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In their Matters Arising1, Stokes and Nazir point out that the main text 
of ref. 2 did not explicitly define the unitary operator 𝒰̂𝒰 as: 𝒰̂𝒰 𝒰 ̂U( ̂Px ̂P), 
where x is the coordinate of the effective particle and

̂P 𝒰 ̂I2 𝒰 |0⟩ ⟨0| + |1⟩ ⟨1| , (1)

is the identity for the truncated Hilbert space (see the text below  
equation (5) in ref. 2). As can be inferred from both equation (9) and 
Section I of the Supplementary Information of ref. 2, all our results in 
the correct Coulomb gauge have been obviously obtained using the 
unitary operator 𝒰̂𝒰 𝒰 ̂U( ̂Px ̂P).

The equivalence ̂P ̂U ̂P 𝒰 ̂U( ̂Px ̂P) was a direct consequence of the 
adopted truncation procedure described in ref. 2. Specifically, (1) in 
ref. 2 the Hilbert space truncation occurs once and definitely, and the 
light–matter interaction is introduced only after the Hilbert space 
truncation. When the matter system is described by a two-level atom, 
any meaningful operator has to be an endomorphism in the truncated 
Hilbert space, and the standard properties of identity operators can 
be legitimately used for ̂P  in equation (1); (2) the equivalence 
̂P ̂U ̂P 𝒰 ̂U( ̂Px ̂P)  can be obtained by expanding ̂U(x) in a Taylor series  

and then using for each term the relation ̂Pxn ̂P 𝒰 ( ̂Px ̂P)
n

, which can be 
easily obtained using the properties of identity operators (Section 1 of 
the Supplementary Information in ref. 2); and (3) the definition of ̂P  
(equation (1)) after the truncation, used throughout the paper2, is very 
clearly stated already below equation (5) in ref. 2. Stokes and Nazir 
incorrectly attribute to us their definition of ̂P1 as an operator living in 
an infinite-dimensional Hilbert space, instead of our two-dimensional 
Hilbert space.

Gauge invariance or gauge principle?
In ref. 1 the authors define xP-phase invariance as the invariance based 
on the truncated finite-dimensional position operator. However, their 
definition expresses a rather different concept with respect to the 

gauge principle in the truncated spaces introduced in ref. 2 and to the 
implementation of this principle in lattice gauge theories (LGT)3–5.

After the authors of ref. 1 introduce their own definition of xP-phase 
invariance, then they claim that every truncated model possesses this 
property (their definition), including all those given in refs. 6,7. Hence, 
according to the authors of ref. 1, xP-phase invariance cannot deter-
mine the correct light–matter interaction. If their definition were to 
agree with the general concept of the gauge principle (as in LGT), their 
demonstration would put into question not only the results in ref. 2, 
but also LGT, one of the most advanced and broadly employed tools in 
quantum field theory. However, this is not the case as we show below.

Specifically, we find that their conclusion, that every truncated 
model possesses xP-phase invariance (including all those given in  
refs. 6,7, wherein gauge non-invariance due to truncation was identi-
fied), is just a consequence of their own specific definition. We show 
here that, in contrast to the Hamiltonian in equation (11) of ref. 2, the 
models given in refs. 6,7 (except the dipole gauge Hamiltonian) do not 
satisfy the physically meaningful gauge principle for truncated models.

In quantum mechanics and specifically in quantum field theory, 
the coupling of particles with fields is constructed in such a way that 
the theory is invariant under local transformations (gauge principle) 
(for example, ref. 8). For example, considering U(1) invariance, the 
Dirac action is not invariant under local phase transformations of the 
wave function: ψ(x) → exp[iqθ(x)]ψ(x), where i is the imaginary unit, q 
is charge, and θ(x) is a position-dependent phase. It is well-known that 
invariance can be restored by replacing all derivatives ∂μ in the Lagran-
gian with covariant derivatives Dμ ≡ ∂μ + iqAμ, where Aμ are components 
of the field coordinate, which transform as Aμ → Aμ − ∂μθ.

In approximated models where the space is no longer continuous, 
as in truncated Hilbert spaces, transformations involving phases 
depending on continuous coordinates are no longer meaningful, and 
can give rise to ambiguities in the choice of the light–matter model6. 
However, in these cases, it is possible to define a position operator with 
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equation (10) in ref. 2 corresponds to what is obtained from the only 
physically meaningful implementation of the gauge principle in trun-
cated Hilbert spaces in agreement with LGT. Hence, the opposite view 
is more suited: the multipolar quantum Rabi model works fine because 
it can be directly obtained by a proper gauge (unitary) transformation 
from the two-level model satisfying the gauge principle in truncated 
models, in agreement with LGT. Note that LGTs3,5, as well as the related 
Peierls substitution10 were developed to implement the minimal coupling 
replacement in a lattice without any reference to the multipolar gauge.

Conclusion
In summary, we have shown that the first argument of ref. 1, claiming 
that the results of ref. 2 are not valid, is not correct. The second criti-
cism is that the gauge principle in the truncated Hilbert space (xP-phase 
invariance) is not able to provide the correct model of the light–matter 
interaction Hamiltonian, since several models can satisfy this principle. 
If this claim were correct, it would put into question not only the results 
in ref. 2, but also LGT, one of the most advanced and broadly employed 
tools in quantum field theory. However, the conclusion of the second 
argument of ref. 1 is just the direct consequence of their own specific 
definition, unrelated to the approach of ref. 2 and to the general gauge 
principle in LGTs, which is the natural and consistent extension of the 
gauge principle in the presence of discrete coordinates. We have shown 
that the main argument of the comment1 has no physical meaning and 
it is inconsistent with the gauge principle.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information and details of author 
contributions and competing interests, as well as statements of 
data and code availability, are available at https://doi.org/10.1038/
s41567-023-02178-1.

References
1.	 Stokes, A. & Nazir, A. Gauge non-invariance due to material 

truncation in ultrastrong-coupling quantum electrodynamics. 
Nat. Phys. https://doi.org/10.1038/s41567-023-02155-8 (2023).

2.	 Di Stefano, O. et al. Resolution of gauge ambiguities in 
ultrastrong-coupling cavity QED. Nat. Phys. 15, 803 (2019).

3.	 Wilson, K. G. Confinement of quarks. Phys. Rev. D 10, 2445–2459 
(1974).

4.	 Gattringer, C. & Lang, C. B. Quantum Chromodynamics On the 
Lattice: An Introductory Presentation (Springer, 2010).

5.	 Wiese, U.-J. Ultracold quantum gases and lattice systems: 
quantum simulation of lattice gauge theories. Ann. Phys. 525, 
777–796 (2013).

6.	 Stokes, A. & Nazir, A. Gauge ambiguities imply Jaynes-Cummings 
physics remains valid in ultrastrong coupling QED. Nat. Commun. 
10, 499 (2019).

7.	 De Bernardis, D., Pilar, P., Jaako, T., De Liberato, S. & Rabl, P. 
Breakdown of gauge invariance in ultrastrong-coupling cavity 
QED. Phys. Rev. A 98, 053819 (2018).

8.	 Maggiore, M. A Modern Introduction to Quantum Field Theory  
Vol. 12 (Oxford Univ. Press, 2005).

9.	 Savasta, S. et al. Gauge principle and gauge invariance in 
two-level systems. Phys. Rev. A 103, 053703 (2021).

10.	 Peierls, R. Zur Theorie des Diamagnetismus von 
Leitungselektronen. Z. Phys. 80, 763–790 (1933).

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 
2023

discrete eigenvalues, as in LGT. Hence, continuous phase transforma-
tions become unitary transformations of phases which are defined at 
discrete points. The general procedure to build gauge-invariant  
theories for truncated Hilbert spaces is unambiguous and rather clear: 
one starts from the Lagrangian (or even from the Hamiltonian in  
some cases) of the matter system in the truncated space, then intro-
duces the coupling with a field able to restore the phase invariance in 
the truncated space. This is just the philosophy of LGT. On the contrary, 
the xP-phase invariance introduced in ref. 1 starts from a gauge depend-
ent (α) Hamiltonian, and then applies an (α′) transformation. These 
mathematical transformations are not physically related to the  
gauge principle, because these are applied to Hamiltonians that  
already include the concept of light–matter interaction. The gauge 
principle applies to matter systems only to introduce the field–matter 
interaction as a mechanism to restore local invariance, starting from 
a Lagrangian for the matter system which does not include the  
gauge field8.

It can be shown that the Coulomb gauge Hamiltonian in ref. 2 cor-
responds to a two-site version of an abelian (non-relativistic) LGT. 
According to these gauge theories, if a state is defined on a discrete set 
of points, a meaningful and consistent local phase transformation 
cannot be a continuous function θ(x). It will be a discrete set θi,  
where i labels the lattice points. Considering, for example, a particle 
in an even potential with two separated minima, it is possible to  
define two localized states (|R⟩ and |L⟩) as

|R(L)⟩ 𝒰 1

√2
(|0⟩ ± |1⟩) , (2)

where {|0|⟩ , |1⟩} are the two lowest-energy eigenstates. The two-level 
system Hamiltonian can be written as

ℋ̂0 𝒰 −t |R⟩ ⟨L| + h.c. (3)

h.c. indicates hermitian conjugate. Considering a generic state 
|ψ⟩ 𝒰 cL |L⟩ + cR |R⟩, the expectation values of ℋ̂0 are not invariant under 
the local phase transformations: cL(R) → cL(R) exp{iθL(R)} . Gauge  
invariance is restored introducing Wilson’s parallel transporter 
UL−R 𝒰 exp{iqaA} , where q is the charge, a 𝒰 2 ⟨1| x |0⟩ , and A is the  
vector potential calculated at the atom position (dipole approxi
mation):

ℋ̂0 → ℋ̂gi
0 𝒰 −t |R⟩ ⟨L| eiqaA + h.c. (4)

After some algebra, it results that just adding the free-field term to this 
Hamiltonian gives equation (10) in ref. 2.

Further details can be found elsewhere9. On the contrary, other 
quantum Rabi models1 not connected by unitary transformations 
to equation (4) violate the gauge principle and gauge invariance for 
two-level systems.

In addition, we highlight some relevant, general and well-known 
features of gauge theories: (1) the operators determining the transfor-
mations of particle states are elements of a representation of a  
Lie group, and the group properties are essential to make these trans-
formations meaningful; (2) the transformed states have to belong to 
the same Hilbert space of the initial states; and (3) Lie algebra implies 
that in the neighbourhood of the identity element, the generic element 
of the representation can be expanded as ̂D(θ) ≃ ̂I + iθa ̂Ta , where θa 
are continuous parameters and ̂Ta  the generators of the group.  
The generic group elements can then always be represented by  
̂D(θ) 𝒰exp(iθa ̂Ta) . In our case ̂Ta ∝ ̂xp  (Section 1 of Supplementary 

Information in ref. 2).
According to ref. 6, the procedure performed in ref. 2 amounts  

to truncating the multipolar gauge followed by rotation within the  
truncated space. Instead, we have just shown that the Hamiltonian 
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