

[1] Forn-Diaz P, Lisenfeld J, Marcos D, Garcia-Ripoll ] ], Solano E, Harmans C ] P M and Mooij ] E 2010 Observation of the Bloch-Siegert
shift in a qubit-oscillator system in the ultrastrong coupling regime Phys. Rev. Lett. 105 237001
[2] Niemczyk T et al 2010 Circuit quantum electrodynamics in the ultrastrong-coupling regime Nat. Phys. 6 772—6
[3] TodorovY, Andrews A M, Colombelli R, De Liberato S, Ciuti C, Klang P, Strasser G and Sirtori C 2010 Ultrastrong light-matter
coupling regime with polariton dots Phys. Rev. Lett. 105 196402
[4] Schwartz T, Hutchison J A, Genet C and Ebbesen T W 2011 Reversible switching of ultrastrong light-molecule coupling Phys. Rev. Lett.
106 196405
[5] ScalariG et al 2012 Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial Science 335 1323—6
[6] Geiser M, Castellano F, Scalari G, Beck M, Nevou L and Faist ] 2012 Ultrastrong coupling regime and plasmon polaritons in parabolic
semiconductor quantum wells Phys. Rev. Lett. 108 106402
[7] Kéna-Cohen S, Maier S A and Bradley D D C 2013 Ultrastrongly coupled exciton-polaritons in metal-clad organic semiconductor
microcavities Adv. Opt. Mater. 1 827-33
[8] Gambino S etal 2014 Exploring light—matter interaction phenomena under ultrastrong coupling regime ACS Photon. 1 10428
[9] DimerF, Estienne B, Parkins A S and Carmichael H ] 2007 Proposed realization of the dicke-model quantum phase transition in an
optical cavity qed system Phys. Rev. A75 013804
[10] De Liberato S, Ciuti C and Carusotto 12007 Quantum vacuum radiation spectra from a semiconductor microcavity with a time-
modulated vacuum Rabi frequency Phys. Rev. Lett. 98 103602
[11] CaoX,You]JQ, Zheng H, Kofman A G and Nori F 2010 Dynamics and quantum Zeno effect for a qubit in either a low-or high-
frequency bath beyond the rotating-wave approximation Phys. Rev. A 82 022119
[12] CaoX,YouJQ,ZhengH and Nori F 2011 A qubit strongly coupled to a resonant cavity: asymmetry of the spontaneous emission
spectrum beyond the rotating wave approximation New J. Phys. 13 073002
[13] Ridolfo A, Leib M, Savasta S and Hartmann M J 2012 Photon blockade in the ultrastrong coupling regime Phys. Rev. Lett. 109 193602
[14] Ridolfo A, Savasta S and Hartmann M ] 2013 Nonclassical radiation from thermal cavities in the ultrastrong coupling regime Phys. Rev.
Lett. 110 163601
[15] StassiR, Ridolfo A, Di Stefano O, Hartmann M J and Savasta S 2013 Spontaneous conversion from virtual to real photons in the
ultrastrong-coupling regime Phys. Rev. Lett. 110 243601
[16] Sénchez-Burillo E, Zueco D, Garcia-Ripoll ] J and Martin-Moreno L 2014 Scattering in the ultrastrong regime: nonlinear optics with
one photon Phys. Rev. Lett. 113 263604
[17] Garziano L, Stassi R, Ridolfo A, Di Stefano O and Savasta S 2014 Vacuum-induced symmetry breaking in a superconducting quantum
circuit Phys. Rev. A90 043817
[18] Cacciola A, Di Stefano O, Stassi R, Saija R and Savasta S 2014 Ultrastrong coupling of plasmons and excitons in a nanoshell ACS Nano 8
11483-92
[19] Ciuti C and Carusotto I 2006 Input-output theory of cavities in the ultrastrong coupling regime: the case of time-independent cavity
parameters Phys. Rev. A74 033811
[20] Bamba M and Ogawa T 2014 Recipe for the hamiltonian of system-environment coupling applicable to the ultrastrong-light-matter-
interaction regime Phys. Rev. A89 023817
[21] Ashhab S and Nori F 2010 Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical
states Phys. Rev. A81 042311
[22] Garziano L, Ridolfo A, Stassi R, Di Stefano O and Savasta S 2013 Switching on and off of ultrastrong light—matter interaction: photon
statistics of quantum vacuum radiation Phys. Rev. A 88 063829
[23] Lvovsky A Iand Raymer M G 2009 Continuous-variable optical quantum-state tomography Rev. Mod. Phys. 81 299
[24] Wiseman HM and Milburn GJ 1993 Quantum theory of field-quadrature measurements Phys. Rev. A 47 642
[25] MalletF, Castellanos-Beltran M A, Ku H S, Glancy S, Knill E, Irwin K D, Hilton G C, Vale L R and Lehnert KW 2011 Quantum state
tomography of an itinerant squeezed microwave field Phys. Rev. Lett. 106 220502
[26] Drummond P D and Ficek Z 2004 Quantum Squeezing vol 27 (Berlin: Springer)
[27] Walls D F and Milburn G J 1994 Quantum Optics (Berlin: Springer)
[28] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[29] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[30] Bartkowiak M, Wu L-A and Miranowicz A 2014 Quantum circuits for amplification of Kerr nonlinearity via quadrature squeezing
J. Phys. B: At. Mol. Opt. Phys. 47 145501
[31] MaJ, WangX, Sun C P and Nori F 2011 Quantum spin squeezing Phys. Rep. 509 89-165
[32] Zagoskin A M, Ilichev E, McCutcheon M W, Young ] F and Nori F 2008 Controlled generation of squeezed states of microwave
radiation in a superconducting resonant circuit Phys. Rev. Lett. 101 253602
[33] Johansson] R, Johansson G, Wilson C M and Nori F 2010 Dynamical Casimir effect in superconducting microwave circuits Phys. Rev.
A 82052509
[34] Wilson CM, Johansson G, Pourkabirian A, Simoen M, Johansson J R, Duty T, Nori F and Delsing P 2011 Observation of the dynamical
Casimir effect in a superconducting circuit Nature 479 3769
[35] Nation P D, Johansson J R, Blencowe M P and Nori F 2012 Stimulating uncertainty: amplifying the quantum vacuum with
superconducting circuits Rev. Mod. Phys. 84 1-24
[36] Slavik R eral2010 All-optical phase and amplitude regenerator for next-generation telecommunications systems Nat. Photon. 4 690-5
[37] Caves CM 1981 Quantum-mechanical noise in an interferometer Phys. Rev. D 23 1693
[38] Braunstein S Land Loock P Van 2005 Quantum information with continuous variables Rev. Mod. Phys. 77 513
[39] Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R and Lehnert K W 2008 Amplification and squeezing of quantum noise with a
tunable Josephson metamaterial Nat. Phys. 4 929-31
[40] GiovannettiV, Lloyd S and Maccone L 2011 Advances in quantum metrology Nat. Photon. 5 222—9
[41] Vahlbruch H, Mehmet M, Chelkowski S, Hage B, Franzen A, Lastzka N, Gossler S, Danzmann K and Schnabel R 2008 Observation of
squeezed light with 10 dB quantum-noise reduction Phys. Rev. Lett. 100 033602
[42] Eichler C, Bozyigit D, Lang C, Baur M, Steffen L, Fink ] M, Filipp S and Wallraff A 2011 Observation of two-mode squeezing in the
microwave frequency domain Phys. Rev. Lett. 107 113601
[43] Flurin E, Roch N, Mallet F, Devoret M H and Huard B 2012 Generating entangled microwave radiation over two transmission lines
Phys. Rev. Lett. 109 183901

13


http://dx.doi.org/10.1103/PhysRevLett.105.237001
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1038/nphys1730
http://dx.doi.org/10.1103/PhysRevLett.105.196402
http://dx.doi.org/10.1103/PhysRevLett.106.196405
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1126/science.1216022
http://dx.doi.org/10.1103/PhysRevLett.108.106402
http://dx.doi.org/10.1002/adom.201300256
http://dx.doi.org/10.1002/adom.201300256
http://dx.doi.org/10.1002/adom.201300256
http://dx.doi.org/10.1021/ph500266d
http://dx.doi.org/10.1021/ph500266d
http://dx.doi.org/10.1021/ph500266d
http://dx.doi.org/10.1103/PhysRevA.75.013804
http://dx.doi.org/10.1103/PhysRevLett.98.103602
http://dx.doi.org/10.1103/PhysRevA.82.022119
http://dx.doi.org/10.1088/1367-2630/13/7/073002
http://dx.doi.org/10.1103/PhysRevLett.109.193602
http://dx.doi.org/10.1103/PhysRevLett.110.163601
http://dx.doi.org/10.1103/PhysRevLett.110.243601
http://dx.doi.org/10.1103/PhysRevLett.113.263604
http://dx.doi.org/10.1103/PhysRevA.90.043817
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1021/nn504652w
http://dx.doi.org/10.1103/PhysRevA.74.033811
http://dx.doi.org/10.1103/PhysRevA.89.023817
http://dx.doi.org/10.1103/PhysRevA.81.042311
http://dx.doi.org/10.1103/PhysRevA.88.063829
http://dx.doi.org/10.1103/RevModPhys.81.299
http://dx.doi.org/10.1103/PhysRevA.47.642
http://dx.doi.org/10.1103/PhysRevLett.106.220502
http://dx.doi.org/10.1088/0953-4075/47/14/145501
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1016/j.physrep.2011.08.003
http://dx.doi.org/10.1103/PhysRevLett.101.253602
http://dx.doi.org/10.1103/PhysRevA.82.052509
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1038/nature10561
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1103/RevModPhys.84.1
http://dx.doi.org/10.1038/nphoton.2010.203
http://dx.doi.org/10.1038/nphoton.2010.203
http://dx.doi.org/10.1038/nphoton.2010.203
http://dx.doi.org/10.1103/PhysRevD.23.1693
http://dx.doi.org/10.1103/RevModPhys.77.513
http://dx.doi.org/10.1038/nphys1090
http://dx.doi.org/10.1038/nphys1090
http://dx.doi.org/10.1038/nphys1090
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1038/nphoton.2011.35
http://dx.doi.org/10.1103/PhysRevLett.100.033602
http://dx.doi.org/10.1103/PhysRevLett.107.113601
http://dx.doi.org/10.1103/PhysRevLett.109.183901

10P Publishing

NewJ. Phys. 18 (2016) 123005 R Stassi et al

[44] Walls D Fand Zoller P 1981 Reduced quantum fluctuations in resonance fluorescence Phys. Rev. Lett. 47 709

[45] Meystre P and Zubairy M S 1982 Squeezed states in the Jaynes—Cummings model Phys. Lett. A 89 390-2

[46] Carmichael HJ 1985 Photon antibunching and squeezing for a single atom in a resonant cavity Phys. Rev. Lett. 55 27903

[47] Raizen M G, Orozco L A, Xiao M, Boyd T L and Kimble H J 1987 Squeezed-state generation by the normal modes of a coupled system
Phys. Rev. Lett. 59 198-201

[48] NhaH 2003 Squeezing effect in a driven coupled-oscillator system: a dual role of damping Phys. Rev. A 67 023801

[49] Schulte CH H, Hansom J, Jones A E, Matthiesen C, Le Gall C and Atatiire M 2015 Quadrature squeezed photons from a two-level
system Nature 525 2225

[50] Collett M J and Gardiner CW 1984 Squeezing of intracavity and traveling-wave light fields produced in parametric amplification Phys.
Rev. A30 1386

[51] Gardiner CW and Collett M J 1985 Input and output in damped quantum systems: quantum stochastic differential equations and the
master equation Phys. Rev. A313761

[52] Bozyigit D etal2011 Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors Nat.
Phys. 7 154-8

[53] Eichler C, Bozyigit D, Lang C, Steffen L, Fink ] and Wallraff A 2011 Experimental state tomography of itinerant single microwave
photons Phys. Rev. Lett. 106 220503

[54] Mariantoni M, Menzel E P, Deppe F, Araque Caballero M A, Baust A, Niemczyk T, Hoffmann E, Solano E, Marx A and Gross R 2010
Planck spectroscopy and quantum noise of microwave beam splitters Phys. Rev. Lett. 105 133601

[55] RabilI 1936 On the process of space quantization Phys. Rev. 49 324

[56] Rabill1937 Space quantization in a gyrating magnetic field Phys. Rev. 51 652

[57] Gardiner C and Zoller P 2004 Quantum Noise vol 56 (Berlin: Springer)

[58] Glauber RJand Lewenstein M 1991 Quantum optics of dielectric media Phys. Rev. A 43 467

[59] Savasta S and Girlanda R 1996 Quantum description of the input and output electromagnetic fields in a polarizable confined system
Phys. Rev. A532716

[60] Garziano L, Stassi R, Macri V, Frisk Kockum A, Savasta S and Nori F 2015 Multiphoton quantum Rabi oscillations in ultrastrong cavity
QED Phys. Rev. A92 063830

[61] Breuer H-P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)

[62] Beaudoin F, Gambetta ] M and Blais A 2011 Dissipation and ultrastrong coupling in circuit QED Phys. Rev. A 84 043832

[63] MaKKW and Law CK 2015 Three-photon resonance and adiabatic passage in the large-detuning Rabi model Phys. Rev. A 92 023842

[64] LiuY X, YouJ Q, WeiLF, Sun C P and Nori F 2005 Optical selection rules and phase-dependent adiabatic state controlin a
superconducting quantum circuit Phys. Rev. Lett. 95 087001

[65] Ridolfo A, Vilardi R, Di Stefano O, Portolan S and Savasta S 2011 All optical switch of vacuum rabi oscillations: the ultrafast quantum
eraser Phys. Rev. Lett. 106 013601

[66] HuangJ-F and Law CK 2014 Photon emission via vacuum-dressed intermediate states under ultrastrong coupling Phys. Rev. A 89
033827

[67] Ridolfo A, del Valle E and Hartmann M J 2013 Photon correlations from ultrastrong optical nonlinearities Phys. Rev. A 88 063812

14


http://dx.doi.org/10.1103/PhysRevLett.47.709
http://dx.doi.org/10.1016/0375-9601(82)90330-9
http://dx.doi.org/10.1016/0375-9601(82)90330-9
http://dx.doi.org/10.1016/0375-9601(82)90330-9
http://dx.doi.org/10.1103/PhysRevLett.55.2790
http://dx.doi.org/10.1103/PhysRevLett.55.2790
http://dx.doi.org/10.1103/PhysRevLett.55.2790
http://dx.doi.org/10.1103/PhysRevLett.59.198
http://dx.doi.org/10.1103/PhysRevLett.59.198
http://dx.doi.org/10.1103/PhysRevLett.59.198
http://dx.doi.org/10.1103/PhysRevA.67.023801
http://dx.doi.org/10.1038/nature14868
http://dx.doi.org/10.1038/nature14868
http://dx.doi.org/10.1038/nature14868
http://dx.doi.org/10.1103/PhysRevA.30.1386
http://dx.doi.org/10.1103/PhysRevA.31.3761
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1038/nphys1845
http://dx.doi.org/10.1103/PhysRevLett.106.220503
http://dx.doi.org/10.1103/PhysRevLett.105.133601
http://dx.doi.org/10.1103/PhysRev.49.324
http://dx.doi.org/10.1103/PhysRev.51.652
http://dx.doi.org/10.1103/PhysRevA.43.467
http://dx.doi.org/10.1103/PhysRevA.53.2716
http://dx.doi.org/10.1103/PhysRevA.92.063830
http://dx.doi.org/10.1103/PhysRevA.84.043832
http://dx.doi.org/10.1103/PhysRevA.92.023842
http://dx.doi.org/10.1103/PhysRevLett.95.087001
http://dx.doi.org/10.1103/PhysRevLett.106.013601
http://dx.doi.org/10.1103/PhysRevA.89.033827
http://dx.doi.org/10.1103/PhysRevA.89.033827
http://dx.doi.org/10.1103/PhysRevA.88.063812

	1. Introduction
	2. Squeezing of the ground state of the Rabi Hamiltonian
	3. Output field quadratures
	4. Squeezing of output field-quadratures in the USC regime
	4.1. Two-photon Rabi oscillations
	4.2. Cascade three-level system

	5. Conclusions
	Acknowledgments
	Appendix A.
	Appendix B.
	Appendix C.
	References



