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1. Calculations of the fields and momentum densities 

1.1. Canonical and spin momenta: from relativistic field theory to optical fields 

The canonical energy-momentum tensor for the free-space Maxwell field follows from the 
space-time translation symmetry of the field Lagrangian and Noether’s theorem [10]. Using 
standard relativistic notation with the Einstein summation rule, the canonical energy-momentum 
tensor reads 

 Tcan
αβ = ∂αAγ( )F βγ − 1

4
gαβF γδFγδ , (S1) 

where Aα  is the electromagnetic four-potential, Fαβ  is the field tensor, and gαβ  is the 
Minkowski spacetime metric tensor. The tensor (S1) is gauge-dependent (due to the presence of 
Aα ) and non-symmetric. Nonetheless, it is this tensor that corresponds to the generators of 
spatial translations for the electromagnetic field. 

In 1940, Belinfante suggested a symmetrisation procedure to “improve” tensor (S1), i.e., to 
make it gauge-invariant and symmetric [9,10]. He added the following total-divergence term 
(constructed from the spin tensor) to the canonical energy-momentum tensor: 

 Tspin
αβ = −∂γ AαF βγ( ) , (S2) 

The resulting symmetric energy-momentum tensor (also known as the Belinfante energy-
momentum tensor) is 

 
 
T αβ = Tcan

αβ +Tspin
αβ = F γ

αF βγ − 1
4
gαβF γδFγδ . (S3) 
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This tensor (S3) is typically considered as meaningful in field theory, because it is gauge-
invariant and is naturally coupled to gravity [10]. In turn, the Belinfante spin-correction term 
(S2) is usually regarded as “virtual”, because it does not contribute to the energy-momentum 
conservation law, energy transport, and integral momentum of a localized field [10,11,15]. 

The momentum density of a free electromagnetic field is given by the 0i iT P≡  
components of the energy-momentum tensor. In this manner, the canonical, spin, and Poynting 
momentum densities are obtained from Eqs. (S1)–(S3) as 

 P can = E ⋅ ∇( )A ,   P spin = − E ⋅∇( )A ,    P = P can + P spin = E×B , (S4) 

where E  and B  are the electric and magnetic fields, whereas A  is the vector-potential. Note 
that in Eqs. (S4) and in what follows we use Berry’s notation ( ) i iX Y⋅ ∇ ≡ ∇X Y  [13] and natural 
electrodynamical units ε0 = µ0 = c = 1 . 

Although the canonical and spin momenta are gauge-dependent, there are several strong 
indications that in a number of situations the experimentally-measured quantities correspond to 
the canonical quantities taken in some particular gauge. Recently, this was actively discussed in 
relation to optical experiments with laser fields [7,8,14,15,22,23,25,S1–S6] and QED 
experiments detecting gluon and quark spin and orbital contributions to the proton spin [26]. In 
optical experiments, the measured quantities correspond to the Coulomb gauge, i.e., A0 = 0  and 

0∇⋅ =A , and hereafter we assume this gauge. 
We are interested in monochromatic optical fields, which can be described by complex 

time-independent field amplitudes: E r,t( )→ Re E r( )e− iωt⎡⎣ ⎤⎦ , B r,t( )→ Re B r( )e− iωt⎡⎣ ⎤⎦ , 

( ) ( ), Re i tt e ω−⎡ ⎤→ ⎣ ⎦A r A r , where ω  is the frequency. Here we use the same letters E , B , and 
A  for the complex field amplitudes, and imply only these complex fields in what follows. 
Importantly, the corresponding vector-potential amplitude (in the Coulomb gauge) becomes 
simply proportional to the electric field amplitude [15]: A r( ) = −iω −1E r( ) . Substituting these 
equations into Eqs. (S4), and performing time averaging over the ω -oscillations, we obtain 
expressions for the canonical, spin, and Poynting momentum densities in a generic optical field 
[13,15]: 

P can = 1
2ω

Im E∗⋅ ∇( )E⎡⎣ ⎤⎦ ,  P spin = 1
4ω

∇× Im E∗ ×E⎡⎣ ⎤⎦ ,  
 
ReP = P can + P spin = 1

2
Re E∗ ×B( ) . (S5) 

Here we use the same letters P can , P spin , and  P  for time-averaged optical momenta densities, 
and consider only these quantities in what follows. Note that for monochromatic fields the 
Poynting vector is described by a complex quantity 

 
P = E∗ ×B( ) / 2 , whose real part 

corresponds to the usual Poynting momentum (S5), whereas the imaginary part  ImP  describes 
the “alternating flow of the stored energy” [12]. 

The canonical momentum in Eqs. (S5) is proportional to the local expectation value of the 
canonical momentum operator p̂ = −i∇ , and is proportional to the phase gradient or local 
wavevector of the field [13–15,23]:  

 P can ∝Re E∗⋅ p̂( )E⎡⎣ ⎤⎦ ∝ k
loc E 2 . (S6) 

In turn, the spin momentum in Eqs. (S5) represents a solenoidal edge current, which is generated 
by the intrinsic spin angular momentum in the field: 

 P spin = 1
2
∇× S ,    S = 1

2ω
Im E∗ ×E⎡⎣ ⎤⎦ ∝E

∗⋅ Ŝ( )E , (S7) 
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where Ŝ  is the vector of spin-1 matrices [13,15,S5]. Equations (S5)–(S7) reveal different 
physical origins and meanings of the two optical momenta constituting the Poynting vector. 

Note that throughout this work we use the “standard” formalism for the canonical and spin 
quantities, which is based on the electric field [10,14,15,S3]. There is also a “dual-symmetric” 
formalism, where all quantities are symmetrized with respect to similar electric and magnetic 
field contributions [7,8,13,15,S3–S5,S7]. While the dual-symmetric approach is more natural for 
free-space fields, in our experiments the probes are sensitive only to the electric field, and, 
therefore, the standard “electric-biased” formalism is more suitable. 

1.2. Fields and momenta in an evanescent optical wave 

To calculate the fields and momenta in the evanescent field investigated in our experiment, 
we need to describe several transformations of the optical field on its way from the laser to the 
probe (cantilever). The schematic of the experiment is shown in Figures 1 and 2 of the main text, 
and also in Figure S1.  
 
 

 
Figure S1. Transformations of the laser 1 beam and its polarization in the 
experimental setup (see also Fig. 2). Shown are: the coordinate frame x, y, z( )  
accompanying the beam, rotations of the quarter waveplate (QWP) generating 
circular polarizations, flip of the circular polarizations after the beam reflection at the 
mirror, and spin-dependent deflections of the cantilever produced by the transverse 
force associated with the Belinfante spin momentum. 

 
 

We describe the complex electric field of the laser-1 beam in its accompanying frame 
x, y, z( ) , where the z -axis is directed along the beam and the y -axis is the transverse (horizontal) 

axis. Thus, the s  and p  polarizations correspond to the y  and x  linear polarizations, 

NATURE PHYSICS | www.nature.com/naturephysics 3

SUPPLEMENTARY INFORMATIONDOI: 10.1038/NPHYS3732

© 2016 Macmillan Publishers Limited. All rights reserved. 

 

http://dx.doi.org/10.1038/nphys3732


 4 

respectively. Neglecting the longitudinal z -component in the paraxial laser field, the laser 1 
emits the s -polarized field 0E  described by the following Jones-vector form: 

 
E0x
E0y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E0

0
1

⎛
⎝⎜

⎞
⎠⎟
exp ikz( ) . (S8) 

Here E0  is the electric-field amplitude, and k = 2π λ  is the wavenumber of the laser 1. 
Next, the field (S8) is transmitted through the quarter waveplate (QWP) with its fast axis 

forming an angle φ  with the  y -axis, as shown in Fig. S1. (We intentionally defined the φ  angle 
in the direction opposite to the usual rotations in the x, y( ) -plane to account for the flip of the 
wave helicity in the reflection from the mirror after the QWP.) After the QWP, the slow-axis-
polarized light acquires a π / 2  phase shift with respect to the orthogonally-polarized component. 
As a result, the beam field 1E  after the QWP is described by the following Jones-matrix 
transformation [S8]: 

 
E1x
E1y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

sin2φ + icos2φ sinφ cosφ 1− i( )
sinφ cosφ 1− i( ) isin2φ + cos2φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

E0x
E0y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. (S9) 

Substituting here Eq. (S8) and omitting the common   1− i( ) / 2  factor, we obtain 

 
E1x
E1y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E0

2
sin2φ

i + cos2φ

⎛

⎝
⎜

⎞

⎠
⎟ exp ikz( ) . (S10) 

After the QWP, the beam is redirected by the mirror, which works as an ideal reflector: the sign 
of the y -component of the field flips (which is equivalent, up to a total phase factor, to the 
φ → −φ  transformation). Therefore, the field of the beam entering the objective lens becomes 

 
E1x
E1y

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= E0

2
sin2φ

−i − cos2φ

⎛

⎝
⎜

⎞

⎠
⎟ exp ikz( ) . (S11) 

Next, the beam enters the glass (a high-NA objective in our case, see Figs. S1 and S6 
below) and undergoes a total internal reflection at the glass-air interface. The generation of the 
evanescent field and its properties at such interface are described in detail in the Supplementary 
Materials of [7]. Following that work, we represent the field (S11) inside the glass in three-
dimensional form: 

 E1 ≡
E1x
E1y
E1z

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= E0

1+ m1
2

1
m1

0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
exp in1kz( ) , (S12) 

where 

 m1 =
E1y
E1x

= − i + cos2φ
sin2φ

 (S13) 

is the complex polarization parameter, and n1 = 1.5  is the refractive index of the glass.  
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The plane-wave field (S12) impinges the glass-air interface with the angle of incidence α , 
n1 sinα >1  (  α  54.6° in our experiment). The evanescent wave field E  generated in the air can 
be written as (see Supplementary Materials of [7]) 

 E ≡

Ex

Ey

Ez

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= E

1+ m 2

1
mk kz
−iκ kz

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
exp ikzz −κ x( ) , (S14) 

where 

 kz = kn1sinα ≡ k coshϑ ,    κ = kz
2 − k2 ≡ k sinhϑ , (S15) 

are the propagation and exponential-decay wavevector parameters of the evanescent wave, 
which are expressed via the hyperbolic angle ϑ . (In our experiment the propagation wavelength 

 2π kz
−1  532 nm and decay scale of the evanescent wave  κ −1  150 nm.) In Eq. (S14) we used the 

x, y, z( )  coordinates shown in Figures 1 and 2, and introduced the following amplitude and 
polarization parameters: 

 E = k
kz

1+ m 2

1+ m1
2 Tp E0 ,     1

s

p

Tm m
T

= , (S16) 

which involve the Fresnel transmission coefficients [12] 

 Ts =
2n1cosα

n1cosα + isinhϑ
,   Tp =

2n1cosα
cosα + i n1sinhϑ

. (S17) 

Equations (S13)–(S17) completely describe the evanescent wave electric field ( )E r  that 
we probe in the experiment. Substituting this field into the general equations (S5)–(S7), we 
obtain the canonical and spin momentum densities in the evanescent wave:  

 P can = W
ω

kz 1+τ
κ 2

kz
2

⎛
⎝⎜

⎞
⎠⎟
z = W

ω
k coshϑ +τ sinh

2ϑ
coshϑ

⎛
⎝⎜

⎞
⎠⎟
z , (S18) 

 P spin = W
ω

−κ
2

kz
z + σ κ k

kz
y

⎛

⎝
⎜

⎞

⎠
⎟ =

W
ω
k − sinh

2ϑ
coshϑ

z + σ sinhϑ
coshϑ

y
⎛

⎝⎜
⎞

⎠⎟
. (S19) 

We also determine the imaginary Poynting vector: 

 
    
ImP = W

ω
−τ κ k 2

kz
2 x − χ κ k

kz

y
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= W
ω

k −τ sinhϑ
cosh2ϑ

x − χ sinhϑ
coshϑ

y
⎛

⎝
⎜

⎞

⎠
⎟ , (S20) 

which will play role in calculations of weak transverse optical forces. In equations (S18)–(S20) 

W = 1
4
E 2 + B 2( ) = 12 E

2 exp −2κ x( )  is the energy density of the field,  x ,  y  and  z  are the unit 

vectors of the corresponding axes, whereas  

 τ =
1− m 2

1+ m 2  ,     χ = 2Rem
1+ m 2  ,     σ = 2Imm

1+ m 2  (S21) 
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are the Stokes parameters of the evanescent field [7]. In particular, the third Stokes parameter σ  
is the degree of circular polarization, i.e., helicity, which determines the longitudinal z -directed 
spin angular momentum of light. 

Substituting Eqs. (S13)–(S17) into Eq. (S21), we express the Stokes parameters of the 
evanescent wave as functions of the varying QWP angle φ  and other parameters: 

 τ =
sin22φ − cos22φ +1( ) cosh2ϑ − cos2α( )
sin22φ + cos2 2φ +1( ) cosh2ϑ − cos2α( ) ,  

 ( )
( )( )2 2 2 2

sin 2 cos2 cosh sin sinh cos
2
sin 2 cos 2 1 cosh cos
φ φ ϑ α ϑ α

χ
φ φ ϑ α
− +

=
+ + −

,  

 σ = −2
sin2φ coshϑ sinα + sinhϑ cosα cos2φ( )
sin22φ + cos22φ +1( ) cosh2ϑ − cos2α( ) . (S22) 

Importantly, the parameters τ φ( ) , χ φ( ) , and σ φ( )  show different behaviour with variations of 
the QWP angle φ , which enables us to separate the τ -, χ - and σ -dependent effects in our φ -
dependent measurements. In particular, τ φ( )  is an even function of φ , while χ φ( )  and σ φ( )  
are odd functions. This yields a remarkable result: all longitudinal ( z -directed) and vertical ( x -
directed) field properties in Eqs. (S18)–(S20) are even functions of φ , while all transverse ( y -
directed) characteristics are odd. This allows an efficient separation of the usual in-plane and 
extraordinary transverse phenomena in φ -dependent measurements. Note that the energy density 

 W φ( )  is also an even function of φ :  

 W ∝ E0
2 2cot2α
n1
2 −1( )

sin22φ
cosh2ϑ − cos2α

+ cos22φ +1
⎛
⎝⎜

⎞
⎠⎟

, (S23) 

which does not affect the above features of the polarization dependences. 
It should be noticed that the polarization Stokes parameters in Eqs. (S18)–(S22) are those 

of the evanescent wave, and are determined via its polarization parameter m . This polarization 
and Stokes parameters are slightly different from those of the incident beam; the latters are 
described by Eqs. (S21) with the polarization parameter m1 . We use both kinds of Stokes 
parameters in this paper, to conveniently characterize the polarization at different stages. For 
instance, the polarization of the incident wave is depicted on the Poincaré sphere in Fig. 2c and 
indicated schematically under the φ -axes in Figs. 3 and S2–S4. At the same time, discussing the 
τ -, χ -, and σ -contributions to optical momenta and forces, we imply the Stokes parameters of 
the evanescent wave. 

Equations (S18)–(S20) show the presence of different kinds of optical momenta in the 
evanescent wave. The first one is the longitudinal τ -dependent canonical momentum density 
Pz
can , proportional to the wavevector component kz  [shown in the cyan frames in (S18)]. As 

kz > k =ω / c , this momentum density exceeds    ω / c  per photon. Therefore, the canonical 
momentum in an evanescent wave produces anomalously-high radiation pressure, which has 
been experimentally measured using light-atom interactions [22,14]. Second, the evanescent 
wave exhibits the spin momentum, which has a σ -dependent component 

  
Py

spin , perpendicular to 
both the propagation and decay directions of the wave [shown in the magenta frames in (S19)]. 
This helicity-dependent transverse momentum is the main subject of our work. Finally, Eq. (S20) 
shows that the imaginary Poynting vector also has a transverse y -directed component 

 
ImPy  
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[shown in the light magenta frames], which is proportional to the second Stokes parameter χ . 
As we show below (Section 2), this component also contributes to the weak transverse force on 
matter probes [7].  

Note that the longitudinal component of the spin momentum in Eq. (S19), Pz
spin , produces 

only a weak τ -dependent (i.e., φ -even) correction to the strong radiation-pressure force from 
the canonical momentum, and, hence, can be ignored. Furthermore, its magnitude has a 
smallness of ∝κ 2  when  κ  k . This longitudinal spin momentum is associated with another 
intriguing phenomenon: the transverse helicity-independent spin in evanescent waves 
[7,27,S5,S9–S13]. Similarly, the vertical component of the imaginary Poynting vector in 
Eq. (S20),  Px , produces only a weak τ -dependent correction to the strong vertical gradient 
force. 
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2. Calculations of optical forces and comparison with the experiment 

Having the evanescent field (S13)–(S17) and its momentum properties (S18)–(S23), we 
now calculate how these properties reveal themselves in interactions with matter probes 
immersed in the evanescent wave. The momentum transfer in light-matter interactions produces 
optical forces, which we calculate below. 

2.1. Calculations of the forces using the spherical-particle model 

We first consider the simplest analytical model of a small spherical isotropic dielectric 
particle of radius  r λ  and permittivity ε  [7,8]. In the lowest orders in  kr1 , such a particle 
is characterized by the complex electric polarizability νe : 

 Reνe = r
3 ε −1
ε + 2

,     Imνe =
2
3
k 3 Reνe( )2 , (S24) 

where the small imaginary part,  Imνe  Reνe , originates from the radiation-friction effects 
[24,S14,S15]. The lowest-order magnetic polarizability of the particle is [S14] 

 νm = k2r5 ε −1
30

, (S25) 

so that  Reνm  Reνe  and  Imνm  0 . 
In the leading-order electric-dipole approximation, the optical force is given by 

[7,8,21,S4,S6,S15,S16]: 

 F ∝Re νe( )∇We +
1
2
ω Im νe( )P can

Fpress

. (S26) 

Here the first term is the gradient force F grad  involving the electric energy density We = E
2 / 4 , 

and the second term is the radiation pressure force F press  proportional to the canonical 
momentum density P can . In the evanescent wave under consideration, the gradient force is 
directed along the vertical x -axis of the exponential decay, i.e., along the normal to the interface, 
while the radiation pressure is associated with the longitudinal z -direction of propagation and 
the canonical momentum density (S18). 

Calculating the next-order correction to the electric-dipole force (S26), one can obtain a 
weak force, which originates from the dipole-dipole interaction between the electric and 
magnetic polarizabilities of the particle [7,8,24,S6]: 

 
 

δF ∝−ωk
3

3
Re νeνm

*( )P can + Re νeνm
*( )P spin

Fspin
+ Im νeνm

*( )ImP
FIm

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

. (S27) 

The first term, proportional to P can , is only a small correction to the radiation-pressure force in 
Eq. (S26), and it can be ignored in our considerations. The second term, proportional to P spin , is 
the weak spin force F spin  associated with the Belinfante spin momentum. It is mostly transverse, 
i.e., y -directed in the evanescent wave with  κ  kz . Note that for dielectric particles 

Re νeνm
*( ) > 0 , and this force is negative, i.e., antiparallel to the spin-momentum direction. For 

non-absorbing dielectric particles, k 3 Re νeνm
*( ) ∝ k5r8  and Imνe ∝ k 3r6 , so that 

 F
spin / F press ∝ kr( )2 1 . Finally, the third term in (S27) is proportional to the imaginary 
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Poynting vector  ImP , and it also has the transverse y -directed component. For small particles 
with  kr1 , this force is much weaker than the spin-momentum force,  F

Im  F spin , because 

k 3 Im νeνm
*( ) ∝ k8r11 . However for larger objects with kr ~1  (which is the case in our 

experiment), the force F Im  also becomes noticeable. 
In this work, we measure: (i) the longitudinal radiation-pressure force Fz = Fz

press ∝ Pz
can  

and (ii) the weak transverse force Fy , which includes the spin force Fy
spin ∝ Py

spin  and the 

imaginary-Poynting contribution  Fy
Im ∝ ImPy . Importantly, using the polarization dependences 

of these forces in the evanescent wave, Eqs. (S18)–(S23), we can clearly separate the above 
contributions even if they are mixed by a complex-shape probe (such as a cantilever). Namely, 
all the longitudinal (and also vertical) forces in Eqs. (S26) and (S27) depend only on the first 
Stokes parameter τ , and therefore are even functions of the QWP angle φ . In turn, the 
transverse spin force and transverse imaginary-Poynting contribution are proportional to the 
third Stokes parameter σ  (helicity) and the second Stokes parameter χ , respectively. 
Therefore, both these parts of the transverse force are odd functions of the QWP angle φ . Thus, 
the φ -even and φ -odd parts of the total force F φ( )  measured by the cantilever, 

F even φ( ) ≡ F φ( ) + F −φ( )⎡⎣ ⎤⎦ / 2  and F odd φ( ) ≡ F φ( )− F −φ( )⎡⎣ ⎤⎦ / 2 , correspond to the longitudinal 
and transverse forces in the particle model. 

In spite of its highly simplified character, the spherical-particle model can be used to 
characterize optical forces measured by the complex-shape cantilever in our experiment. Here 
we have to deal with not-small particles kr ~1  (because the cantilever thickness d  is not small: 
kd ~1 ). Therefore we use exact Mie-particle calculations [7], which take into account higher-
order corrections to the electric and magnetic polarizabilities (S24) and (S25) but do not affect 
the general proportionality to the field momenta and the corresponding polarization parameters, 
Eqs. (S26) and (S27). The dielectric constant of the particle is set as that of the cantilever: 

  ε = n2 = 5.3 . To compare the particle model and cantilever measurements, we involve three 
fitting parameters. First, the radius of the particle, r , is the main free parameter of the model. It 
controls the ratio between the σ -dependent and χ -dependent contributions in the transverse 
force Fy . Second, since the weighting factors of the longitudinal and transverse forces mixed in 
the cantilever measurements depend on the shape effects, and also the total wave intensity is 
unknown, we introduce the scaling coefficients 

 K,⊥  between the calculated and measured 
quantities. As we are interested in the φ -dependences of the forces, we consider the difference 
between the maximum and minimum values of the longitudinal radiation-pressure force 
Fz
press φ( ) : 

 
 
max F even φ( )⎡⎣ ⎤⎦ − F 0( ){ }

measured
= K max Fz

press φ( )⎡⎣ ⎤⎦ − Fz
press 0( ){ }

calculated
, (S28) 

 F odd φ( ){ }measured = K⊥ Fy φ( ){ }calculated . (S29) 

The results of the comparison between the particle-model calculations and experimentally-
measured forces are shown in Fig. S2. Using the scaling relation (S28), the calculated 
longitudinal radiation-pressure force (S26), Fz

press φ( )− Fzpress 0( ) , is in very good agreement with 
the measured one, independently of the particle radius r . This is because the φ -dependence of 
this force is determined by the first Stokes parameter τ φ( ) , independently of r . At the same 

time, the φ -dependence of the calculated transverse force (S27), Fy φ( ) , depends on the radius 
and shows the best agreement with the experiment for  r  139 nm (i.e., comparable with the 
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cantilever thickness  d  100 nm). This corresponds to the value  kr  1.32 , for which both the 
spin contribution Fy

spin , proportional to σ φ( ) , and the imaginary-Poynting contribution Fy
Im , 

proportional to χ φ( ) , play a role. The perfect agreement between the polarization φ -
dependences of the experimentally-measured and calculated forces proves that the measured 
even and odd parts of the total cantilever force can indeed be associated with the longitudinal 
and transverse optical forces. In turn, these forces are determined by the canonical momentum 
Pz
can  and transverse Belinfante momentum Py

spin , together with the imaginary Poynting 

momentum  ImPy , in the evanescent wave. Such robust polarization dependences of different 
forces, independently of the probe shape, confirm that we deal with intrinsic field properties. 
This is in contrast to “extrinsic” spin-dependent transverse-force effects, which originate from 
the probe-interface interactions [28–30] or specific properties of the probe, such as chirality 
[S4,S17–S19]. Note that in the case of chiral probes even the usual dipole radiation-pressure and 
gradient forces become spin- and helicity-dependent [S4,S17,S20–S22]. 
 
 

 
Figure S2. Longitudinal (a) and transverse (b) optical forces in an evanescent wave, 
calculated for a spherical particle, Eqs. (S26) and (S27), and fitted to the even and 
odd parts of the experimentally-measured force on the cantilever. The fitting 
procedure includes the scaling (S28) and (S29) and the fitting of the particle radius. 

 
 

It is worth noticing that in the isotropic spherical-particle model, the longitudinal radiation-
pressure force has the same order of magnitude for the p- and s-polarizations of light (τ = 1  and 
τ = −1 ). In contrast, for a cantilever with a highly-anisotropic vertical shape, the radiation-
pressure force becomes very small for the horizontally s-polarized light. This difference between 
the particle and cantilever probes is not seen in our plots because we scale the variations of the 
radiation-pressure with respect to the s-polarized light (φ = 0 ), Eq. (S28). 

2.2. Numerical calculations of the forces for the cantilever 

For numerical simulations of the interaction between the evanescent optical field and the 
cantilever, we employ the Coupled Dipole Method (CDM) [S23,S24]. In this method, continuous 
matter objects are decomposed into cubic arrays of point polarizable dipoles (cells) coupled 
through the electromagnetic dipole interaction tensor. When exposed to an external field, each 
cell feels not only the incident field but also the field scattered by all the other cells in the 
structure. Algebraically, this results in a large set of linear equations whose solution yields the 
polarization of each cell. Our implementation of this method for the simulation of the mechanical 
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action of light is discussed elsewhere [S25], and we use the Quasi-Minimal Residual Method 
(QMR) [S26] with matrix-vector multiplication accelerated by fast Fourier transforms [S27]. 

The total (incident plus scattered) field outside the matter object is then given by the sum 
of the incident field with all of the radiating dipole fields. As the numerical lattice is refined, the 
total field converges to the continuum result. This approach lends itself well to structures of 
extreme geometry, such as the cantilever used in our experiment. Once the total field is known, 
the time-averaged optical force acting on each cell can be found by calculating the flux of the 
Maxwell stress tensor [S14,S24,S25,S28,S29]. 

In our simulations, the incident evanescent field is given by Eqs. (S13)–(S17) with the 
corresponding parameters of the experiment, while the cantilever is modelled as a dielectric 
cuboid with permittivity   ε = n2 = 5.3 . If not otherwise stated, we use the following geometric 
parameters of the cantilever: thickness d = 140 nm (obtained from the fitting procedure 
described below), width w = 1000 nm, and infinite vertical length l→∞ . Convergence of the 
model has been achieved by (i) refining the numerical lattice, (ii) increasing the vertical length l  
of the cantilever. The resulting model uses N ~ 2.5 ⋅106  cells and l = 500 nm (this value 
approximately equals to the triple decay length  3κ −1  450 nm, and further increase of l  
practically does not affect the simulation results). 

To characterize the y→−y  asymmetry of the real cantilever (Figs. 2b,d), which couples 
the longitudinal radiation pressure to the transverse direction, we rotate the ideal symmetric 
(cuboidal) cantilever in numerical simulations by a small angle  θ  0.08  (i.e., 4.7° ) with respect 
to the z -axis in the y, z( ) -plane, as shown in Fig. S3a. We numerically calculate the force 
F numeric φ( ) = F numeric φ( )n  directed along the normal n  to the cantilever surface, which mixes the 

weak transverse force Fy φ( )  and the radiation pressure Fz
press φ( )  contributions. Using two 

fitting parameters: (i) the cantilever thickness d  and (ii) its orientation angle θ , we fit the 
numerically-calculated force F numeric φ( )  to the measured force F measured φ( )  using only the 
common scaling factor (as the light intensity is unknown). With the values  θ  0.08  and d = 140
nm we achieve perfect agreement between the numerical simulations and experimental 
measurements, as shown in Fig. S3b.  

Next, we decompose the total calculated force F numeric φ( )  into three contributions, 
proportional to the polarization Stokes parameters τ , χ , and σ  (the small polarization-
independent contribution is ignored). First, the τ -dependent contribution is associated with the 
radiation-pressure force F press  (S26) proportional to the τ -dependent canonical-momentum Pz

can  
(S18). This force is an even function of the QWP angle φ , and it is shown in Fig. S3c. Second, 
the χ - and σ -dependent contributions constitute the weak transverse force (S27) [7]; their odd 
φ -dependences are shown in Fig. S3d. The helicity-dependent σ -contribution is associated with 
the transverse Belinfante spin momentum in the evanescent wave: Fy

spin∝ Py
spin  (Fig. 1). At the 

same time, the χ -dependent part is the transverse force associated with the imaginary Poynting 
vector:  Fy

Im ∝ ImPy . It is also clearly present, both in simulations and measurements because 
the cantilever thickness is not small: kd ~1 . The presence of the χ -dependent contribution to 
the transverse force allows to discriminate between the “intrinsic” transverse force predicted in 
[7,8], which originates from the inherent field properties, and “extrinsic” spin-dependent 
transverse forces which arise from the coupling between the probe and an interface [28–30]. 
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Figure S3. (a) Schematics of the mixing of the longitudinal radiation pressure with 
the transverse force in the field interaction with an y→−y  asymmetric cantilever. 
Left: an asymmetric cantilever used in the experiment (see Fig. 2b). Right: 
symmetric but slightly rotated cantilever used in numerical simulations. (b) The total 
force F φ( )  acting in the normal direction to the cantilever. Numerical simulations 
perfectly match the experimental measurement using the two fitting parameters: the 
cantilever thickness d  and its orientation angle θ . (c,d) The φ -even (c) and φ -odd 
(d) parts of the total force F φ( )  are associated with the longitudinal radiation 
pressure and weak transverse force, as shown in Fig. S2. The σ -dependent and χ -
dependent contributions to the transverse force, associated with the Belinfante spin 
momentum and imaginary Poynting vector are separately shown in (d). 

 
 

To verify that the τ -dependent force in the experiment is indeed caused by the y→−y  
asymmetry of the cantilever, we note that it vanishes in numerical simulations with a perfectly-
aligned symmetric cantilever: θ = 0 . To check the correspondence between the model 
asymmetry parameter θ  and the y→−y  asymmetry of the real cantilever, we also performed 
measurements with the same cantilever rotated by 180°  about its vertical x -axis, which 
corresponds to the y→−y  and  transformations. Simultaneously, we changed the sign of 
θ  in the numerical simulations, see Fig. S4a. The results, shown in Fig. S4, clearly demonstrate 
that the above transformations flip the even (radiation-pressure) part of the force, while leaving 
the odd (transverse) part of the force essentially unchanged. Some imperfections of these 
transformations between Fig. S3 and Fig. S4 are explained by the fact that these correspond to 
two independent experiments with re-assembling of the setup and also by the z→−z  asymmetry 
of the real cantilever (Fig. 2b). These factors are taken into account by a new fitting procedure, 
which resulted in the value   θ  −0.1  (i.e., −5.6° ) for the “flipped” experiment in Fig. S4. 
 

z→−z
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Figure S4. Same as in Fig. S3 but for the “flipped” cantilever: rotated by 180°  about 
the x -axis in the experiment and oriented at the negative angle −θ  in numerical 
simulations (cf. Fig. S3a and Fig. S4a). The flip of the φ -even (radiation-pressure) 
part of the force proves that it is caused by the y→−y  asymmetry of the cantilever. 
At the same time the φ -odd (transverse) force remains almost unchanged, which 
proves that this is a robust field phenomenon. 

 
 

Finally, using numerical simulations, we also investigated the dependences of the 
longitudinal and transverse forces on the area of the cantilever. This was done by calculating the 
forces at fixed QWP angle φ  and varying the cantilever width w . To save simulation time, we 
modelled a thin cantilever with d = 50 nm, for which the imaginary-Poynting contribution to the 
transverse force is negligible. The results are shown in Fig. S5. One can see that the φ -even 
force associated with the longitudinal radiation pressure grows near-linearly with w , which 
reflects its usual radiation-pressure nature related to the planar surface of the cantilever. In 
contrast to this, the φ -odd force, associated with the transverse Belinfante spin momentum, 
approximately saturates after w  reaches few wavelengths. This means that the helicity-
dependent force associated with the Belinfante spin momentum is not a pressure force, but 
rather an edge effect related to wave diffraction on the vertical edges of the cantilever. Indeed, 
one can show analytically that the transverse force vanishes for an infinite lamina without edges 
aligned with the x, z( ) -plane: Fy

spin = 0 . This is in extreme contrast to the infinite radiation-

pressure force for the same lamina in the y, z( ) -plane: Fz
press = ∞ . In other words, this proves that 

the Belinfante spin momentum is indeed “virtual”, and it does not exert the usual radiation 
pressure on planar objects. Nonetheless, it can be detected (as we do this in the present work) 
due to its weak interaction with the edges of finite-size probes. 
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Figure S5. Numerically-calculated φ -even (a) and φ -odd (b) parts of the total force 
acting on the cantilever versus the cantilever width w . The linear growth of the even 
force reveals its radiation-pressure nature (proportional to the area of the cantilever 
surface). In contrast, the saturation of the odd (transverse) spin-dependent force 
indicates that it is produced by the field diffraction on the vertical edges of the 
cantilever. 
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3. Experimental measurements of optical forces using a nano-cantilever 

Here we describe details of the experimental setup and measurements. In addition to the 
force measurements described in the main text and in Section 2 above, we performed a number 
of extra measurements of the field and cantilever properties in order to determine their 
parameters and control the system. 

3.1. Characterization of the laser field 

The experimental setup is shown in Figure 2a. Two laser beams, orthogonal to each other, 
undergo a total internal reflection in a high numerical aperture (NA) objective lens and produce 
concentric evanescent areas above the glass cover slip of the objective (Fig. S6). The red laser 1 
(Cube from Coherent Inc.) operates with a wavelength λ = 660nm and power 50 mW. This 
radiation, with the polarization controlled using the QWP, is the source of the evanescent field 
under consideration. The green laser 2 (Versa-lase from Vortran Laser Technology Inc.) has a 
wavelength ′λ = 561nm and power 50 mW; its radiation is p-polarized at the glass-air interface 
where the evanescent field is formed. This radiation is used for measuring the cantilever 
position. 

The evolution of the laser beams in the high-NA objective and generation of the 
evanescent wave is illustrated in Figure S6 (the laser-1 beam is shown). The input off-axial laser 
beam is focused in the back focal plane of the high-NA objective lens. The off-axis refraction at 
the objective lens forms a collimated beam propagating at the refraction angle α , which depends 
on the displacement of the incident beam. At a certain off-axis distance, the condition for total 
internal reflection at the cover-slip surface is reached (for refractive index n1 = 1.5 , the critical 
angle of incidence is α c = 41.8° ), and the evanescent field is generated in the air above the 
surface. 
 
 

 
Figure S6. Formation of the evanescent field by the total internal reflection of the 
off-axis laser-1 beam in the high-NA objective covered by a glass slip. The laser-2 
beam forms a similar concentric evanescent field in the orthogonal x, y( ) -plane. 
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In this technique, we cannot measure the angle of incidence α  directly, but it can be 
determined from the exponential decay length κ −1  of the evanescent wave (i.e., the x -distance 
above the glass surface where the field amplitude drops by a factor of e−1 ). We determined the 
decay length by measuring the displacement of the cantilever by the p-polarized laser 1 (which is 
proportional to the scattered intensity of the laser-1 radiation) as the cantilever tip is moved away 
from the surface, Fig. S7. Fitting the data with an exponential function results in a decay length 
κ −1 = 150 ± 4( ) nm. According to Eqs. (S14) and (S15), this corresponds to the angle of 
incidence α = 54.6° ± 0.5° . 
 
 

 
Figure S7. Measurement of the exponential decay of the evanescent-wave intensity 
(laser 1 here) above the glass surface. 

 
 

 

Figure S8. (a) The measured s  and p  components of the incident-beam polarization 
after the QWP and mirror. (b) Right-hand and left-hand circular polarizations are 
obtained for the QWP angles φ = ±45° . 

 
 

The polarization state of the laser-1 field is controlled by the rotating quarter waveplate 
(QWP) (Figs. 2a and S1). Its orientation is varied in the range of angles −90° ≤φ ≤ 90° . Here 
φ = 0°  corresponds to the linear s-polarization of the beam. Figure S8 shows the measured 
polarizations of the beam after passing the QWP and mirror, just before entering the objective 
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lens. In particular, for φ = ±45°  the polarization becomes circular with good accuracy [ m1 = ∓i  
in Eq. (S13)]. The corresponding polarizations in the evanescent wave are slightly elliptical, 
which is taken into account in Eqs. (S16)–(S22).  
 

3.2. Optical detection of the cantilever position 

The cantilever, interacting with the evanescent laser-1 and laser-2 fields, is placed 30 nm 
above the cover-slip surface (Fig. 2a). It is perpendicular to the surface with an accuracy of 1º 
and is adjusted to be in the centre of the Gaussian-like area of the evanescent fields (diameter 
~ 50µm ) within ± 2µm . The cantilever deflection is measured using the scattered evanescent 
wave (SEW) detection system [20] involving the laser-2 radiation. Note that the laser-2 field 
does not interfere with the laser-1 radiation and does not affect the cantilever interaction with the 
probed laser-1 field. Furthermore, the reflected laser-2 beam is the only signal reaching the 
quadrant photodetector, because two sets of filters are used to stop the reflected laser-1 beam 
(Fig. 2a). We have checked that the cross-talk between the two lasers at the detector is smaller 
than 0.1%. 

We monitor the distance between the cantilever tip and the cover-slip surface using the 
total intensity of the scattered laser-2 light (the SUM signal produced by the photodetector). This 
distance is kept constant during the measurements by using a negative feedback loop. We adjust 
the bending direction of the cantilever (i.e., normal to its plane) to be perpendicular to the 
propagation x, z( )  plane of the laser-1 beam: θ = 0  (Fig. 2d). However, the asymmetric shape of 
the cantilever (Fig. 2b) introduces the y→−y  asymmetry to the system, which results in a 
nonzero radiation-pressure force in the transverse y  direction. 

3.3. Characterization of the nano-cantilever 

The optical forces investigated in this work were detected using different types of 
cantilevers developed in collaboration with NuNano ltd. The cantilevers were produced from 
extra low-stress Si3N4 film on a Si substrate. The thickness of the film determined the thickness 
of the cantilever and varied from 50 nm to 200 nm. The length of the cantilevers was adjusted to 
obtain similar stiffness ~10−5 N/m. The width of the cantilever was kept constant, w = 1000 nm. 
The force magnitude is determined from the cantilever deflection once the stiffness of the 
cantilever is known. We determined the stiffness (spring constant) of the cantilever using the 
following two methods.  

(i) We measured the thermal power spectral density (PSD) of the cantilever, ( )S f  (where 
f  is the frequency), see Fig. S9 for an example of one such measurement. The measured PSD 

was fitted using the equation for the over-damped harmonic oscillator [S30]:  

 S f( ) = kBT
bπ 2 fc

2 + f 2( ) , (S30) 

where kB  is the Boltzmann constant, T is the absolute temperature, fc = γ / 2πb( )  is the corner 
frequency of the PSD, and b  is the damping term. The resulting spring constant for the case 
shown in Fig. S9 is γ = 2.1± 0.2( ) ⋅10−5 N/m. 

(ii) By using the method based on the equipartition theorem [S31], the spring constant can 
be obtained once the mean square displacement 2x  of the thermally activated cantilever is 
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measured. In this case, the spring constant is γ = kBT / x
2 . For the cantilever used in Fig. S9, 

this yields the spring constant  γ = 1.8± 0.2( ) ⋅10−5 N/m.  
Thus, the two methods provide very similar results, so that we are confident that the spring 

constant can be determined within 15% of its actual value. 
 
 

 
Figure S9. Experimentally-measured PSD of the thermally driven cantilever and its 
fitting curve obtained using the over-damped harmonic oscillator model (S30). 

 

3.4. Optical force measurements 

Knowing the evanescent field properties, as well as the position and the stiffness of the 
cantilever, we can measure the desired optical forces from the cantilever deflections caused by 
the laser-1 field.  

The intensity of the laser-1 beam is “on-off” modulated in time (TTL modulation) with a 
frequency of 1 Hz (see Fig. 3a). The deflection of the cantilever, Δ , as well as the modulation 
signal are recorded at different QWP angles φ , from –90º to +90º in steps of 10º. Thus, one 
complete set of measurements consists of 19 points, each measuring the position of the cantilever 
for 30 s. We did not notice any significant drift in the instrument during the 15 min necessary to 
complete a set of measurements.  

The data are collected at 64 KHz but decimated by a factor of 100 to remove any cross 
correlation in the measurements. For each angle of the QWP orientation, the recorded trace is 
split into two sets of positions: one measured when the laser is “on” and the other one measured 
when the laser is “off”. Two distributions of positions are generated with their relative mean and 
the standard error of the mean, as shown in Fig. 3a. The difference of the two mean values is the 
total displacement Δ φ( )  caused by the evanescent wave from laser 1. The deflection is finally 
multiplied by the spring constant to obtain the optical force normal to the cantilever plane:
F φ( ) = γ Δ φ( ) . To analyse the effects caused by the y→−y  asymmetry of the cantilever, the 
measurements were repeated with the cantilever rotated by 180° , as shown in Figs. S3 and S4. 
To remove inessential force contributions, which do not vary with the QWP orientation (e.g., the 
gradient force emerging because the cantilever position is not exactly in the centre of the 
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evanescent area, the possible mechanical action of the laser-2 radiation, etc.), the final data are 
offset to zero when the beam is s-polarized, i.e., when φ = 0 . 

The results of the measurements of the optical force F φ( )  are depicted in Fig. 3b. Most 
importantly, the dependence F φ( )  is not symmetric with respect to φ → −φ . This allows us to 
separate the φ -even and φ -odd components of the total force, which correspond to the 
longitudinal radiation-pressure effects and transverse forces. The measurement data for the 
retrieved forces are shown in Figs. 3c,d and S3, S4. 

Thus, in our experiment and calculations, we have carefully traced and verified at all stages 
the appearance of the longitudinal and transverse optical forces. This allows us to 
unambiguously associate these measured forces with the longitudinal canonical momentum Pz

can , 

Eqs. (S6) and (S18), transverse Belinfante spin momentum Py
spin , Eqs. (S7) and (S19), and the 

transverse imaginary Poynting momentum  ImPy , Eq. (S20), in the evanescent wave [7]. 

3.5. Additional controls 

We note that the above measurements required an extremely low-noise environment 
without air currents around the probe. Therefore, air conditioning was switched off and a double 
enclosure was constructed around the LMFM unit. 

We also checked that the thermally-induced deflection due to asymmetric illumination of 
the cantilever was negligible. The measurement protocol described above was repeated with the 
cantilever rotated by 180°, and it provided the same results within the experimental accuracy. 
These results confirm earlier findings [S32,S33] that the optical pressure on the cantilever is 
predominant over the photothermal effect. 

Finally, we estimated the longitudinal torque Tz  on the cantilever produced by the spin 
angular momentum Sz  of the elliptically-polarized evanescent wave [7]. In principle, such 
torques could also cause a deflection proportional to the helicity of light. The ratio between the 
displacements due to the linear force Fy

spin  and the torque Tz  can be estimated as [S34] 

 
Δ( )Fy
Δ( )Tz

=
2Fy

spin

3Tz
l , (S31) 

where l  is the vertical length of the cantilever. A very conservative approximation, where Py
spin  

and Sz  are used in place of Fy
spin  and Tz , yields the ratio (S31) of ~350, confirming the 

negligible effect of the torque.  
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