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The ultrastrong coupling (USC) between an effective two-level 
system (TLS) and the electromagnetic field has been realized 
in several solid-state systems1,2. In this regime of quantum 

light–matter interaction, going beyond weak and strong coupling, 
the coupling strength becomes comparable to the transition fre-
quencies of the system. Recently, light–matter coupling strengths 
larger than the system transition frequencies have been achieved 
in circuit quantum electrodynamics (QED) experiments involving 
a single LC-oscillator mode coupled to a flux qubit superconduct-
ing quantum circuit3,4. This extreme interaction regime has been 
denoted as deep strong coupling (DSC). In these regimes1,2, sev-
eral properties of coupled light–matter systems change drastically, 
opening the way to a wealth of new intriguing physical effects (see, 
for example, refs. 5–18), which offer opportunities for the develop-
ment of new quantum technologies19–26.

The form of the electron–photon interaction is gauge dependent 
(see, for example, ref. 27). However, all physical results must be inde-
pendent of this choice. Gauge invariance is a general guiding prin-
ciple in building the theory of fundamental interactions (see, for 
example, ref. 28). Let us consider, for example, a particle field whose 
action is invariant under a global phase change [U(1) invariance]. 
If this phase is allowed to depend on the space–time coordinate x, 
its action is not invariant. The symmetry can be restored, replacing 
the four-momentum derivatives in the action with covariant deriva-
tives: Dμ = (∂μ + iqAμ), where q is the charge parameter and Aμ is the 
gauge potential.

It has been shown29–33 that approximate models for light–matter 
interactions derived in different gauges may lead to different pre-
dictions, or can display different convergence properties34. When 
the light–matter interaction becomes very strong, different gauges 
can lead to drastically different predictions, giving rise to contro-
versies35–43. For example, in the case of several TLSs interacting 

with a single mode of an optical resonator44, different gauges may 
even lead to very conflicting predictions, such as the presence or 
the absence of a quantum phase transition. One important conclu-
sion that can be drawn from these controversies is that, once the 
light–matter coupling becomes non-perturbative, the validity of the 
two-level approximation for the atomic dipoles depends explicitly 
on the choice of gauge45,46.

In all of these previous studies35–43,45,46, it is clear that approxima-
tions in the description of the matter system (for example, a finite-
level truncation) seem to ruin the gauge invariance of the theory. In 
1971, it was pointed out31 that gauge ambiguities in the calculation 
of atomic oscillator strengths can originate from the occurrence of 
non-local potentials determined by the approximation procedures. 
Because a non-local potential in the position representation is an 
integral operator, it does not commute with the position operator. 
Indeed, it is easy to show that it can be expressed as a local momen-
tum-dependent operator ̂V r p( , ). This affects the interaction of light 
with quantum systems described by approximate Hamiltonians. 
Specifically, to introduce the coupling of the matter system with the 
electromagnetic field, the minimal replacement rule ̂ → ̂− ̂ tp p A r( , ) 
(Â is the vector potential) has to be applied not only to the kinetic 
energy terms, but also to the non-local potentials in the effective 
Hamiltonian of the particles in the system. By applying such a 
procedure, approximate matrix elements for electric dipole transi-
tions31 and two-photon transition rates, involving Wannier excitons 
in semiconductors32, become gauge invariant. Also the microscopic 
quantum theory of excitonic polaritons is affected by the presence 
of non-local potentials47,48.

Here we investigate whether this strategy can work in the maxi-
mally truncated Hilbert space provided by a TLS, and in the non-
perturbative regimes of cavity QED. This investigation is relevant 
not only to remove gauge ambiguities in quantum optical systems, 
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which are attracting great interest, but also to provide a general 
insight into gauge invariance in extreme interaction regimes. We 
find that the usual strategy, which consists of taking into account 
the non-locality of the atomic potential, performing the minimal 
coupling replacement and developing the resulting interaction 
Hamiltonian up to second order in the vector potential, fails when 
the coupling strength reaches a significant fraction of the resonance 
frequencies of the system. We demonstrate that these gauge ambi-
guities can be eliminated for arbitrary coupling strengths only by 
taking into account the approximation-induced non-locality and 
keeping the resulting interaction Hamiltonian to all orders in the 
vector potential Â. The results presented here solve all the long-last-
ing controversies arising from gauge ambiguities in the quantum 
Rabi and Dicke models.

The minimal coupling replacement
We consider a non-relativistic quantum particle of mass m with 
Hamiltonian Ĥ = ̂ ∕ +m V xp (2 ) ( )0

2 , where V(x) is a local potential. 
According to the gauge principle, the corresponding gauge-invari-
ant Hamiltonian Ĥ0 can be expressed as

Ĥ ϕ= + ̂− +q
m

q V xp A1
2

( ) ( ) (1)0
2

where q is the charge, and ϕ(x) and A(x) are the scalar and vector 
potentials of the electromagnetic field. Of course, the total energy 
also has to include the energy of the free field. We observe that, if the 
particle potential V is non-local, that is, momentum-dependent, the 
gauge principle, implying the replacement ̂ → ̂−qp p A, should also 
be applied to it. In most cases, when dealing with the quantization 
of the electromagnetic field, it is useful to adopt the Coulomb gauge, 
where the particle momentum is coupled only to the transverse part 
of the vector potential. For an effective quantum particle, focusing 
on a single-cavity mode and considering the electric-dipole approx-
imation, the Hamiltonian in the Coulomb gauge27 is

Ĥ Ĥ= ̂− + +
m

p qÂ V x1
2

( ) ( ) (2)C
2

ph

where = + †Â A â â( )0  is the vector potential calculated at the par-
ticle position with a zero-point-fluctuation amplitude A0, and 
Ĥ ω= ℏ †â âph c  is the cavity-field Hamiltonian. For a multimode reso-
nator: = + †Â A â â( )n n n  and Ĥ ω= ∑ ℏ †â ân n n nph .

If the two lowest energy levels of the effective quantum particle 
are well separated from the higher energy levels, as in the case of flux 
qubits3, and if the detuning Δ ≡ ωc − ω10 (where ω10 is the transition 
frequency of the two lowest energy levels) is much smaller than the 
detunings of other transitions, the truncation of the Hilbert space 
to the two lowest energy levels is expected to be a good approxima-
tion. Projecting ĤC in a two-level space, the standard quantum Rabi 
Hamiltonian in the Coulomb gauge is obtained

H Ĥ
ω

σ σ̂ = +
ℏ

̂ + ℏ ̂ + + +′ † †g â â D â â
2

( ) ( ) (3)z yC ph
10

C
2

where ω= ∕ℏg A dC 10 0 10 , = ∕D q A m(2 )2
0
2 , and ≡ ∣ ∣̂d q x1 010  is the 

dipole matrix element. Throughout this Article we will use calli-
graphic symbols as, for example, Ĥ′

C, to indicate quantum opera-
tors in truncated Hilbert spaces. The diamagnetic term ∕q Â m(2 )2 2  
can be absorbed by using a Bogoliubov transformation involving 
only the photon operators3,45. In contrast to the interaction term of 
first order in the charge, the Â2 term is not affected by the trun-
cation of the particle Hilbert space. Hence, considering a few-level 
description of the matter part can result in an over-estimation of 
the diamagnetic term. Using the Thomas–Reiche–Kuhn sum rule, 

ω∑ ℏ ∣ ∣ = ℏ ∕d q m( ) (2 )k kj jk
2 2 , the coefficient of the diamagnetic 

term can be written as ω= ∑ ∣ ∣ ∕ℏD A dk kj jk0
2 2 . When a single tran-

sition is considered, this expression can be used to establish a lower  
bound: ω≥ ℏ ∕D gC

2
10.

We observe that, in contrast to the Hamiltonian in equation (2), 
equation (3) violates the gauge principle, because its derivation does 
not take into account that, in the presence of a truncated Hilbert 
space, the particle potential loses its locality: → ̂′V x V x p( ) ( , ). We 
will discuss this problem below, showing the correct procedure for 
solving it.

The dipole gauge
The Hamiltonian in the dipole gauge, ĤD, corresponds to the 
Power–Zienau–Woolley Hamiltonian after the dipole approxi-
mation27. It can be obtained directly from the Hamiltonian 
in the Coulomb gauge with the electric dipole approximation 
(2) by means of a gauge transformation, which is also a uni-
tary trasformation: Ĥ Ĥ= †Û ÛD 1 C 1 , where the unitary operator is 

= − ∕ℏÛ iqxÂexp[ ]1 .
The resulting Hamiltonian in the dipole gauge is

Ĥ Ĥ Ĥ
ω

ω= + +
ℏ

+ −†q A
x iq xA â â( ) (4)c

D ph 0

2
0
2

2
c 0

Projecting ĤD to a two-level space, the quantum Rabi Hamiltonian 
in the dipole gauge is obtained:

H Ĥ
ω

σ σ̂ = +
ℏ

̂ + ℏ − ̂†i g â â
2

( ) (5)z xD ph
10

D

where ω ω ω= ∕ℏ = ∕g A d gD c 0 10 C c 10, and ≡ ∣ ∣d q x1 010  is the 
dipole matrix element. In equation (5) we neglected the term 
Ĉ ω= ∕ℏ ̂A d P( )0

2
10
2

c , where ̂= ∣ ∣ + ∣ ∣P 0 0 1 1  is the TLS identity 
operator. This term is obtained by projecting x2 in the two-dimen-
sional Hilbert space, ̂ ̂= ̂ ̂ ̂Px P PxPxP2 , and using parity symmetry, 
which implies 〈n|x|n〉 = 0. A more accurate derivation can be car-
ried out including this term in the particle potential before the diag-
onalization45 or using perturbation theory. However, we made the 
choice of considering the interaction terms only after the Hilbert 
space truncation. In ref. 45 it is shown that, if the two lowest energy 
levels are well separated from the higher ones ω ≫ g( )21 D

, the two-
level approximation provides accurate results even for extreme cou-
pling strengths ω≫g( )D 10 .

Revisiting the quantum Rabi model in the Coulomb gauge
As observed above, the derivation of equation (3) does not take 
into account that, in the presence of a truncated Hilbert space, 
the particle potential can lose its locality: → ̂′V x V x p( ) ( , ). Thus, 
to preserve gauge invariance, one has to also apply the substi-
tution ̂ → ̂−p p qÂ to the potential. In principle, this procedure 
can give rise to additional terms in the interaction Hamiltonian 
to all orders in the vector potential. Although these higher-
order terms are expected to be negligible for small normalized  
couplings η ≡ gC/ωc, they can become important at higher cou-
pling strengths.

As shown in detail in the Methods, by using some general opera-
tor theorems it is possible to apply the minimal coupling replace-
ment to both the kinetic energy and the non-local potential of the 
effective Hamiltonian of a quantum particle by employing a uni-
tary transformation47. In particular, applying equation (20) (see 
Methods), we obtain

Ĥ Ĥ Ĥ= +†Û Û (6)C 0 ph
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where the unitary operator is = †Û Û1 , with Û1 as defined above.
This alternative, although equivalent, minimal-coupling method 

allows us to understand precisely why the standard quantum Rabi 
Hamiltonian in the Coulomb gauge Ĥ′

C violates the gauge principle. 
Ĥ′

C can be obtained by applying the minimal coupling replacement 
to the full matter Hamiltonian, Ĥ Ĥ→ †Û Û0 0 , and then projecting in 
the truncated Hilbert space. Therefore

H










Ĥ Ĥ Ĥ̂ = ̂ ̂+ = ̂ ̂

+ ̂ ̂+′ † †PÛ Û P P Û
p
m

Û V P
2

(7)C 0 ph

2

ph

where ̂P is the projection operator for the truncated Hilbert space, 
and we used the relation ̂ = ̂†ÛVÛ V , valid when the potential V̂  is 
local. Using Supplementary equation (6), it can easily be shown that 
equation (7) gives equation (3). Notice that equation (7) contains 
the non-local potential ̂ ̂ ̂PVP to which the gauge principle has not 
been applied. Hence, we can conclude that Ĥ′

C violates the gauge 
principle. This problem arises whenever the matter system is 
described within a truncated Hilbert space, and can be solved by 
first applying to the matter system Hamiltonian (in the absence of 
interaction) the projection operator, and then the unitary operator, 

Ĥ Ĥ̂ ̂→ ̂ ̂ †P P ÛP PÛ0 0 . Finally, if one desires the resulting Hamiltonian 
to be within the truncated Hilbert space, it can be done by  
projecting it at the end. Applying the projection operator and using 

̂ = ̂P P
2 , we obtain

H UH U Ĥ̂ = ̂ ̂ ̂ +′ † (8)C 0 ph

where the projected unitary operator is Û = ̂ ̂PÛP and H Ĥ̂ = ̂ ̂P P0 0 .  
Equation (8) describes the total light–matter interaction Hamiltonian 
in the Coulomb gauge and in the electric dipole approximation, sat-
isfying the gauge principle despite the, often unavoidable, trunca-
tion of the Hilbert space. We note that Û is a unitary operator, in 
contrast to the operator ̂PÛ used in equation (7). This feature is very 
important because, as we will discuss below, it ensures gauge invari-
ance in truncated Hilbert spaces.

When the matter system is described by a single transition (TLS), 
we have H ω σ̂ = ℏ ̂ ∕2z0 10  and

U ησ̂ = ̂ + †i â âexp[ ( )] (9)x

where η = gD/ωc is the normalized coupling strength. Therefore, in 
the Coulomb gauge

H ω
ω

σ η σ η̂ = ℏ +
ℏ

̂ + + ̂ +† † †â â â â â â
2

{ cos[2 ( )] sin[2 ( )]} (10)z yC c
10

is the correct quantum Rabi Hamiltonian. The price one has to  
pay for preserving the gauge principle in such a truncated space  
is that the resulting Hamiltonian will contain field operators at all 
orders. This result shows that the occurrence of a non-local poten-
tial, arising from the truncation of the matter system Hilbert space, 
does not simply modify the dipole moment31, but profoundly changes  
the structure of the interaction Hamiltonian. In Supplementary 
Section I, we show (for the case of TLSs) that, in contrast to equa-
tion (3), UH Û ̂ ̂ †

0  is able to restore the U(1) symmetry that is  
broken by coordinate-dependent phase transformations of the matter 
system wavefunctions.

In addition to the two-level approximation for the matter  
system, the quantum Rabi model also relies on the single-mode 

approximation. This further assumption does not result in a  
breakdown of gauge invariance and it is also largely satisfied for  
very strong coupling strengths when the electromagnetic resona-
tor is an LC circuit3. It may fail for other kinds of resonator display-
ing propagation effects49–53. Multimode calculations accounting 
for the infinite set of cavity modes can lead to divergences unless a 
cutoff is imposed (see, for example, refs. 50,51). Recently, it has been 
shown50 that finite expressions can be obtained when gauge invari-
ance is respected. The generalization of equation (10) to multimode 
fields is straightforward. It can be directly obtained from equation 
(10) by replacing the normalized coupling η + †â â( ) with ∕ℏd Â10 , 
where = ∑ + †Â A â â( )n n n n  is the total vector potential operator at the  
atom position. Replacing the discrete index n with a proper continu-
ous parameter, this generalization can also be applied to a matter 
quantum system strongly interacting with a continuum of electro-
magnetic modes1,2.

The fulfilment of the gauge principle when considering a TLS 
interacting with a strong laser (classical) field54–56 in the Coulomb 
gauge also requires us to take into account the effect of non-local 
potentials. In this case, the correct semiclassical Hamiltonian in the 
Coulomb gauge ĤC

sc
 is

H


































ω
σ σ̂ =

ℏ
̂

ℏ
+ ̂

ℏ
d

A t
d

A t
2

cos 2 ( ) sin 2 ( ) (11)z yC
sc 10 10 10

where A(t) is the classical time-dependent vector potential describ-
ing the applied field.

In Fig. 1, we plot the energy differences ((E − E0)/ℏωc) for the 
lowest eigenstates of HD (equation (5)), Ĥ′

C (equation (3)) and ĤC 
(equation (10)), as a function of the normalized coupling η = gD/ωc. 
For Ĥ′

C we used ω= ∕D gC
2

10; however, the qualitative results do not 
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Fig. 1 | Numerical comparisons between different gauges. a,b, Comparison 
of the energy spectra as a function of the normalized coupling η = gD/ωc, 
obtained from the quantum Rabi Hamiltonians in the dipole gauge Ĥ( )D , in 
the standard Coulomb gauge H′̂( )D  and in the Coulomb gauge taking into 
account the presence of non-local potentials Ĥ( )C : plots for zero detuning 
(Δ = 0) (a) and Δ = 2ωc/3 (b).
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change for higher values of D. The comparison in Fig. 1 shows that, 
for very small values of the coupling, the eigenvalues of the dif-
ferent Hamiltonians reproduce the expected behaviour. However, 
already at moderate coupling strengths, η ~ .0 1, there are significant 
deviations in the predicted energies. For η ≳ .0 5, these differences 
become drastic. In particular, while the eigenvalues of ĤD and 
ĤC do coincide for all the coupling strengths, Ĥ′

C provides very  
different results. This anomalous behaviour of Ĥ′

C is a direct  
consequence of its violation of the gauge principle, demonstrated 
here. If a Lagrangian or a Hamiltonian does not satisfy the gauge 
principle, a gauge transformation will produce different physi-
cal results. Recently, values of η > 0.1 have been obtained by  
several groups1,2. In 2017, the record value η = 1.34 was achieved3. 
The plots in Fig. 1 also enforce the validity of the quantum  
Rabi Hamiltonian in the dipole gauge (equation (5)), as they 
show that it provides the same energy levels as the correspond-
ing Hamiltonian in the Coulomb gauge, obtained according to the 
gauge principle.

The strong differences between the energy levels of Ĥ′
C and ĤD 

agree with the results in ref. 45 They also show that, when the matter 
system displays a strong anharmonicity, the energy levels of ĤD (in 
contrast to those of Ĥ′

C) agree very well with those obtained from 
the numerically calculated energy levels of the full light–matter 
Hamiltonian ĤD for a large range of coupling strengths. Indeed, the 
two-level approximation is expected to be robust for μ η≫ , where 
μ ≡ (ω21 − ω10)/ω10 is the anharmonicity. The results of ref. 45 con-
firm this robustness only for the dipole gauge. Surprisingly, this 
conclusion seems to be in contrast with the results of ref. 46, where 
they concluded that the flux gauge (analogous to the dipole gauge 
for a superconducting artificial atom) provides completely incorrect 
predictions in most cases. These contradictory results are discussed 
in Supplementary Section V. Here, we only observe that the degree 
of anharmonicity of the matter system considered in ref. 46 μ η~( ) is 
not enough to ensure the validity of the two-level approximation. 
However, a common feature of refs. 45,46 is that the energy levels of 
the quantum Rabi model are strongly gauge dependent. In contrast, 
our derivation of the Rabi Hamiltonian in the Coulomb gauge and 
the results in Fig. 1 clearly show that, as highly desired, the predic-
tions of the quantum Rabi model are gauge invariant if the gauge 
principle is correctly applied.

To understand how many powers of the photon operators 
have to be included in ĤC to obtain the correct spectra, in Fig. 2  
we compare the approximate spectra, calculated from different 
n-order Taylor expansions Ĥ

n
C
( ) of ĤC, with the exact ones (the 

eigenvalues of ĤC). The results are interesting. For n = 3 there is 
already a significant improvement (with respect to n = 2), up to 
η ≲ .0 25. However, the spectra become completely wrong at η ≲ .0 3. 
Accuracy improves for n = 10, but only up to η ≲ .0 25. For n = 200, 
there is an excellent agreement, but only for η ≲ .1 3. These results 
show that for values of η larger than 1 (DSC), a very large n is 
needed to obtain the correct spectra. However, further increas-
ing η requires the inclusion of more and more terms in the expan-
sion. This shows that the procedure of taking into account the 
non-locality of the atomic potential and modifying the interaction 
Hamiltonian only up to second order in the vector potential31,32,47,48 
completely fails in the USC regime. Figure 2 clearly displays that, 
for arbitrary coupling strengths, the breakdown of gauge invari-
ance can be avoided only by taking into account the approxima-
tion-induced non-locality and keeping the resulting interaction 
Hamiltonian to all orders in the vector potential. This confirms 
the non-perturbative spatial non-locality that occurs when heavily 
truncating the particle’s Hilbert space. The results obtained here for 
a single two-level dipole (Rabi) can be extended to the multi-dipole 
case (Dicke) 35,43. Supplementary Section III shows how to obtain 
the correct Dicke model in the Coulomb gauge. As addressed in 
ref. 46, gauge ambiguities also arise in circuit-QED systems. For 
example, the full Hamiltonian of a fluxonium capacitively coupled 
to an LC oscillator circuit57 (corresponding to the charge gauge) 
can be obtained through an analogous minimal coupling replace-
ment. As shown in Supplementary Section IV, the resulting correct 
total Hamiltonian for the two-level model in the charge gauge is 
very similar to equation (10).

Resolution of gauge ambiguities
Note that ĤD and ĤC are related by a gauge transformation27,45, which 
can be expressed by Ĥ Ĥ= †Û ÛD 1 C 1 . As discussed above, Ĥ′

C (the 
standard two-level approximation of ĤC) gives rise to wrong spec-
tra, thus ruining gauge invariance. Instead, we have demonstrated 
that ĤC in equation (10) is the correct quantum Rabi Hamiltonian 
in the Coulomb gauge. The numerical results in Fig. 1 show that ĤC 
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gives the same spectra as ĤD, thus providing clear evidence that the 
procedure developed here restores gauge invariance in TLSs.

We now present an analytical demonstration of the gauge invari-
ance of a TLS coupled to the electromagnetic field. We start from 
ĤD, which, according to ref. 45, provides a very good approximation 
of the full Hamiltonian ĤD, and apply the gauge transformation pro-
jecting =†Û Û1  in the two-level space, U H Û ̂ ̂†

,1 D 1  where U Û = ̂†
1 . The 

result of this unitary transformation should be H Ĥ → ̂
D C. Noticing 

that Û corresponds to a spin rotation along the x axis, and using the 
Baker–Campbell–Hausdorff lemma, it is easy to obtain

U H U

H

ω
ω

σ η

σ η

̂ ̂ ̂ = ℏ +
ℏ

̂ +

+ ̂ + = ̂

† † †

†

â â â â

â â
2

{ cos[2 ( )]

sin[2 ( )]}
(12)z

y

1 D 1 c
0

C

This result demonstrates that, if we use ĤC instead of Ĥ′
C and 

apply the gauge transformation consistently, gauge invariance is 
preserved in a two-level truncated space.

Following ref. 46, it is possible to employ a formulation in which 
the gauge freedom is contained within a single real continuous 
parameter α, which determines the gauge through a function oper-
ator ̂

αX . The general gauge transformation in the dipole approxi-
mation is generated by a unitary transformation determined by 

= − ̂
α αÛ iXexp[ ] , where α̂ = ∕ℏαX qxÂ . The values α = {0, 1} specify 

the Coulomb and the dipole gauge, respectively. According to the 
standard procedure (violating the gauge principle), the α-gauge 
quantum Rabi Hamiltonians can be expressed as46 H Ĥ̂ = ̂ ̂′ α

α α
†PÛ Û P

( )
C .  

Indeed, following the procedure described above, one finds that 
the corresponding correct two-level projected unitary operator  
is U χ̂ = − ̂α αiexp[ ] , where χ αη σ̂ = + ̂α

†â â( ) x and the correct α-gauge 
Hamiltonian for a TLS is thus

H U H Û = ̂ ̂ ̂α
α α

† (13)( )
C

We obtain

H ω α σ
ω

σ η α

σ η α

̂ = ℏ − − ̂

+
ℏ

̂ − +

+ ̂ − +

α † †

†

†

â â i g â â

â â

â â

( )

2
{ cos[2 (1 )( )]

sin[2 (1 )( )]}

(14)

x

z

y

( )
c D

0

Because Ûα is unitary, the Hamiltonians (14) will have the same 
energy spectra of H Ĥ = ̂ α=

C
( 0)

 and of H Ĥ = ̂ α=
D

( 1)
 for any value of α. 

This eliminates the gauge ambiguities of the quantum Rabi model.
We conclude this subsection with two remarks. First, when 

calculating expectation values in the various gauges, the uni-
tary transformation in equation (13) also applies to the opera-
tors. For example, the photon destruction operator transforms 
as U U αησ= ̂ ̂ = + ̂α α α

†
â â â i x0 0 , where â0 is the photon operator in 

the Coulomb gauge. Second, different gauges give rise to differ-
ent eigenstates (all related by unitary transformations), even when 
using the correct gauge transformations. This feature can lead to 
some apparent gauge ambiguities when considering time-depen-
dent coupling strengths. In USC systems, the virtual photons 
in the ground state can be released if the interaction is suddenly 
switched off 16,53. Because the different gauges give rise to different 
eigenstates, the number of emitted photons (proportional to the 
virtual photon population in the ground state) seems to be gauge 
dependent. We observe that, during and after the switch off of the 
interaction, only the α = 0 (Coulomb) gauge is well defined. Indeed, 

in the α ≠ 0 gauges the field momenta depend on the interaction 
strength. According to this reasoning, the vacuum emission after 
the switch-off can be safely described only in the Coulomb gauge. 
This points out the relevance of obtaining the correct quantum Rabi 
Hamiltonian in the Coulomb gauge (14) for the design and analysis 
of these experiments.

Discussion
The method developed here is not limited to TLSs but can be applied 
to derive gauge-invariant Hamiltonians in arbitrary light–matter 
quantum systems. These results are also relevant for the study of 
systems with non-adiabatic time-dependent coupling strength1,2, as 
the Coulomb gauge (α = 0) is the only one where the field canonical 
operators are independent of the interaction.

Our results are also relevant for the study of open quantum sys-
tems. For example, it turns out that when the interaction of the 
light and matter components of a quantum system is very strong 
(USC), the correct gauge dependence of the subsystem operators 
appearing in the master equation cannot be neglected as usual. 
Moreover, if the coupling between a subsystem (for example, the 
matter system) and the environment is described by a gauge inter-
action and the system–bath coupling strength is not weak, the 
preservation of the gauge principle should be ensured despite any 
truncation procedure.

Finally, our investigation also applies to quantum matter systems 
under the effect of strong laser fields56 and can be extended to study 
ultrastrong and deep strong light–matter interactions beyond the 
dipole approximation33, where the multipolar gauge27 is also affected 
by the presence of non-local potentials.
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Methods
Non-local potentials. To understand why local potentials become non-local when 
the Hilbert space is truncated, let us consider a 1D potential ̂V . In the coordinate 
basis, it can be written as

∬̂ = ′⟨ ∣ ̂∣ ′⟩∣ ⟩⟨ ′∣
−∞

V x x x V x x xd d (15)

If the potential is local, its matrix elements can be written 
as δ∣ ̂∣ ′ ≡ ′ = − ′x V x V x x W x x x( , ) ( ) ( ). Considering a complete 
orthonormal basis {|n〉}, these matrix elements can be expressed as 

δ ψ ψ′ = − ′ = ∑ ′′ ′ ′V x x W x x x W x x( , ) ( ) ( ) *( ) ( )n n n n n n, , , where we define ψn(x) ≡ 〈x|n〉. 
Notice that the Dirac delta function can be reconstructed only by keeping all 
the infinite vectors of the basis. Hence, any truncation of the complete basis can 
transform a local potential into a non-local one. If only two states are included, for 
example, the two lowest energy levels, we obtain

ψ ψ ψ ψ′ = ′ + ′V x x W x x x x( , ) [ *( ) ( ) *( ) ( )] (16)1,0 0 1 1 0

where, for simplicity, we assume parity symmetry (which implies that the  
diagonal matrix elements Wn,n are zero) and real matrix elements. It is  
evident that the sum of the two terms in equation (16), which are products  
of two smooth wavefunctions, cannot reproduce the Dirac-delta function,  
and this will result in a potential with a high degree of spatial non-locality.  
It has been shown by several authors31–33 that a non-local potential can be  
expressed as a momentum-dependent operator ̂V r p( , ). Indeed, by using the 
translation operator ψ ψ′ = ′− ̂x i x x p x( ) exp[ ( ) ] ( ), where ̂p is the momentum 
operator, we obtain

∫ ψ ψ= ^′ ′ ′V x x x x V x p x( , ) ( )d ( , ) ( ) (17)

Generalized minimal coupling replacement. In this section, using some general 
operator theorems58, we show how to implement the minimal coupling replacement 
on a generic operator ̂O x p( , ) by performing a unitary transformation47. Given 
two non-commuting operators α ̂and β  ̂and a parameter μ we want to calculate 

α ̂μβ μβ̂ − ̂
Oe ( )e . The function α ̂O( ) can be expanded in a power series:

∑α α̂ = ̂O c( ) (18)
n

n
n

Using equation (18), we have

∑α α̂ = ̂μβ μβ μβ μβ̂ − ̂ ̂ − ̂
O ce ( )e e e (19)

n
n

n

Observing that

α α α α α̂ = ̂ ̂ ⋯ ̂ = ̂μβ μβ μβ μβ μβ μβ μβ μβ μβ μβ̂ − ̂ ̂ − ̂ ̂ − ̂ ̂ − ̂ ̂ − ̂
e e e e e e e e (e e )n

n

we have

∑α α α̂ = ̂ = ̂μβ μβ μβ μβ μβ μβ̂ − ̂ ̂ − ̂ ̂ − ̂
O c Oe ( )e (e e ) (e e ) (20)

n
n

n

We now apply equation (20) to ̂χ χ̂ ∕ℏ − ̂ ∕ℏO x pe ( , )ei x i x( ) ( ) . For the sake of simplicity, 
here we consider the 1D case. The generalization to 3D is straightforward. We obtain

̂ = ̂χ χ χ χ̂ ∕ℏ − ̂ ∕ℏ ̂ ∕ℏ − ̂ ∕ℏO x p O x pe ( , )e ( , e e ) (21)i x i x i x i x( ) ( ) ( ) ( )

Then, by using the Baker–Campbell–Hausdorff formula, we obtain






χ χ χ χ̂ = ̂ +

ℏ
̂ ̂ +

ℏ
̂ ̂ ̂ + ⋯ = ̂−∂ ̂χ χ̂ ∕ℏ − ̂ ∕ℏp p i x p i x x p p xe e [ ( ), ] 1

2
[ ( ), [ ( ), ]] ( ) (22)i x i x

x
( ) ( )

2

where we used the result χ χ̂ ̂ = ℏ∂ ̂x p i x[ ( ), ] ( )x . In conclusion, using equations (21) 
and (22), this becomes

χ̂ = ̂−∂ ̂χ χ̂ ∕ℏ − ̂ ∕ℏO x p O x p xe ( , )e [ , ( )] (23)i x i x
x

( ) ( )

Considering now the special function

χ ̂ =x q xÂ( ) (24)0

with ≡Â Â x( )0 0  being the field potential calculated at atom position x0, we obtain

χ∂ ̂ =x qÂ( ) (25)x 0

If we plug this result into equation (23), we obtain

̂ = ̂−χ χ̂ ∕ℏ − ̂ ∕ℏO x p O x p qÂe ( , )e ( , ) (26)i x i x( ) ( )
0

demonstrating that the unitary transformation in equation (23) corresponds to the 
application of the minimal coupling replacement in the dipole approximation.
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