
nature photonics

https://doi.org/10.1038/s41566-025-01683-4Article

Chirality-induced quantum non-reciprocity

In the format provided by the 
authors and unedited

Supplementary information

https://doi.org/10.1038/s41566-025-01683-4


 
 

1 
 

Supplementary Information for 
Chirality-induced quantum nonreciprocity  

Zimo Zhang†, Zhongxiao Xu†, Ran Huang†, Xingda Lu, Fengbo Zhang, Donghao Li, Şahin K. 
Özdemir, Franco Nori, Han Bao, Yanhong Xiao, Bing Chen*, Hui Jing*, and Heng Shen* 

†These authors contributed equally to this work. 
*e-mail: hengshen@nbi.dk (H.S.); jinghui@hunnu.edu.cn (H.J.); bingchenphysics@hfut.edu.cn (B.C.) 

 

S.1 Effective Hamiltonian of our non-Hermitian optical system 

Following the conventional notion of spin statesS1, S2, we use the slow-varying atomic density 

operator 𝜎"!"
# = |𝜇⟩#⟨𝜐| to describe the 𝑗-th atom spin state. In particular, the atomic operator at 

position 𝑧  in the rotating frame can be defined by locally averaging over a transverse slice 

containing many atoms 𝜎"!"(𝑧, 𝑡) = lim#$→&
'

(#$
∑ 𝜎"!"

)
$*$!*$+△$ (𝑧, 𝑡) with 𝜎"!"

) (𝑧, 𝑡) = |𝜇⟩)⟨𝜐|𝑒
-./"#0 

and transition frequency 𝜔!$. In fact, since the optical coherences 𝜎"%& and 𝜎"%' decay much faster 

than the ground-state coherences 𝜎"&', we can assume that they follow the slow oscillations in the 

ground-state coherences. Consequently, the atomic ground state coherence 𝜎"&' , the so-called 

atomic spin wave, plays an essential role in the dissipative coupling. Regarding the conception of 

atomic spin wave, the energy-level structure of the atoms in the ensemble consists of the ground 

states |1⟩ and |2⟩, and the excited state |3⟩ (see Fig.1 in the main text). A transition |1⟩ → |3⟩ (or 

|2⟩ → |3⟩) is coupled by the classical control laser, and the forward-scattered Stokes photon comes 

from the transition |3⟩ → |2⟩ (or |3⟩ → |1⟩), which is co-propagating with the control beam. Such 

scattering events are uniquely correlated with the excitation of the collective atomic mode, and 

this excitations in atomic ensembles can be viewed as waves of excited spinsS3. 

The effective Hamiltonian of the two atomic spin waves (atomic ground state coherence) in 

the two channels can be described by the following HamiltonianS4:  

                                           H = 1
|Δ(| − 𝑖𝛾&' 𝑖𝛤

𝑖𝛤 −|Δ(| − 𝑖𝛾&'
7,                                        (S.1) 

where Γ and 𝛾&'	are the coupling rate and the decay rate of the two spin waves, respectively. The 

off-diagonal coupling term is imaginary due to the random nature of the coherence transfer 

between the two channels via ballistic motion and wall bouncing of atoms. The eigenvalues of this 

anti-parity-time symmetric Hamiltonian correspond to the two eigen-modes of electromagnetically 
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induced transparency: 𝜔± = −𝑖𝛾&' ±;Δ(' − 𝛤' , where the real and imaginary parts are the 

centres of electromagnetically induced transparency and corresponding linewidths, respectively. 

Here, 𝛾&' and |Δ(| are the common decay rate and half the frequency difference of the two spin 

waves, respectively. Anti-parity-time symmetry breaking occurs at the exceptional point, 	|Δ(| =

𝛤, where the two supermodes perfectly overlap. In the symmetry-unbroken regime (|Δ(| < 𝛤), the 

two centres coincide, but with different linewidths. This system enters the symmetry-breaking 

regime for |Δ(| > 𝛤, and the resonances bifurcate, resembling a passively coupled system. Here, 

we have: 

                                                ∆(= (𝛿&% − 𝜔&%) − (𝛿'% − 𝜔'%) 

                                                    = 𝜔'% − 𝜔&% + (𝑚'𝑔𝜇𝐵 −𝑚&𝑔𝜇𝐵) 

                                                    = 𝜔'% − 𝜔&% + 2𝑔𝜇𝐵                                                              (S.2) 

where 𝐵 is the magnetic induction intensity, 𝑔 is the Landég-factor, and 𝜇 is the total magnetic 

moment. Here, 𝛿&% (𝛿'%) is the frequency of the transition |1⟩ → |3⟩ (|2⟩ → |3⟩), 𝜔&% (𝜔'%) is the 

frequency of the light coupled to |1⟩ → |3⟩ (|2⟩ → |3⟩), and 𝑚& = −1 (𝑚' = 1) is the magnetic 

quantum number of |1⟩  ( |2⟩ ). We note that this detuning ∆(  can be tuned by the optical 

frequencies; thus, the magnetic induction intensity 𝐵 does not play any direct role in creating 

quantum nonreciprocity in our study. 

If |Δ(| is large enough, the phases of the two spin waves are not synchronized, resulting in a 

reduced efficiency in mutual coherence stimulation between the two channels, as reported in Ref. 

[S5]. Consequently, the two noise spectra are offset away from the Larmor frequency and become 

dispersive-like, accompanied by a drop of the contrast and broadening of the narrow peak. These 

effects together reduce the Gaussian discord. When |Δ(| is smaller than 𝛤, the system is in the 

unbroken regime, and the frequencies of the two spin waves are pulled together, giving rise to a 

relatively larger discord generated by the operation of the non-Hermitian parametric-amplifier. 

S.2 Modelling the coupling between the two channels in the Rubidium Vapor 

We consider two channels which are dissipatively coupled to each other via atoms in thermal 

motion. In the forward case (Fig. S1a), the atoms “see” the same chirality for the beams having 

the same polarization and propagating in the same direction in CH1 and CH2. In this case, one 

atomic spin excitation 𝐽G*  ( |2⟩ → |1⟩ ) in CH1 is accompanied by a lower sideband photon 

annihilation (|2⟩ → |3⟩) locally, represented as 𝐻I& ∝ 𝑎"&𝐽G* + ℎ. 𝑐. This excitation may diffuse to  
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Fig. S1| Propagation-direction-dependent interactions between two channels. a, Schematics of the three-
level Λ energy level in each channel. The ground states |1⟩ and |2⟩ are Zeeman sublevels of |𝐹 = 2⟩, and the 
excited state |3⟩ is |𝐹′ = 1⟩ of the 87Rb D1 line. An effective linear dissipative beam-splitter (DBS) interaction 
is achieved when the two light beams with same right circular polarizations propagate along the same direction. 
b, A non-Hermitian parametric-amplifier (NHPA) coupling is realized by reversing the input direction of the 
light in CH2. The lower panels of a and b show the electromagnetically induced transparency (EIT) response 
amplitudes in CH1 (orange circle) and CH2 (blue square) when the control power in CH2 is varied. For the 
dissipative beam-splitter coupling, the amplitude in CH1 decreases with increasing amplitude in CH2. For the 
non-Hermitian parametric-amplifier coupling, both of amplitudes in CH1 and CH2 increase. 

the dark region outside the beam into the reservoir resulting in dissipation or to CH2 where it 

interacts with a light of the same polarization. In the latter case, the photon in the lower sideband 

(|3⟩ → |2⟩) is forward scattered along with the annihilation of the same spin excitation 𝐽G (|1⟩ →

|2⟩), described by 𝐻I' ∝ 𝑎"'
*𝐽G + ℎ. 𝑐.  

Thanks to the collective effect buildup along the propagation direction of light, this two-step 

interaction results in a linear dissipative beam-splitter (DBS) coupling between the two channels, 

which is dictated by 𝐻I+ ∝ 𝑎&𝑎"'
* − 𝑎"&

*𝑎', and hence no quantum correlation emerges. 

In contrast, in the backward case (Fig. S1b), the atoms “see” the opposite chirality for the 

beams having the same polarization but propagating in opposite directions in CH1 and CH2. In 

this case, a photon in the lower sideband (|3⟩ → |2⟩) is scattered in CH1 along with the annihilation 

of a spin excitation 𝐽G (|1⟩ → |2⟩) captured by the Hamiltonian 𝐻I& ∝ 𝑎"&𝐽G* + ℎ. 𝑐. When it diffuses 

to CH2, in the reversed Λ-type EIT polarization configuration, this annihilation of the spin 

excitation 𝐽G (|1⟩ → |2⟩) in CH1 is equivalent to the creation of a spin excitation  𝑆G* (|1⟩ → |2⟩) in 
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CH2. Thus, in CH2 the control beam locally interacts with atoms, which results in the annihilation 

of a spin excitation 𝑆G accompanied by the upper-sideband photon creation (|3⟩ → |1⟩) in CH2, as 

described by 𝐻I', ∝ 𝑎"'
*𝑆G + ℎ. 𝑐. = 𝑎"'

*𝐽G* + ℎ. 𝑐.  

Different from the forward case, this two-step interaction with collective dissipative coupling 

produces a nonlinear interaction, 𝐻I- ∝ 𝑎"&
*𝑎"'

* − 𝑎"&𝑎"' , leading to the buildup of quantum 

correlations between the light (denoted by 𝑎"&
* and 𝑎"'

*) in the channels. More details can be found 

in the following derivation. 

In the forward case, by adiabatically eliminating the excited state, one can obtain the 

following coupled equations of two collective spin-wave excitations (or in short, spin waves) 

associated with the ground-state coherences, 𝜌&'
(&) (in CH1) and 𝜌&'

(&) (in CH2): 

                                       Q
𝜌̇&'
(&) = −𝛾&', 𝜌&'

(&) + 𝛤0𝜌&'
(') − S𝛺0

(&)∗𝛺2
(&)U 𝛾'%V

𝜌̇&'
(') = −𝛾&', 𝜌&'

(') + 𝛤0𝜌&'
(&) − S𝛺0

(')∗𝛺2
(')U 𝛾'%V

  .                                (S.3) 

Here, 𝛾&',  is the total effective decay rate of the ground-state coherence, 𝛾'% is the decay rate of the 

coherence between states |1⟩ and |2⟩, 𝛤0 is the coupling rate of the ground-state coherences in the 

two channels, 𝛺0
(3) and 𝛺2

(3) are the resonance frequencies of the transition |1⟩ → |3⟩ and |2⟩ →

|3⟩ in the channel 𝑛, respectively. For 𝜌̇&'
(&) = 𝜌̇&'

(') = 0, the steady-state solutions are: 

                                           Q
𝜌&'
(&) = 𝐵S−𝛾&', 𝛺0

(&)∗𝛺2
(&) − 𝛤0𝛺0

(')∗𝛺2
(')U

𝜌&'
(') = 𝐵S−𝛾&', 𝛺0

(')∗𝛺2
(') − 𝛤0𝛺0

(&)∗𝛺2
(&)U

  ,                                    (S.4) 

where 𝐵 = 1 [(𝛾&',' − 𝛤0')𝛾'%]⁄ . The coherence 𝜌%' corresponding to the detected signal can be 

written as: 𝜌%'
(4) = S𝑖𝛺0

(4)𝜌&'
(4) + 𝑖𝛺2

(4)𝜌''
(4)U 𝛾%'V , 𝑑𝐸(4) 𝑑𝑧⁄ = 𝑖𝑘_𝜒(4)𝐸(4) 2⁄ = 𝑖𝑘_𝑁𝜇(𝜌%'

(4) 2𝑉𝜖(V , 

where 𝜖( and 𝜇( are the vacuum permittivity and permeability, respectively, 𝑘_ is the average wave 

vector, 𝑁 is the number of atoms, 𝑉 is the interaction volume, and 𝜒(4) is the atomic polarizability 

in channel 𝑖. Then, the coupling equations for the probe signals (i.e., the particular vacuum mode 

or the newly generated quantum signal) in the two channels are: 

                             d

56(")

57
= 8

9$%
e−𝛺2

(&)S1 − 𝐵𝛺0
(&)∗𝛺0

(&)𝛾&', U + 𝛺2
(')𝐵𝛤0𝛺0

(&)𝛺0
(')∗f

56($)

57
= 8

9$%
e−𝛺2

(')S1 − 𝐵𝛺0
(')∗𝛺0

(')𝛾&', U + 𝛺2
(&)𝐵𝛤0𝛺0

(')𝛺0
(&)∗f

  ,                   (S.5) 
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with 𝐴 = h𝑁𝑐𝑘_𝜇(i	 2𝑉𝜖(⁄ , and the light speed 𝑐 in the vacuum. Since the power of the control 

light is much greater than that of the probe signals, i.e., 𝜌'' ≈ 1, the coupling equations is: 

                                                 k𝑑𝐸
(&) 𝑑𝑡⁄ = −𝛾,,𝐸(&) + 𝛤0,,𝐸(')

𝑑𝐸(') 𝑑𝑡⁄ = −𝛾,,𝐸(') + 𝛤0,,∗𝐸(&)
  ,                                         (S.6) 

with 𝛾,, = 𝐴𝜇(S1 − 𝐵𝛺0
(4)∗𝛺0

(4)𝛾&', U/𝛾'%, 𝛤0,, = 𝐴𝜇(𝐵𝛤0𝛺0
(&)𝛺2

(')∗/𝛾'%. Therefore, the effective 

interaction Hamiltonian in the forward case can be written as, with 𝑔 = −𝑖𝛤,,∗: 

                                                       𝐻I+ ∝ ℏ(𝑔𝑎&𝑎'
ϯ − 𝑔∗𝑎&

ϯ𝑎').                                                 (S.7) 

In the backward case, similar to the derivation in the forward case, the steady-state solutions 

of the ground state coherence are:  

                                            Q
𝜌&'
(&) = 𝐵S−𝛾&', 𝛺0

(&)∗𝛺2
(&) − 𝛤0𝛺2

(')∗𝛺0
(')U

𝜌&'
(') = 𝐵S−𝛾&', 𝛺2

(')∗𝛺0
(') − 𝛤0𝛺0

(&)∗𝛺2
(&)U

  .                                    (S.8) 

Note that, the probe signal in CH1 is still coupling to 𝜌'%, but the probe signal in CH2 is coupling 

to 𝜌&%:	𝜌%'
(&) = S𝑖𝛺0

(&)𝜌&'
(&) + 𝑖𝛺2

(&)𝜌''
(&)U 𝛾%'V , 𝜌&%

(') = S−𝑖𝛺0
(')∗𝜌&'

(') − 𝑖𝛺2
(')∗𝜌&&

(')U 𝛾%'V . Thus, the 

coupling equations for the probe signals in the two channels are: 

                                                k 𝑑𝐸
(&) 𝑑𝑡⁄ = −𝛾,,𝐸(&) + 𝛤0,,𝐸(')∗

𝑑𝐸(')∗ 𝑑𝑡⁄ = −𝛾,,𝐸(')∗ + 𝛤0,,∗𝐸(&)
  .                                       (S.9) 

The effective interaction Hamiltonian in the backward case is given by: 

                                                       𝐻I- ∝ ℏ(𝑔𝑎&
ϯ𝑎'

ϯ − 𝑔∗𝑎&𝑎').                                               (S.10) 

According to the multi-region modelS5, S6, we analyze the dynamics of the two-channel 

coupling by spin wave mixing, where the region of the atomic spin evolution is divided into three, 

labelled as dark (outside of the laser beams), bright 1 (CH1) and bright 2 (CH2). Associated spin 

states are denoted as 𝜎"((), 𝜎"(&) and 𝜎"('), respectively. In the dark region, there is no light field, 

whereas in the bright regions, light fields with beam diameter of d are present. The time evolution 

of the system for these three regions is given by the coupled Heisenberg-Langevin equations: 

𝜎"̇(() = − 4
ℏ
p𝐻<=>( , 𝜎"(()r − 𝛤?@A

(()𝜎"(() + 𝑆(() − (𝑘(' + 𝑘(&)𝜎"(() + 𝑘(&𝜎"(&) + 𝑘('𝜎"(') + 𝔉((), (S.11) 

𝜎"̇(&) = − 4
ℏ
p𝐻<=>& , 𝜎"(&)r − 𝛤?@A

(&)𝜎"& + 𝑆(&) − 𝑘&(𝜎"(&) + 𝑘&(𝜎"(() + 𝔉(&),                                  (S.12) 
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 𝜎"̇(') = − 4
ℏ
p𝐻<=>' , 𝜎"(')r − 𝛤?@A

(')𝜎"(') + 𝑆(') − 𝑘'(𝜎"(') + 𝑘'(𝜎"(() + 𝔉('),                               (S.13) 

where 𝛤?@A
(4)	(𝑖 = 0, 1, 2)  are the relaxation matrices accounting for the decays of the atoms, 

	𝑆(4)	(𝑖 = 0, 1, 2) are repopulations of atoms in the ground levels in the dark, bright 1, and bright 

2 regions due to decays, respectively. Here, 𝔉(4)  are the Langevin operators, which are 

characterized by t𝑓GBC
(4)(𝑧, 𝑡)v = 0 and  

 

t𝑓GBC
(4)(𝑧, 𝑡)𝑓GDE

(#)&(𝑧,, 𝑡,)v = F
-
𝐷!"4,DE#𝛿(𝑧 − 𝑧,)𝛿(𝑡 − 𝑡,),                       (S.14) 

with the diffusion coefficients 𝐷!"4,DE#S7. Also, 𝑘&(('()	 are the hopping rates from bright 1 (2) to 

dark region, and 𝑘(&((') are the hoping rates from the dark region to bright 1 (2), which can be 

written as 𝑘4( = 𝑑𝑁4 (𝑁4𝑑𝑡)⁄ , and 	𝑘(4 = 𝑑𝑁4 (𝑁(𝑑𝑡)⁄ , with 𝑖 = 1, 2, and the atom numbers in the 

dark (𝑁(), bright 1 (𝑁&) and bright 2 (𝑁') regions. Here, 𝑘4( = 𝑘 ≈ 𝑣̅ 𝑑~10I⁄ sJ&, and 𝑘(4 =

𝑘(𝑑 𝐷⁄ )'~10%	sJ&  , where 𝐷 is the cell diameter, and 𝑣̅ is the thermal velocity of the atomic 

motion. Since optical coherences decay much faster than the atomic hopping between the two 

channels, it is properly assumed that only ground-state coherences and populations in the two 

channels are effectively coupled through the thermal motion. 

Here we take the non-Hermitian parametric amplifier as an example to illustrate the model in 

detail (Fig. S1). The spin dynamics in bright 1, bright 2, and dark regions are governed by the 

following Hamiltonian 𝐻<=>
(,&,': 

 𝐻I<=>( = − ℏ-
F ∫ 𝑑𝑧S−Δ(()𝜎"%%

(() − 𝛿(()𝜎"''
(()UF

( ,                                                         (S.15) 

𝐻I<=>& = − ℏ-
F ∫ 𝑑𝑧S−Δ(&)𝜎"%%

(&) − 𝛿(&)𝜎"''
(&) + 𝑔&𝜎"%'

(&)𝑎" + Ω&𝜎"%&
(&) + 𝐻. 𝐶. UF

( ,          (S.16) 

 𝐻I<=>' = − ℏ-
F ∫ 𝑑𝑧S−Δ(')𝜎"%%

(') − 𝛿(')𝜎"''
(') + 𝑔'𝜎"%&

(')𝑏� + Ω'𝜎"%'
(') + 𝐻. 𝐶. UF

( ,         (S.17) 

where 𝑔 = 𝜇𝜀/ℏ is the single-photon Rabi frequency with the transition dipole moment 𝜇, and the 

electric field of a single photon 𝜀 = ;ℏ𝜔 (2𝜖(𝑉)⁄ S8. Here, Ω4 = 𝜇𝐸4/ℏ is the control laser Rabi 

frequency with the control laser electric field amplitude . Here the atomic dipole operator at 

position 𝑧 in the rotating frame is defined by locally averaging over a transverse slice containing 

many atoms 

 𝜎"!$(𝑧, 𝑡) = lim
KL→(

F
-KL

∑ 𝜎"!$
# (𝑧, 𝑡)LNL'NLO△L .                                 (S.18) 

!"
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The Zeeman shift induced by the common bias magnetic field 𝑩 and the frequency shift of 

the spin wave are denoted as 𝛿Q and Δ(, respectively, which contribute to various detunings in 

𝐻<=>
(,&,': 

Δ(() = R(
'

,                   𝛿(() = 𝛿Q,                                             (S.19) 

Δ(&) = R(
'
+ Δ(,          𝛿(&) = 𝛿Q + Δ(,                                    (S.20) 

Δ(') = R(
'

,                   𝛿(') = 𝛿Q − Δ(.                                    (S.21) 

Since the control is much stronger than the probe, the populations 𝜎"&&
(&),	𝜎"''

(&),	𝜎"&&
('),	𝜎"''

(')	and 

the coherences 𝜎"&%
(&), 𝜎"'%

(') are mainly determined by the control fields. In this case, the nonlinear 

differential equations can be separated into two subsystemsS8. In the first subsystem, the effect of 

the two quantum probe fields 𝑎", 𝑏� can be neglected, and these equations are solved in the steady 

state. The corresponding solutions are then injected into Eqs. (S.2-S.4), which determine the 

coherences 𝜎"'%
(&), 𝜎"%&

('), 𝜎"'&
(&), 𝜎"'&

(') as a function of 𝑎", 𝑏�*. 

In order to derive the quantum fluctuations of the light and the atoms, linearization around 

the steady state should be used: 

 𝛴& = |𝛴&| + 𝛿𝛴&, 𝛴& = (𝜎"'%
(&), 𝜎"%&

('), 𝜎"'&
(&), 𝜎"'&

('), 𝜎"'%
((), 𝜎"%&

((), 𝜎"'&
(())S.               (S.22) 

The first-order solution is determined by the equation: 

 (𝑖𝕀 T
T7
+𝑀&)𝛴& = 𝑆&𝐴G + 𝑖𝑓G,                                             (S.23) 

with Langevin operators 

 𝑓G = (𝑓G'%
(&), 𝑓G%&

('), 𝑓G'&
(&), 𝑓G'&

('), 𝑓G'%
((), 𝑓G%&

((), 𝑓G'&
(())S.                                (S.24) 

The mean value of 𝛴&  is derived as |𝛴&| = 𝑀&
J&𝑆&�𝐴G� . For the Fourier-transformed quantum 

fluctuations, one can obtain: 

𝛿𝛴& = (𝑀& + 𝜔𝕀)J&𝑆&𝛿𝐴G + 𝑖(𝑀& + 𝜔𝕀)J&𝐹�.                             (S.25) 

The Maxwell wave equations for 𝜎O and 𝜎J polarized quantum fields 𝐴G = (𝑎", 𝑏�*)Sare given by: 

 � T
T7
+ 𝑐 T

TL
�𝐴G(𝑧, 𝑡) = 𝑖𝑔𝑁𝑇𝛴&(𝑧, 𝑡),                                      (S.26) 

where 𝑐 is the speed of light, and 𝑁 is the total atom number. The associated propagation matrix 

for the quantum-field in the frequency domain is obtained as 

 𝛿𝐴G(𝜔, 𝐿) = exp[𝑀(𝜔)𝐿]h𝛿𝐴G(𝜔, 0) + 𝐹�Fi,                                (S.27) 

with the matrices 
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𝑀(𝜔) = 𝑖 U
$-
0
𝑻(𝑀& + 𝜔𝕀)J&𝑆&,          𝐹�F = ∫ exp[𝑀(𝜔)𝐿]𝑀V(𝜔)𝐹�(𝑧, 𝜔)𝑑𝑧

F
( ,    (S.28) 

where 

 𝑻 = �1 0 0 0 0 0 0
0 −1 0 0 0 0 0�,       𝑀V(𝜔) = − U-

0
𝑻(𝑀& + 𝜔𝕀)J&.              (S.29) 

The Langevin atomic forces 𝑓 are characterized by their diffusion coefficients matrix, which can 

be calculated using the generalized Einstein relationS7. 

(a) Gain in non-Hermitian nonlinear parametric processes 

Defining 

 exp[𝑀(𝜔)𝐿] = 1𝐴
(𝜔) 𝐵(𝜔)
𝐶(𝜔) 𝐷(𝜔)7,                                        (S.30) 

we can rewrite Eq. (S.27) as follows, 

 1
𝑎"(𝜔, 𝐿)
𝑏�*(𝜔, 𝐿)

7 = 1𝐴
(𝜔) 𝐵(𝜔)
𝐶(𝜔) 𝐷(𝜔)7 �1

𝑎"(𝜔, 0)
𝑏�*(𝜔, 0)

7 + �
𝐹�W(𝜔)
𝐹�X&
* (𝜔)

��,                    (S.31) 

which allows us to represent the mean values �𝐴G� and fluctuations 𝛿𝐴G of the output fields. When 

the mode		𝑏�  is the vacuum, 〈𝑏�<=〉=0, it is observed that the probe field with mean value ⟨𝑎"<=⟩ is 

amplified with gain 𝐺W = |𝐴(𝜔 = 0)|', i.e., 

 ⟨𝑎"YZ>⟩ = |𝐴(𝜔 = 0)|⟨𝑎"<=⟩.                                             (S.32) 

(b) Noise spectrum of the correlated beams 

Introducing the amplitude and phase quadratures of light as: 

 𝑋�0 =
&
√'
(𝑐̂ + 𝑐̂*) ,                     𝑃�0 =

&
4√'
(𝑐̂ − 𝑐̂*),                              (S.33) 

with 𝑐̂ = 𝑎", 𝑏�, we can express the amplitude correlation and phase anti-correlation of the noise 

spectra 𝑆\J and 𝑆2O of the joint variables to be detected as follows: 

𝑆\J2𝜋𝛿(𝜔 − 𝜔,) 	= 	 0
F
�p𝑋�W(𝜔) − 𝑋�X(𝜔)rp𝑋�W(𝜔,) − 𝑋�X(𝜔,)r�,                (S.34) 

𝑆2O2𝜋𝛿(𝜔 − 𝜔,) 	= 	 0
F
�p𝑃�W(𝜔) + 𝑃�X(𝜔)rp𝑃�W(𝜔,) + 𝑃�X(𝜔,)r�.                  (S.35) 

Since our system utilizes warm atoms, the matrices 𝑀, 𝑀V and 𝑀V ⋅ 𝐷 ∙ 𝑀V
∗  should be modified as 

follows to take into account Doppler broadening: 

 𝑀 = � ]
'^_(S

�
"
$ ∫ 𝑀(𝜐L)exp S−

]$)$

'_(S
U 𝑑𝜐L

O`
J` ,                                         (S.36) 

 𝑀V = � ]
'^_(S

�
"
$ ∫ 𝑀V(𝜐L)exp S−

]$)$

'_(S
U 𝑑𝜐L

O`
J` ,                                       (S.37) 
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 𝑀V ∙ 𝐷7 ∙ 𝑀V
∗ = � ]

'^_(S
�
"
$ ∫ 𝑀V(𝜐L) ∙ 𝐷(𝜐L)7 ∙ 𝑀V

∗(𝜐L)exp S−
]$)$

'_(S
U 𝑑𝜐L

O`
J` ,          (S.38) 

where we have used the Maxwell distribution function for the atomic velocity 𝜐L, 𝑚 is the mass 

of the 87Rb atom, and 𝑘Q is the Boltzmann constant. 

Note that, in the classical picture, the probe is a coherent state for the seed input with mean 

value 〈𝑎"43〉 ≠ 0 and 〈𝑏�43〉 ≠ 0. In contrast, in quantum nonreciprocity experiments, only control 

beams are applied in each channel, and the input probe is the vacuum, i.e. 〈𝑎"43〉 = 〈𝑏�43〉 = 0.  

Regardless of whether we use the classical or quantum scenario, the quantum fluctuations of 

the input probe are the same, since both coherent state and vacuum state share the same variance 

of the quadratures Varh𝑋�443i and Varh𝑃�443i (𝑖 = 𝑎, 𝑏).  

In the framework of dissipative coupling, two spatially separated pump lights with circular 

polarizations interact with the atomic ensembles (input probes are vacuum), leading to the 

generation of the new quantum signals to be detected at the output, which fulfill the two-photon 

resonance condition.  

S.3 Gaussian quantum discord 

The concept of quantum discord was initially proposed as a measure of quantum correlation, 

more resilient to dissipative environments than quantum entanglement. Especially, Gaussian 

quantum correlations beyond entanglement can be captured by the measure of Gaussian discord. 

Entanglement is one type of strong quantum correlation, and “no entanglement “does not mean 

“no quantum correlation” S9.  

In the literature, for instance, in Ref. [S10] (highly cited paper), it is stated that “Quantum 

discord, a measure of genuinely quantum correlations… On pure states, quantum discord coincides 

with the entropy of entanglement. States with zero discord represent essentially a classical 

probability distribution embedded in a quantum system, while a positive discord, even on separable 

(mixed) states, is an indicator of quantumness”. 

In Ref. [S11], it is stated that “The quantum discord D expands the concept of quantum 

correlations to include separable states. D > 0 indicates the presence of correlations that originate 

from the noncommutativity of quantum operators, which also applies to mixed states. Quantum 

discord has been shown to be a valuable resource for sensing, cryptography and quantum phase 

estimation and compared to entanglement, is expected to be more resilient to a dissipative bath”.  
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As a well-established measure, quantum discord can faithfully evaluate quantum correlations. 

In addition, we provide the values of Gaussian quantum discord with error bars in Fig. S2. The 

error bars are very small, which ensure that the quantum discord is nonzero. 

Finally, we would like to provide more information about the factors that may limit the 

measured quantum discord.  

(1) Beam size: Large beam size can increase the effective coupling rate between beams, which 

determines the Gaussian discord. But the overlap area between beams will also increase, which we 

do not want; so we choose proper beam diameters about 6 mm, which is large enough for high 

effective coupling rate and small enough to prevent significant overlap between the beams in the 

two channels. 

 
Fig. S2| Quantum discord. The measurement data are shown in this figure in five times of the cases in backward 
with same polarization (blue) and forward with different polarizations (red). The mean values are respectively 
2.4×10-3 and 1.0×10-3. The error bars are the standard deviations of each data, which represent s.d. from five 
measurements, and the values are 8.3×10-5 and 1.0×10-4. 
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(2) Temperature: Temperature determines the density and mean velocity of the atoms, which 

influence the exchange rate of atoms between the two beams (i.e., channels). We need a larger 

atom density to obtain a larger quantum discord. However, temperatures above 70°C will affect 

the paraffin coating, and the atom-atom collision cannot be neglected in high temperature as well. 

(3) The information remains in the reservoir: Some useful information will not be read out by 

the laser beams. The information remains in reservoir and has a lifetime of about 20 ms. 
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