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Most topological phases in condensed matter1, ultracold 
atoms2 and photonics3 rely on conservative couplings to 
achieve non-trivial topological invariants. Conservative 

couplings arise when the elements of a system—either atoms of a 
quantum system or ring resonators of a photonic system (Fig. 1a)—
exchange information directly through their overlapping modes. 
The conservation of energy imposes a particular set of possible phase 
relationships on conservative couplings due to the unitary nature 
of the scattering matrix. In topological lattice models, conservative 
couplings engender energy or frequency spectra whose bands are 
characterized by quantized, non-zero topological invariants. The 
presence of non-trivial topological invariants, in turn, gives rise to 
topologically protected edge states at the boundaries of the lattice4,5, 
whose existence is robust against the presence of defects and disor-
der. The edge states of conservatively coupled systems are touted for 
their unusual and exceptional transport dynamics, which may be 
unidirectional and free from backscattering.

Dissipative couplings indirectly couple the elements of a system 
through an intermediate reservoir6,7, such as a bath of atomic modes 
or the modes of a bus waveguide8 (Fig. 1a). Dissipative couplings may 
be thought of as two separate couplings: information from one ele-
ment of the system first couples into the reservoir and then couples 
from the reservoir into a second element of the system. In general, 
some information is irrevocably lost to the reservoir in this process, 
and dissipative couplings do not conserve energy. However, dissipa-
tive couplings enable additional freedom to engineer the coupling 
phases, as the system’s scattering matrix is no longer unitary. (It is 
essential to distinguish dissipative couplings from the on-site gain 
and loss produced by, say, laser gain and absorption. The latter phe-
nomena, combined with conservative couplings, have been exten-
sively studied in both theory and experiment in non-Hermitian 

topological photonics. In this work, we study non-trivial topology 
that appears solely due to dissipative couplings. Such a phenom-
enon has not been experimentally studied in topological photon-
ics.) As shown in Fig. 1a, the right choice of coupling phases can 
introduce splittings purely in the dissipation modes of a system. 
Other coupling phases may introduce splittings in the frequency 
modes of a system or in a combination of frequency and dissipa-
tion modes (Supplementary Section 3). Such ‘dissipation engineer-
ing’ plays an important role in superconducting circuits, ultracold 
atoms and photonics, where it is used for reservoir engineering9, 
laser mode-locking10,11, and quantum and photonic computing12–14. 
Several recent studies have proposed combining dissipative and 
conservative couplings to enable time-reversal symmetry-breaking 
couplings15 and to induce non-trivial topological invariants16–20. 
These proposals suggest that dissipative coupling, like nonlinear-
ity21–23 and local gain and loss24–26, may enable new topological 
phases and topology-inspired technologies for quantum and clas-
sical applications. However, topological phases that arise in lattices 
with purely dissipative couplings remain largely unexplored27,28.

Here we experimentally realize topological phases with purely 
dissipative couplings. In contrast to previous works, our dissipa-
tively coupled topological lattices exhibit topologically non-trivial 
bands of dissipation rates and feature robust topological edge states 
with dissipation rates between those of the bulk bands.

Our experimental platform consists of a time-multiplexed reso-
nator network (Fig. 1b,c) that uses the notion of synthetic dimen-
sions29,30 to generate dissipatively coupled lattices that are capable 
of hosting non-trivial topological invariants. A general implemen-
tation of this network (Fig. 1b) contains N resonant optical pulses 
separated by repetition period TR. Each pulse represents a single, 
synthetic lattice site, represented by a synthetic resonator (Fig. 1c). 
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Fig. 1 | Topological dissipation and time-multiplexed resonator networks. a, Dissipatively coupled resonators (left) can map the energy spectrum of a 
tight-binding model to the dissipation spectrum of the resonators. The dynamics of dissipatively coupled resonators can be described by the dissipators D [Lj] 
of a Lindblad master equation (equation (1)). Note that with purely dissipative couplings, there are no Hamiltonian dynamics (H = 0) (Supplementary Section 
5 provides a detailed derivation). On the other hand, conservatively coupled resonators (right) map the energy bands of a tight-binding model to the frequency 
spectrum of the resonators. In the absence of loss, the dynamics of a conservatively coupled system exhibit only Hamiltonian dynamics: ρ = −i[H, ρ].  
b, Schematic of a resonant cavity loop (light blue) that supports N pulses separated by a repetition period, TR, and possesses delay lines of various lengths. The 
delay lines contain EOMs (yellow) that are driven by a controller. c, Equivalent synthetic resonator representation of b. Each synthetic resonator consists of a 
single, recirculating pulse. The time-multiplexed network is built by coupling the pulses with delay lines, which are indicated by the shaded boxes.
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Fig. 2 | realizing 1D and 2D synthetic lattices with switchable boundary conditions in a time-multiplexed resonator network. a, We construct a 
four-delay-line, time-multiplexed network capable of implementing two synthetic dimensions. An erbium-doped fiber amplifier (EDFA) partially 
compensates for the roundtrip loss in the network. b, With the ±4TR delay lines blocked, we use IMs in the ±TR delay lines, namely, IM±1, to implement a 
1D chain with staggered couplings (w and v) of the SSH model. The intracavity IM, namely, IMC, enables both PBCs and OBCs. c, With all four delay lines, 
the network can implement a 2D square lattice. The PMs in the ±4TR delay lines, namely, PM±4, produce the time-reversal symmetry-breaking couplings of 
the HH model, whereas IM±1 enforces OBCs along the ‘vertical’ direction. IMC enables PBCs or OBCs along the ‘horizontal’ direction.
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As the pulses traverse the primary fibre loop (main cavity; Fig. 1b), 
a portion of each pulse enters the network’s (N − 1) delay lines. 
These delay lines act analogously to the bus waveguides in Fig. 1a  
by mediating unidirectional couplings between the network’s 
time-multiplexed resonators. The lengths of the (N − 1) delay lines 
are chosen so that each pulse couples to the other (N − 1) pulses in 
the network, and the electro-optic modulators (EOMs) in the delay 
lines determine the strengths and phases of the couplings13. By map-
ping the couplings of the network to a particular lattice model, our 
network represents the connections of the model under study.

Although previous studies have realized time-multiplexed random 
walks in synthetic photonic lattices26,31–33, these travelling-wave archi-
tectures relied on conservatively coupled fibre loops and functioned 
like real-space waveguide arrays. Moreover, it has not been shown how 
to extend these architectures beyond the nearest-neighbour coupling 
or to higher than two dimensions. In contrast, the flexible site-to-site 
couplings of our resonator-based design are akin to those of the origi-
nal optical Ising machine13, and furthermore, by simply adding more 
delay lines, it is straightforward to realize long-range couplings, differ-
ent lattice types and additional synthetic dimensions with our network 
architecture. In addition, our network may be reconfigured to realize 
different lattice models or different parameter regimes by reprogram-
ming the modulator driving signals that control the strengths and 
phases of the couplings. In this work, we demonstrate our network’s 
ability to readily implement multiple synthetic dimensions, tunable 
boundary conditions, dynamic and inhomogeneous couplings, and 

time-reversal symmetry-breaking gauge potentials. Simultaneously 
achieving these behaviours presents a substantial challenge to existing 
platforms for synthetic dimensions29,30,34,35. Furthermore, the dissipa-
tion introduced by our system’s dissipative couplings stands in sharp 
contrast to the on-site gain and loss used to realize non-Hermitian 
topology36,37 or non-reciprocal couplings in previous, conservatively 
coupled experiments26. It is our dissipative couplings that give rise 
to topologically non-trivial bands of dissipation rates in our system 
and that distinguish our work from previous works on topological 
photonics.

To study the dissipatively coupled equivalents of the Su–
Schrieffer–Heeger (SSH)38 and Harper–Hofstadter (HH)39,40 models, 
we construct a four-delay-line network (Fig. 2a) that hosts N = 64 
synthetic lattice sites and can implement one-dimensional (1D) 
chains and two-dimensional (2D) square lattices either with open 
boundary conditions (OBCs) or with periodic boundary conditions 
(PBCs) along one dimension (Fig. 2b,c). The details of this setup are 
described in Supplementary Section 1. We model the dynamics of 
this network by the general Lindblad master equation

d
dt ρ = Lρ = −i [H, ρ] +

∑

j
D
[

Lj
]

ρ. (1)

HereH denotes the Hermitian Hamiltonian dynamics due to 
conservative couplings between sites labelled by j (Fig. 1a, right). 
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Fig. 3 | Observations of the SSh edge state and topological phase transition. a, For 50 round trips, we excite the SSH edge state corresponding to a 
coupling ratio of w/v = 2 in our time-multiplexed network as we tune the delay-line couplings to induce a topological phase transition between the trivial 
and topological phases of the SSH model. b, For the first 25 round trips, we set the network coupling ratio to the trivial phase (w/v = 1/2), and we observe 
that the edge state diffuses away from the edge as it resonates in the network (indicated by the thick red arrows). c, After 25 round trips, we switch the 
coupling ratio to the topological phase (w/v = 2). The strong localization of the edge state in the topological phase (indicated by the thick green arrows) 
suggests that the edge state is an eigenstate of the network and corroborates our observation of a dynamic topological phase transition. d, Depictions of 
the SSH lattice corresponding to the trivial and topological phases.
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Because our network possesses purely dissipative couplings (Fig. 1a,  
left), we consider the case in which H = 0. Instead, the dis-
sipators D[Lj]ρ = Lj ρL†j − {L†j Lj, ρ}/2, with jump operators 
Lj =

√
Γ
(

aj + e−iθaj+1
)

, completely describe the dissipative cou-
plings between our synthetic lattice sites16. Here Γ represents a dis-
sipative coupling rate, and θ is related to the coupling phases. In 
Supplementary Section 5, we derive the jump operators for our net-
work’s delay-line architecture (Fig. 1b) and show how to implement 
dissipatively coupled SSH and HH lattices. We also show how to 
engineer the phases of the delay lines to emulate purely conservative 
and hybrid conservative–dissipative dynamics with our network’s 
dissipative couplings. Although our current experimental results can 
be explained by the classical, mean-field behaviour of equation (2)  
(as discussed below), the full quantum dynamics of equation (1) 
may be applicable to future implementations with lower intrinsic 
losses and greater nonlinearities. In this sense, our work represents 
a step towards the experimental realization of photonic topologi-
cal open quantum systems, where there is an i nteresting interplay 
between the dark states, quantum jumps and topology17,27,41.

Starting from equation (1), we can express the evolution of the 
mean-field pulse amplitudes aj as

da
dt = (K− γ)a+ P, (2)

where t represents the slow-time (round-trip-to-round-trip) evo-
lution of the network, γ represents the intrinsic losses of resonators, 
P models a coherent drive and K is the network’s coupling matrix. 
Notably, our time-multiplexed resonator network can imple-
ment arbitrary amplitudes and phases for the coupling matrix 
elements Kmn without any symmetry constraints. This is substan-
tially beyond the capabilities of previous synthetic-dimensional 
architectures—either other time-multiplexed systems26,31–33 or 
architectures that utilize alternative synthetic dimensions20,34,35,42. 
By engineering K to implement the couplings of the SSH or HH 
model, our dissipatively coupled network acquires a dissipation 
spectrum identical to the topologically non-trivial band struc-
ture of the model under study. Moreover, the mean-field eigen-
states of equation (2) also become the eigenstates of the model 
implemented by K. As the topological invariants of the SSH and 
HH models depend solely on the models’ eigenstates, the topo-
logical invariants of our dissipatively coupled network are, there-
fore, identical to those of the familiar, conservatively coupled 
systems; however, the topological invariants are now associated 
with topologically non-trivial dissipation bands (Supplementary 
Section 4). As a result, in the presence of OBCs, our network is  
guaranteed to possess the same topological edge states as its con-
servatively coupled counterparts, and the edge states inherit the 
same robustness against disorder in the system (Supplementary 
Section 4).
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Fig. 4 | robustness of the dissipative SSh edge state and its quality factor. a, Measured SSH edge state in a lattice without intentional disorder. b, 
Measured SSH edge state in the presence of disorder. In the presence of chiral-symmetry-preserving disorder, the SSH edge state persists, despite 
the slight change in the eigenstate. Furthermore, we expect the dissipation rate of the edge state to be unchanged, which is a hallmark of topological 
protection in our dissipatively coupled SSH lattice. We verify the robustness of the dissipation rate and the quality factor of the edge state by measuring 
the total intensities of the unperturbed and the disordered steady states of the network, which, under our experimental conditions, allows a comparison 
equivalent to comparing the dissipation rates. c, Distribution of the measured coupling strengths in the unperturbed lattice. Here the variation in the 
couplings is due to experimental imperfections (w is the inter-dimer coupling; v is the intra-dimer coupling). d, Distribution of the measured coupling 
strengths in the disordered lattice. We add disorder to each coupling that is drawn from the uniform distribution Unif(–0.1w, 0.1w). Comparing c and d 
suggests that the additional disorder is considerably stronger than the disorder introduced by experimental imperfections.
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Introducing a properly engineered coherent drive into our net-
work (P in equation (2)) allows us to probe the specific states in our 
dissipative topological lattice. We generate the desired P by using 
the modulators IM0 and PM0 in Fig. 2a to excite a specific state of 
the network, and we track the state’s evolution to acquire informa-
tion about the underlying synthetic lattice. For instance, to probe 
the network’s topological edge state, we program P to excite the 
edge state. If the edge state is an eigenstate of the network, then the 
edge-state excitation will remain localized as it resonates within the 
network. On the other hand, if the edge state is not an eigenstate, 
then the edge-state excitation will undergo diffusive dynamics dic-
tated by equation (2). Similarly, when we institute the network’s sin-
gle PBC, we can choose P to excite a lattice’s complete set of Bloch 
eigenstates. Measuring the steady states of these eigenstates allows 
us to reconstruct the 1D band structure of the model under study 
(Supplementary Section 2).

To demonstrate purely dissipative topological phenomena, we 
first program our network to implement the couplings of the SSH 
model38,43. The SSH model describes a 1D dimerized chain with 
intra-dimer coupling v and inter-dimer coupling w (Fig. 3)44, and 
the model’s band structure is characterized by a topological winding 
number W . When w < v, W  = 0, and the system is in a topologically 
trivial phase. However, when w > v, W  = 1, and the system is in a 
topological phase that hosts mid-gap, topologically protected edge 
states.

We probe the SSH model’s topological edge state by implement-
ing a 50 site SSH lattice with OBCs and by inducing a topological 
phase transition between the SSH model’s trivial and topological 

phases (Fig. 3a). In addition to allowing us to probe the SSH mod-
el’s trivial and topological phases in a single experiment, this mea-
surement highlights our network’s ability to implement dynamic 
couplings. For 50 round trips, we excite the network with the SSH 
edge state corresponding to the coupling ratio w/v = 2. For the 
first 25 round trips, we prepare our SSH lattice in the trivial phase 
by setting the coupling ratio of the network to w/v = 1/2; for the 
remaining 25 round trips, we switch the synthetic lattice into the 
topological phase by changing the coupling ratio to w/v = 2. As 
shown in Fig. 3b, when the lattice’s couplings are in the trivial phase, 
the edge-state excitation diffuses into the initially unoccupied states 
of the lattice. In contrast, when the couplings are in the topologi-
cal phase, the edge-state excitation remains strongly localized in the 
theoretically predicted edge state (Fig. 3c). This localization con-
firms the existence of a purely dissipative topological edge state in 
our time-multiplexed resonator network.

We next investigate the robustness of the dissipative SSH edge 
state in the presence of disorder in the couplings of the network. In 
Fig. 4, we show the measured resonant steady states in a network 
without coupling disorder (Fig. 4a,c) and in a network with addi-
tional coupling disorder drawn from Unif(–0.1w, 0.1w) (Fig. 4b,d). 
As discussed in Supplementary Section 4, in the presence of such 
chiral-symmetry-preserving disorder, we expect the dissipation rate 
of the disordered edge state to be identical to that of the edge state in 
the unperturbed system. This corresponds to topological robustness 
of the quality factor of the dissipative topological edge mode. We 
verify this robustness by measuring the total intensities (I; sum of the 
peak powers) in measurements of the edge state with and without  
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disorder. Under the right experimental conditions, this compari-
son is equivalent to comparing the dissipation rates (Methods).  
In the unperturbed system, we find Iunpert = 0.377 ± 0.001 V, 
whereas in the disordered system, we find Idis = 0.378 ± 0.001 V. 
The agreement between these two measurements provides strong 
evidence that the dissipation rate (and consequently the quality 
factor) of the SSH edge state is protected against the presence of 
chiral-symmetry-preserving disorder in the network.

Next, we experimentally reconstruct the dissipation bands of 
our SSH lattice in the topological phase (w/v = 

√
2) and at the phase 

transition point (w/v = 1). For both coupling ratios, we implement 
a 64 site SSH lattice with PBCs. In each case, we sequentially excite 
the network with each of its 64 Bloch eigenstates, and we measure 
the steady-state amplitude of each state. Then, using the fit proce-
dure described in Supplementary Section 2B, we extract the dissipa-
tion spectra from the measured steady-state amplitudes (Fig. 5b,c). 
To evaluate the quality of our band structure measurements, we 

compare the coupling ratios, w/v, extracted from our fit procedure 
with the expected coupling ratios. This comparison provides a suit-
able metric for the quality of our measurements because, up to a 
constant, the SSH coupling ratio completely determines the band 
structure43. For the band structure at the phase transition point 
(expected w/v = 1), we measure w/v ≈ 1.0, whereas, for the band 
structure in the topological phase (expected w/v = 

√
2 ≈ 1.414), 

we find w/v ≈ 1.4. The excellent agreement between the measured 
band structures and our theoretical predictions confirms that our 
network possesses a topologically non-trivial dissipation spectrum.

Finally, to showcase the scalability and flexibility of our 
time-multiplexed network architecture, we reconfigure our syn-
thetic lattice to probe the topological edge state of the HH model. 
The HH model describes a 2D square lattice subjected to a per-
pendicular magnetic field3,39,40, whose strength is characterized by 
a dimensionless magnetic-field parameter α. For rational α, the 
bands of the HH model acquire a non-zero topological invariant 
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Fig. 6 | Measurement of the hh edge state and its localization. a, Schematic of the HH model with a magnetic flux of ɸ = 2πα per plaquette. The horizontal 
couplings do not have any phase, whereas the vertical couplings implement the Peierls phases ɸ, 2ɸ,... (red) and –ɸ, –2ɸ,... (blue). b, Simulated steady state 
of a theoretical HH edge state in a 4 × 10 dissipatively coupled lattice. The same edge state is studied in our experiments. c, Simulated steady state of an HH 
edge state in a 4 × 10 dissipatively coupled lattice with a corner defect. The new edge state wraps around the defect, demonstrating the robustness of the 
topological edge state in a dissipatively coupled lattice. d,e, Time traces of the measured steady-state pulse amplitudes in the network. As indicated by the 
dashed blue arrow in d, each set of four pulses maps to one row in the inset colour map, with earlier pulses in the time traces corresponding to lower rows in 
the colour maps. d, When the delay-line PMs implement the coupling phases of the HH model with α = 1/3, the edge state is an eigenstate of the network, 
and it resonates in the system. e, When we turn off these coupling phases to achieve α = 0, the edge state no longer resonates in the network. In particular, 
notice that light leaks into the ‘bulk’ in the time trace of this measurement. f, Difference between the bulk-site occupation for the topological case (blue) 
and trivial case (orange). The thick red and green arrows in d–f indicate the bulk sites with the highest contrast between the topological and trivial cases. 
Note that the presence of edge occupation that is visually apparent in e arises from the input excitation being predominantly localized on the edge (shaded 
rectangles), and hence, the contrast of bulk occupation in f provides a better comparison between the trivial and topological phases. Furthermore, note that 
the colour maps in b–e are saturated to emphasize the contrast between the edges and bulk.
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known as the Chern number C, which gives rise to topologically 
protected edge states5. In our network, we use the modulators PM±4 
(Fig. 2a) to achieve an effective magnetic field with α = 1/3 in a 
4 × 10 synthetic HH lattice with OBCs (Fig. 6a). Because the dis-
sipative couplings of our network are time-modulated and unidi-
rectional, the synthetic magnetic field generated by the delay lines 
breaks time-reversal symmetry—meaning that our network pos-
sesses truly nonzero Chern numbers (Supplementary Section 6). 
This is in stark contrast with earlier optical implementations of the 
HH model, which either do not break time-reversal symmetry45 or 
only break z-reversal symmetry46.

As shown in Fig. 6d, when we excite a topologically protected 
edge state of the HH model in the presence of the synthetic mag-
netic field, the edge state remains well localized. Interestingly, this 
edge state is strongly localized at the edges of the 4 × 10 lattice, 
despite only two bulk sites separating the edges along the narrow 
direction. On the other hand, when we excite the edge state in the 
absence of the synthetic magnetic field (α = 0), the lattice repre-
sents a trivial insulator, and the edge state diffuses into the ‘bulk’ 
of the synthetic lattice (Fig. 6e). As the initial edge-state excita-
tion is prominent in the responses of both topological and trivial 
networks (Fig. 6d,e), we plot only the occupation in the bulk sites 
(Fig. 6f) to clearly show that the edge state remains localized in 
the topological phase but not in the trivial phase. We quantify this 
contrast between the trivial and topological phases by defining a 
bulk occupation fraction

fbulk =
∑

nx,ny∈bulk

∣

∣

∣
ψnx,ny

∣

∣

∣

4
,

subject to the normalization

∑

nx,ny

∣

∣

∣
ψnx,ny

∣

∣

∣

2
= 1.

We calculate ftopobulk = 5.6 × 10–4 and ftrivbulk = 2.2 × 10–3 for the topologi-
cal and trivial phases, respectively. As our 4 × 10 lattice has 16 bulk 
sites and 24 edge sites, ftrivbulk/f

topo
bulk ≈ 4 indicates considerably stronger 

penetration into the bulk for the lattice in the trivial phase. Based on 
this observation, we conclude that our time-multiplexed synthetic 
HH lattice hosts a multidimensional topological edge state.

From the non-trivial topology of the dissipatively coupled HH 
model’s dissipation bands, we expect that the topological edge states 
of dissipative HH lattices should be robust against the effects of 
defects and disorder. We demonstrate this robustness by simulating 
the evolution of a 4 × 10 dissipatively coupled HH lattice with and 
without a defect added to one corner of the lattice. The results of 
these simulations are shown in Fig. 6b,c. In both cases, we find that 
when we excite the dissipative HH lattice with one of its topological 
edge states, the edge state remains localized in the initial excitation. 
For the dissipative HH lattice with a corner defect (Fig. 6c), this is 
a clear manifestation of topological protection. The details of these 
simulations are discussed in Supplementary Section 8.

Our dissipatively coupled implementations of the 1D SSH model 
and 2D HH model experimentally demonstrate the existence of 
topological phenomena in the presence of purely dissipative cou-
plings. We leverage our time-multiplexed network’s dissipative 
dynamics for edge state and band structure measurements, and 
we utilize the time-reversal symmetry-breaking nature of our dis-
sipative couplings to introduce nonzero Chern numbers. Our 
time-multiplexed resonator architecture also offers a promising 
platform for future work in synthetic dimensions. Our design can 
be extended to lattices in higher than two dimensions47–51 and to 

lattices with long-range couplings42, can achieve dense connectiv-
ity between lattice sites, and can realize dynamic and inhomoge-
neous synthetic gauge fields52—a combination that is not easy to 
achieve with other experimental platforms. We anticipate that dis-
sipative couplings will enable new topological devices with applica-
tions to quantum computing and photonics. Immediate extensions 
of our current experiments include exploring non-Hermitian53,54 
and nonlinear55 topological behaviours in dissipatively coupled 
time-multiplexed networks.
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Methods
Network architecture. The time-multiplexed optical network studied in this 
work hosts N = 64 time-multiplexed resonators and possesses four delay lines, 
labelled ±TR and ±4TR delay lines (Fig. 2a). Each delay line differs in length from 
the corresponding section in the main cavity by an integer multiple of the pulse 
repetition period TR. The ‘−’ (‘+’) indicates that the delay line is shorter (longer) 
than the corresponding main-loop section, and the accompanying number 
denotes the range of the coupling (for example, the ±4TR delay lines implement 
the fourth-nearest-neighbour coupling). As the separate ±NTR delay lines provide 
independent control over each direction of the Nth-nearest-neighbour couplings, it 
is straightforward to implement non-reciprocal couplings between sites.

The SSH model only requires nearest-neighbour coupling; therefore, to study 
the SSH model, we block the ±4TR delay lines. We then map the pulses in the main 
cavity to the 1D chain in Fig. 2b, where the colours of the couplings correspond to 
the colours of the delay lines that implement them. The intensity modulators (IMs) 
inserted in the ±TR delay lines provide pulse-to-pulse control over the coupling 
strengths of each delay line and enable us to implement the staggered couplings of 
the SSH model. Moreover, although the topology of the main cavity lends itself to 
periodic boundary conditions (PBCs), the intra-cavity IM, namely, IMC (Fig. 2a), 
provides control over the boundaries of the synthetic 1D lattice. We can switch the 
boundary conditions to open boundary conditions (OBCs) simply by using IMC to 
suppress the time slots in the main cavity (Fig. 2b).

To realize the HH model in the network (Fig. 2a), we use the ±4TR delay 
lines to define the nearest-neighbour couplings along the second dimension of a 
synthetic square lattice56. By using the IMs in the ±TR delay lines to suppress the 
‘spiralling’ boundary condition along this second synthetic dimension, we arrive 
at the lattices shown in Fig. 2c, where, once again, IMC enables us to implement 
either a strip with a single PBC or a square lattice with OBCs. To achieve the 
time-reversal symmetry-breaking coupling phases of the HH model, we place 
phase modulators (PMs) in the ±4TR delay lines. We utilize our independent 
control over each delay line to introduce a synthetic magnetic flux in each 
plaquette of the synthetic lattice (Fig. 2c).

For the measurements presented in the main text, we probe the properties 
of the network by exciting states in the network and recording the network’s 
steady-state response. To excite the desired edge states and Bloch-wave eigenstates, 
we use an IM (IM0) and a PM (PM0) at the input of the main cavity (Fig. 2a). These 
modulators encode the intensities and phases of the desired state onto a stream 
of pulses from a mode-locked laser. On entering the cavity, these pulses excite the 
sites of the synthetic lattice (that is, the time bins of the network) with particular 
amplitudes and phases. By repeatedly exciting each site over multiple round trips of 
the network, we bring the cavity to a resonant steady state.

Measurement procedure. SSH band structure measurements. To measure the SSH 
band structure, we generate the modulator driving signals to implement the desired 
coupling ratio within the network (using IM±1) and the Bloch-wave excitations 
at the input to the cavity (using PM0). By not using IMC, the network inherently 
implements PBCs; therefore, we implement a 64 pulse (32 dimer) SSH lattice.

To perform the experiment, we excite each Bloch eigenstate in the network 
and record the network’s steady-state response to each state. We repeat this 
measurement five times for each Bloch wave and compile the data from the 
different measurements to generate a plot of the mean steady-state amplitudes 
versus the wavevector. We then solve equation (2) to relate the steady-state 
amplitudes of the Bloch waves, |c(k)|2, to the dissipation eigenvalues of the SSH 
model. We find

|c(k)|2 =
A

(γ − λSSH)
2 + d, (3)

where γ is the network loss; λSSH =
√

w2 + v2 + 2wv cos(k); and A and d account 
for detector scaling and bias, respectively.

We fit the measured amplitudes with a rescaled version of equation (3) using 
Markov chain Monte Carlo (MCMC) simulations57. We use the fit parameters  
to transform the measured amplitudes into the SSH band structures shown in  
Fig. 5b,c.

Edge-state measurements. Our edge-state measurements follow a procedure similar 
to that used for our band structure measurements. To observe the HH model’s 
edge state, we first generate modulator driving signals to implement the synthetic 
gauge field of the HH model (using PM±4) and to produce the HH edge state 
at the input to the network (using IM0 and PM0). As suggested in Fig. 2a,c, we 
use the delay-line IMs, namely, IM±1, to create OBCs along one direction of the 
lattice, whereas IMC produces OBCs along the other direction. The result is that 
we implement a finite, 4 × 10 HH lattice with an effective synthetic magnetic field 
corresponding to α = 1/3.

To probe the topologically non-trivial state of our lattice, we excite the HH 
edge state in the network and record the system’s steady state. In the presence of the 
synthetic gauge field, the edge state is an eigenstate of the network; therefore, the 
excited edge state resonates unperturbed within the network. This result is shown 
in Fig. 6d.

To confirm that the lattice hosts a 2D topological edge state, we next turn 
off the synthetic gauge field by turning off the driving signals on PM±4. The 
network then implements a trivial 4 × 10 square lattice. We excite the same 
topological edge state in the trivial lattice and observe that the network’s 
steady-state response deviates from the edge-state excitation (Fig. 6e). This 
confirms that, in the presence of the synthetic gauge field, the topological edge 
state is an eigenstate of the network.

For the SSH model, we first observe the topological edge state in the context of 
a dynamical topological phase transition between the trivial and topological phases 
(Fig. 3a). We begin by generating the modulator driving signals to implement 
the SSH model’s couplings and to excite the SSH edge state. In addition, we now 
use IMC to implement a 50 pulse SSH lattice with OBCs. We excite the SSH edge 
state in the network for 50 round trips. For the first 25 round trips, we program 
the couplings so that the network is in the trivial phase of the SSH model. In this 
case, we observe that the steady-state response of the network deviates from the 
excited edge state. For the final 25 round trips, we switch the coupling strengths so 
that the network is in the SSH model’s topological phase. Now, we observe that the 
network response remains strongly localized in the edge state. This indicates that 
the topological edge state is an eigenstate of the network when the network is in the 
topological phase.

We investigate the robustness of the SSH edge state using a similar procedure. 
We first program the network’s couplings to implement the SSH model with 
no disorder and then program the couplings to implement the SSH model with 
additional disorder distributed according to Unif(−0.1w, 0.1w). In each case, we 
perform the edge-state measurement 40 times and average the results. In both 
cases, we excite the network with the predicted SSH edge state for 15 round trips 
and record the steady state of the network on the 15th round trip.

Because we excite the network with eigenstates in the disordered and 
unperturbed cases, equation (2) again reduces to a scalar equation, and its solution 
can be written in the form

∣

∣cedge
∣

∣

2
=

A
(

γ − λedge
)2 + d, (4)

which is very similar to equation (3), but it is now specialized to the case of the 
SSH edge state. During our calibration, we take care to ensure that the probed edge 
states have the same normalization in both the disordered and the unperturbed 
lattices so that the pump parameter (A in equation (3)) is the same for both 
cases. Then, comparing the total intensities in the resonant steady states becomes 
equivalent to comparing the dissipation rates with and without disorder. We 
use this comparison to conclude that the dissipation rate of the dissipatively 
coupled SSH edge state is robust against the chiral-symmetry-preserving disorder 
introduced into the system.

Note that the time traces plotted in Figs. 3, 4 and 6 are normalized by rescaling 
the time trace by the maximum value in the averaged trace. The data plotted in the 
colour map shown in Fig. 3a is not normalized, and the reference level used to plot 
these data in units of decibels is the maximum intensity in the entire dataset.
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