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I. EXPERIMENTAL SETUP 

Our experiment was performed using the setup illustrated in Fig. S1. An optical probe field provided 

by a tunable External Cavity Laser Diode (ECLD) in the 1550 nm band was fed into the fiber. A section 

of the fiber was tapered to enable efficient coupling of the probe field into and out of a microtoroid 

resonator, which is coupled to another microtoroid resonator with tunable damping rate induced by a 

chromium (Cr)-coated silica-nanofiber tip with strong absorption rate of light in the 1550-nm band, and 

the output field was sent to a Photo-Detector (PD). The electrical signal from the PD was then analyzed  

 

Figure S1. Schematic diagram of the experimental setup. The 1550 nm laser is fed into two coupled 

microtoroid resonators µR1 and µR2. The first resonator µR1 supports a high-Q optical mode 1a  and a 

mechanical mode with frequency m , while the second resonator µR2 supports a low-Q mode 2a . The 

damping rate of the low-Q mode 2a
 
is tuned by a Cr-coated silica nanotip touching the resonator µR2. 

The output signal is detected by a photodetector and then fed into the oscilloscope and the electrical 

spectrum analyzer to obtain the time and frequency domain signals for the mechanical mode. PD: 

photodetector; OSC: oscilloscope; ESA: Electrical spectrum analyzer. 
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with an oscilloscope in order to monitor the time-domain behavior, and also with an Electrical Spectrum 

Analyzer (ESA) to obtain the power spectra. 

 

II. BIFURCATION IN THE VICINITY OF THE EXCEPTIONAL POINT 

For the compound phonon laser system considered in this work, there exists an exceptional point for 

the optical modes in the coupled resonators and a bifurcation occurs in the vicinity of this exceptional 

point. In fact, the coupling between the two optical modes 1a
 
and

 2a  in the two resonators with strength 

  gives rise to two optical supermodes a  
with complex eigenfrequencies  i         (in a frame 

rotating with p ) where 0= p     is the detuning between the optical pump frequency p  and the 

cavity resonance frequency 0 ,  1 2 2    , 
2 2    , and  2 1 2    . 1 10 1c     and 

2 20 tip     
 
represent the damping rates of

 1a  and 2a . 10
 
and

 20  are the intrinsic damping rates of 1a
 

and
 2a

  
induced e.g. by the material absorption, scattering, and radiation losses. 1c  is the damping rate of 

1a
  
induced by the coupling between the resonator and the fiber-taper and tip  is the additional loss induced 

by the nanotip. When   , the two supermodes are non-degenerate with frequencies     and the 

same damping rate   (see Fig. S2a and Fig. S2b). This case is referred to as the regime before the 

exceptional point. On the other hand, when   , the two supermodes are degenerate with frequency 

  but different damping rates i   (see Fig. S2a and Fig. S2b), which is referred to as the regime 

after the exceptional point. At   , i.e., at the exceptional point, the two supermodes are degenerate 

with equal damping rate, indicating a transition between the regime before the exceptional point and the 

regime after the exceptional point. In Fig. S2c-S2e we show the output spectra of the optical supermodes 

which exhibit the degeneracy of the optical modes at the exceptional point. 
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Figure S2. Bifurcation in the vicinity of the exceptional point in the compound phonon laser 

system. a, Real part of the eigenfrequencies of the optical supermodes as a function of the loss induced 

by the nanotip tip , which shows the mode splitting and coalescence in the vicinity of the exceptional 

point. b, Imaginary part of the eigenfrequencies of the optical supermodes as a function of the loss 

induced by the nanotip tip , which illustrates the linewidth bifurcation of the optical supermodes. c-e, 

Output spectra of the optical supermodes (c) before the exceptional point, which features mode splitting, 

(d) in the vicinity of the exceptional point, which shows overlapping optical supermodes with equal 

linewidths, and (e) after the exceptional point, where the optical supermodes are overlapping with 

different linewidths. Note that only the high-Q supermode, which is localized in the high-Q resonator in 

the regime after the exceptional point, can be seen in the output spectrum, the parameters for the low-Q 

supermode can be estimated indirectly from the theoretical model and those of the high-Q mode. 
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III. THRESHOLD OF THE PHONON LASER 

To understand the physical mechanism behind the phonon laser, let us compare it with the one-dimesional 

cavity-mediated optical laser system shown in Fig. S3a, which is composed of an optical cavity with one 

fully-reflecting mirror at one end and a partially-reflecting mirror at the other end. The input pump field 

leads to the population inversion of the gain medium uniformally distributed in the cavity, and coherent 

photons are generated by the stimulated emission process which leads to the laser output. Figure S3b 

shows a picture of the lasing process in which coherent photons are generated by the interaction between 

the optical mode and the effective two-level atoms in the gain medium. The phonon laser in our system is 

somewhat similar to this picture of an optical laser to the extent that two optical supermodes act as a two-

level system interacting with the phonon field. The mechanical mode supported by the microtoroid 

resonator interacts with the analog “two-level system” generated by the optical supermodes to receive 

phonon gain, and then suffers loss during transmission (see Fig. S3c and Fig. S3d). The balance between 

mechanical gain and mechanical loss leads to the phonon laser demonstrated in the experiments. Due to 

the similarity between the working principle of a phonon laser and that of an optical laser, one can derive 

the expressions for the threshold and the linewidth of the phonon laser following the approach carried out 

for an optical laser. 
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Figure S3. Comparison of an optical laser and a phonon laser. a, Diagram of a one-dimensional optical 

laser with a gain medium distributed in an optical cavity with one fully-reflecting mirror at one end and a 

patially-reflecting mirror at the other end. b, Mechanism of an optical laser, in which an optical mode 

interacts with a gain medium and coherent output photons are generated. c, Equivalent one-dimensional 

phonon laser with gain provided by the optical supermodes acting as a “two-level system”. d, Equivalent 

mechanism of the phonon laser in which the mechanical mode interacts with the analog two-level system 

represented by the optical supermodes such that coherent output phonons are generated. 
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In the following, we perform the derivation of the threshold of the phonon laser. Denoting the intracavity 

fields of the two resonators as 1a  and 2a  in a frame rotating with the frequency of the driving field, and 

the phonon mode as b , the dynamical equations for our system can be written as 

                                      

   *

1 1 1 1 2 1 1+ 2 ,p om c

d
a i a i a ig a b b

dt
            

 

                              

(S.1) 

 2 1 2 2 2+ p

d
a i a i a

dt
        

 
，                                                                (S.2) 

  *

om 1 1,m m

d
b i b ig a a

dt
     

                                                                                    
(S.3) 

where 1  and 2  are the cavity-mode line center frequencies of 1a  and 2a , p  is the frequency of the 

driving field, omg  is the optomechanical coupling strength, and   is the amplitude of the input field fed 

into the first resonator.
 1 10 1c     and 2 20 tip   

 
represent the damping rates of 1a  and 2a , in which 

10
 
and

 20  are the intrinsic damping rates of 1a
 
and

 2a , 1c  is the damping rate of 1a
 
induced by the 

coupling between the resonator and the fiber-taper, and tip  is the additional loss induced by the nanotip. 

m
 
and m  

are the frequency and damping rate of the mechanical mode. The two optical fields 1a  and 

2a
 
couple to each other via the evanescent field with coupling strength  , which gives rise to two optical 

supermodes 

-11 1
+ 1 1

1 1
2 2

=
1 1

a a a

a a a

  

 

 
  

 
  

          
           

          

N N

N N

                            

(S.4)

 

with complex eigenfrequencies  

 
22 + ,i i          

                                                             

(S.5) 
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where  1 2 2    , 2 2i      ,  2 1 2    ,    1 2 2p p   
     
 

, and 

 

          

2
+ +

1 ,
i i 


 
 



  
    

 
                                                             

       

 
1/2

22

1
,

2 +i




    


 
   

 

            

                                                 

 

 

1/2
22

1/2
22

+ +
.

2 +

i i

i

  


   

 




 


    
 

 
   

                                            

(S.6) 

N  are normalization constants which are given by 

2 2
.   N  

Note that we have omitted the influence of the nonlinear optomechanical coupling for writing down the 

expressions for the optical supermodes under the assumption that the optomechanical coupling strength 

is weak, which has been widely used in the existing phonon laser literature [S1]-[S5]. For the case with 

strong optomechanical coupling, the mechanical mode would induce additional detuning and thus shift 

the optical supermodes [S6] which is not considered in our discussions. Since the physical phenomena 

that we are interested in appear in the regime where the system is in the vicinity of the exceptional point, 

we will mainly focus on this regime in the following discussions. 

 

a.  The regime before the exceptional point    

Let us first consider the regime before the exceptional point in which 0, 0    and assume that the 

intracavity resonance frequencies of the two resonators are degenerate, i.e. 1 2 0   . In this case, the 

two optical supermodes can be simplified according to 



9 
 

   
-1

1

2

1

2

2

1 1

2
=

a ai i

a a

a

a

     



 

 









       
     

    

  
  
  

                                                        

(S.7)

 

with complex eigenfrequencies  

0 ,p i        

                                                                       

(S.8) 

where

 
, .

2 2

i  
 

 



 

                                                              

(S.9) 

If we omit the self-frequency-shift terms  * *a a b b    and  * *a a b b    and non-resonant terms like 

*a a b   and 
* *a a b   in the Hamiltonian of the optomechanical coupling, the dynamical equations for the 

optical supermodes a
 
can be expressed as [S1], [S2] 

  *

0 om 1+ 2 ,
2

p c

d i
a i a ig a b

dt

 
     


  


      
                                  (S.10) 

 0 om 12 ,
2

p c

d i
a i a ig a b

dt

 
     


  


       
 

                              (S.11) 

 
 

2

*

om 2
,

2
m m

id
b i b ig a a

dt

 


 


                                                     (S.12) 

where  2 2     . Note that here we have omitted the anti-Stokes mode which is out of the 

frequency bands of the two optical supermodes a . 

The optical supermodes a  and a  mimic a two-level system where the transitions between the energy 

levels are mediated by the mechanical mode, which gives rise to the phonon laser. To illustrate this, we 

define the ladder operators and population inversion quantities by the optical modes a  and a  as 

* * * *, , ,zJ a a J a a J a a a a                                                    (S.13) 
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From Eqs. (S.10)-(S.12) and taking the stationary states of the supermodes in the driving terms acting on 

the “two-level system”, we have [S1], [S2] 

 2 ,om zJ i J ig bJ                                                              (S.14) 

  * *2 ,om zJ i J ig b J     
                                        

                (S.15)
 

* *2 2 2 ,z z om omJ J ig b J ig bJ       
                                      

(S.16) 

 
 

2

2
.

2
m m om

i
b i b ig J

 





                                                  (S.17) 

omg  denotes the effective optomechanical coupling strength in the supermode picture given by 

,
2

om om

i
g g

 






                                                                         

(S.18) 

which already takes very large values in the vicinity of an exceptional point (i.e., very small non-zero 

values of  ). While this observation implies EP-enhanced optomechanical interaction, the divergence of 

(S.18) directly at the EP ( 0  ) also indicates that more terms are required to describe this parameter 

regime correctly.   is the effective pumping acting on the two-level system which can be expressed as 

 * * * *

1 , , , ,2 ,c ss ss ss ssa a a a           

                                          

             (S.19) 

where ,ssa   and ,ssa   are the stationary values of the supermodes a  
from Eqs. (S.10) and (S.11).   The 

factor 2 in the denominator of Eq. (S.18) comes from the fact that omg  is defined as the optomechanical 

coupling strength in the solitary resonator (i.e., single travelling mode in the resonator with mechanical 

mode) while omg  in Eq. (S.18) is defined for the supermodes formed in the coupled resonators system.  

 

Note that here we have omitted the driving terms acting on the dynamics of J  and J  since we assume 

that the total population distribution of the two energy levels 
* *n n a a a a         is conserved, an 
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approximation which has already been introduced in previous phonon laser papers [S1]-[S5]. Transferring 

the variables to the rotating frame by setting  exp mb i t b ,  exp  mJ i t J , and 

 exp mJ i t J    , Eqs. (S.14)-(S.17) can be rewritten as 

 2 2 ,m om zJ i J ig J b                                                           (S.20) 

    
  * *2 2 ,m om zJ i J ig b J                                                         

(S.21)
 

* *2 2 2 ,z z om omJ J ig b J ig bJ      
                                                 

(S.22) 

 
2

2
.

2
m om

i
b b ig J

 





                                                              (S.23) 

We can adiabatically eliminate the degrees of freedom of the optical modes by setting 0 J  due to the 

reason that m  , by which we obtain 

 

   

 

2
.

2 2 2 2

om zom z

m m

g J iig J
J b b

i i

  

   


 
 

           

                                   (S.24) 

Substituting Eq. (S.18) and Eq. (S.24) into Eq. (S.23) yields 

 

 

2 2

3
.

8 2

om z

m

m

ig i J
b b

i

  

  

   
    

      

                                                (S.25) 

One finds that the optical modes induce an effective mechanical gain of 

 

 

 

 

2 22 2

3 23 2

+ 2
Re .

8 2 8 2

om m zom z

m m

g Jig i J
G

i

     

     

        
  

            

                  (S.26) 

By setting m G  , we obtain the threshold of the phonon laser in the regime before the exceptional point 

 

 

23 2

*

threshold 2 2

8 2
,

+ 2

m m

z

om m

P a a J
g

    
   

   



   

    
 

  
   

          (S.27) 
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where   is the central frequency of a . Here, we have assumed that the phonon laser satisfies the 

condition of complete inversion such that 
* * *

zN a a J a a a a          . Considering that 

0 0       , equation (S.27) can be rewritten as 

 

 

23 2

0

threshold 2 2

8 2
.

+ 2

m m

om m

P
g

    

   

    
 


   

                                      (S.28) 

Let us now take a look on two different limiting cases. First, we consider the situation when the system is 

far away from the exceptional point such that 2   and   . In this case, the threshold power given 

by Eq. (S.28) can be expressed as 

 
22

0

threshold 2

8 2
.

m m

om

P
g

       
 

                                      (S.29) 

Let us then consider the opposite situation in which the system is in the vicinity of the exceptional point 

such that    2, 2m m     and   . In this case, equation (S.28) can be simplified to 

 
23 2

0

threshold 3 2

16 2
.

m m

om m

P
g

   



   
 




                                    (S.30) 

It can be seen from Eq. (S.30) that the phonon laser features a very low threshold in the vicinity of the 

exceptional point, where    or equivalently 0  . 
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Figure S4. Mechanism of the phonon laser in the regime before the exceptional point. a, Energy 

distribution of the optical supermodes a  in the two resonators: the optical supermodes a  are almost 

equally distributed in the left and right resonators. b, Distribution of the pump mode and the Stokes mode 

that stimulate the phonon laser: the pump mode and the Stokes mode are within the frequency bands of 

the two optical supermodes a . 

 

b. The regime after the exceptional point    

In the regime after the exceptional point where 0, 0   , the supermodes of the two-coupled 

resonators are frequency-degenerate but have different effective damping rates. The high-Q (low-Q) 

supermode is mainly localized in the microresonator without (with) the Cr-tip. In the vicinity of the 

exceptional point, the dynamical equations of the system in this regime are then given by  

   0 om 12 ,
2

p c

d
a i a i g a b

dt

 
     


   


       
 

                            (S.31) 

    *

0 om 12 ,
2

p c

d
a i a i g a b

dt

 
     


   


       
 

                              (S.32) 

 
 

2

*

om 2
,

2
m m

d
b i b ig a a

dt

 


 


                                             (S.33)  
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where 
2 2     and 

22 2i       . 

 

Figure S5. Mechanism of the phonon laser in the regime after the exceptional point. a, Energy 

distribution of the optical supermodes a  in the two resonators: the high-Q optical supermode a  is 

mainly distributed in the left resonator supporting the mechanical mode and the low-Q optical supermode 

a  is mainly distributed in the right resonator. b, Distribution of the pump mode and the Stokes mode that 

stimulate the phonon laser: the pump mode and the Stokes mode are mainly distributed in the frequency 

bands of the high-Q optical supermode a  and the low-Q optical supermode a , which are degenerate.  

 

Similar as before, we redefine the ladder and population inversion operators by the optical modes a  and 

a  as
  

* * * *, , ,zJ a a J a a J a a a a                                                                
 

and introduce the rotating frame  exp mb i t b  and  exp mJ i t J   , which leads to 

 
2 ,

2 2

omm
z

ig
J i J J b

 



 

 
    

 
                                                    (S.34) 
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 
2

2
.

2
m omb b ig J

 





                                                                 (S.35) 

Adiabatically eliminating the degrees of freedom of the optical modes by setting 0 J  gives 

 
 

,
4 2

om z

m

i g J
J b

i

 

 





 
                                                          (S.36) 

and substituting this result into Eq. (S.35) yields 

 
 

3
2

3
.

8 2

om z

m

m

g J
b b

i

 

 

 
    
  
 

                                                    (S.37) 

Thus, the optical modes induce an effective mechanical gain 

 
 

3
2

23 2
.

8 2

om z

m

g J
G

  

 




  
 

                                                           (S.38) 

By setting m G  , we obtain the threshold of the phonon laser in the regime after the exceptional point, 

 
   

 

23 2

0

threshold 0 3
2

8 2
.

m m

z

om

P J
g

    
  

  

    
 

  


              

(S.39) 

 

Similar to the regime before the exceptional point, we want to consider two different limiting cases. First, 

we treat the situation when the system is far away from the exceptional point such that   . Under 

these circumstances, the threshold power given by Eq. (S.39) can be expressed as 

   
22

0

threshold 2

8 2
.

m m

om

P
g

   



    
 

                               (S.40) 

Let us then consider the opposite case in which the system is in the vicinity of the exceptional point such 

that   . In this case, we have   , and Eq. (S.39) can be expressed as 
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 
23 2

0

threshold 2 3

8 2
,

m m

om

P
g

  



   
 



                                    

(S.41) 

which is extremely low in the vicinity of the exceptional point where 0  . 

 

Employing the system parameters =17.38m
 
MHz, 1.5omg   kHz, 40m   kHz, 1 3.16   MHz, 

2 13.56   MHz, we plot the curve of the phonon laser threshold versus the tip-induced loss rate tip  for  

 

Figure S6. Threshold of the phonon laser thresholdP  in the vicinity of the exceptional point. a, thresholdP  

versus the tip-induced damping rate tip . thresholdP  first increases with the increase of tip , reaches a 

maximal value, and then decreases with increasing tip . Around the exceptional point, there is a sudden 

drop of thresholdP  which represents the transition. b, thresholdP  versus the coupling strength  . thresholdP  

remains to be very small when  is small and then after the exceptional point, it increases with growing 

 . Blue and red curves are obtained using Eqs. (S.30) and (S.41) respectively. The circled points represent 

the exceptional point where we have 0   and 0   and Eqs. (S.30) and (S.41) become equal. 
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fixed coupling strength 12.63   MHz in Fig. S6a and the phonon laser threshold versus the coupling 

strength   for fixed tip 15   MHz in Fig. S6b. The threshold of the phonon laser is given by Eq. (S.28) 

and Eq. (S.39). The numerical results in Fig. S6a show a drop of the threshold of the phonon laser in the 

vicinity of the exceptional point which fits very well with our analysis and the experimental results. 

 

IV. LINEWIDTH OF THE PHONON LASER 

a. The regime before the exceptional point    

In order to calculate the linewidth of the phonon laser, we have to reconsider the system dynamics by 

introducing fluctuation terms. In this way, the dynamical equations (S.20)-(S.23) are written as 

 
+

2 2 ( ),
2

m om z

i
J i J g J b t

 
  


  


                                             (S.42) 

    
  * *2 2 ( ),

2
m om z

i
J i J g b J t

 
  


  

 
                                          

(S.43)
 

*2 ( ),z z om om z

i i
J J g b J g bJ t

   
 

 
 

 
     

                                   
(S.44) 

 
 

2

2
,

2
m om b

i
b b ig J t

 






                                                              (S.45) 

where the noise terms      , ,z bt t t    are assumed to be white noises such that [S7] 

         

     

             

† †

† †

2 , 0,

2 ,

2 1 , 2 .

z z

b b m bT b b m bT

t t t t t t

t t t t

t t n t t t t n t t

    

  

     

   
    

  

         

    

(S.46) 

bTn  denotes the mean phonon number of the phonon bath in thermal equilibrium. By letting 0J  and 

0J   to adiabatically eliminate the degrees of freedom of J  and J , we find the following equations 

for zJ  and b , 
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 

2 2

22 2
2 1 ( ),

4 2

om
z b z z

m

g
J n J t


 

  

 
 

      
      

                                         (S.47) 

 

 
 

2 2

3
,

8 2

om

m z b

m

ig i
b J b t

i

  


  

  
     

      

                                               (S.48) 

where ( )z t  and ( )b t  are effective fluctuation terms which are given by 

 

 
 

 

 
* *( ) ( ) ( ),

2 2 2 2 2 2

om om

z z ss ss

m m

ig i ig i
t t b t b t

i i

     
   

   
 

        
  

     
                                 (S.49) 

 
 

 
 

2

2
( ) + ,

4 2

om

b b

m

ig i
t t t

i

 
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  


 


    
                                                        (S.50) 

and ,
ssi

ss b ssb n e


  is the stationary value of the phonon field with ,b ssn  and ss  respectively being the 

stationary amplitude and phase of the phonon field. The phonon mode b  can be written as 

   , ,ssi i t

b ssb e n t
 


   

                                                                
(S.51) 

where  t  and  t  are respectively the phase and amplitude fluctuations of the phonon field. 

Assuming that the fluctuation terms are small, we have 

       , , ,1 .ss ss ssi i i

b ss b ss b ssb e i t n t n e e t i n t
                            

 (S.52) 

The population inversion zJ  can be expressed as the sum of its stationary value and a fluctuation term 

according to 

 

 

 

23 2

2 2

8 2
= .

2

m m

z z

om m

J J
g

  


   

    
 


   

                                                (S.53) 

By inserting Eqs. (S.52) and (S.53) into Eq. (S.48), we get 
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 

 
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, ,3
,
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ss ssi iom
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  

 
   

                         

(S.54)

 

and therefore 

 

 
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,22 3

2
,
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om m
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m

g
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                                                (S.55) 
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   
 
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                                                         (S.56)

 

in which the fluctuation terms  t  and  t  are given by 

     †1
+ ,

2
ss ssi i

b bt e t e t
 

                                                           (S.57) 

     †

,

1
.

2

ss ssi i

b b

b ss

t e t e t
i n

 

                                                (S.58) 

In order to simplify our discussion, we consider the case when 2, ,m    , which is fulfilled in the 

vicinity of the exceptional point. Thus, we can obtain the following approximate equation by substituting 

Eq. (S.53) into Eq. (S.47) 
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(S.59)

 

Note that we have used the following equation for the stationary state,
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(S.60) 
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Equation (S.59) can be reexpressed as
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and 

 

 

22 3

2 2

16 2

2

m m

th

om mg

   

 

    
 

 


                                            

(S.63) 

is the threshold pump for the phonon laser. By combining Eqs. (S.55), (S.56) and (S.61), we obtain the 

following set of equations for the fluctuation terms 
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The linewidth of the phonon laser is related to the fluctuations of the phase  t . Since we have omg  , 

we can omit the first term at the right side of Eq. (S.65). While this approximation is necessary for the 

further calculations, it must be noted, however, that it is not valid in very close vicinity of the EP where 

𝛽 ≈ 0 and therefore the first term in Eq. (S.65) diverges. With this approximation it follows from Eq. 

(S.65) that 

 t  ，
                                                                 

(S.67) 
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which has the formal solution 
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(S.68) 

and thus 
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Recapitulating that 
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we can write 
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Inserting Eqs. (S.71) and (S.72) into Eq. (S.69) results in 
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By substituting Eqs. (S.68) and (S.73) into Eq. (S.51) and noting that  t  is the integral of its 

corresponding noise, we have [S8]  
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which means that the linewidth of the phonon laser in this regime can be expressed as 
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 Additionally, we introduce a phenomenological and power-independent linewidth term 0  
in which we 

pool contributions to the linewidth that are not included in the above model such as those coming from a 

nonideal population inversion of the medium and from the nonuniformity of the field (as in the case of 

the optical laser [S9]). Taken together, the linewidth of the phonon laser is then given by 
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Using the definition 
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we can write the linewidth as follows 
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With the peak power of the phonon laser peakP  being directly proportional to ,b ssn , this expression shows 

the same inverse power dependence as in optical laser theory. Analogously to the procedure in optical 

laser theory [S10], [S11], we have also introduced here the number of spontaneously emitted phonons into 

the mechanical resonator sponn . In the limit of a perfect match between the frequency difference of the two 

supermodes and the mechanical resonance frequency, i.e. 2 m   , and for equal optical cavity decay 

rates 1 2  , such that   , the expression for sponn  simplifies to 
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which is very similar to the already known result from optical laser theory close above the lasing threshold,  
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in which g  represents the coupling between atoms and light,   the atomic decay rate,   the cavity decay 

rate, and 
,sD

 the saturated occupation of the upper energy level of the two-level system. Using the relation 
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where 
,thrD

 and 
,thrD

 are the occupations of the optical supermodes a  and a  at the lasing threshold, 

the factor sponn can also be expressed by 
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from which it can be seen that spon 1n   in the case of perfect inversion and close to threshold. Furthermore, 

we also remark that sponn  diverges at an EP occurring in the two-level system, where ,thr ,thrD D  , and 

that this divergence can be traced back to the noise term  t  in Eq. (S.42), i.e., to the noise in the optical 

super-modes that provide the gain for the phonon mode. In other words, we can see here how the increased 

noise in the two-level system directly leads to an increased linewidth in the phonon laser mode.      

 

The difference between the results for our phonon laser given in Eq. (S.79) and for the optical laser given 

in Eq. (S.80) is a consequence of the different convention for the definitions of   and  , which causes 

the factor 32  in the denominator of sponn , as well as of the fact that we have assumed perfect inversion 

(
, 1sD  ) for the linewidth derivation above. With the definitions ' 2   and ' 2  , Eqs. (S.42)-

(S.45) would feature the same structure as the corresponding equations in the optical laser theory [S10], 

[S11] and we would immediately obtain the result  



24 
 

 
2

spon ,
'

om

m

g
n





                                                                     (S.83) 

which has exactly the same structure as the corresponding result for the optical laser. 

 

b. The regime after the exceptional point    

In the regime after the exceptional point, we start from the following dynamical equations including 

fluctuation terms 
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where 
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and

 
the fluctuation terms      , ,z bt t t    

satisfy the conditions written in Eq. 

(S.46). With similar discussions as before, we can obtain the linewidth equation (S.78) with 
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In the vicinity of the exceptional point, where 0  , Eq. (S.88) simplifies to 
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Using the system parameters =17.38m
 
MHz, 1.5omg   kHz, 40m   kHz, 1 3.16   MHz, 2 13.56   
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MHz, we plot the normalized linewidth of the phonon laser   1

0 peakP     versus the tip-induced loss 

rate tip  for fixed coupling strength 12.63   MHz in Fig. S7a and the normalized linewidth of the 

phonon laser versus the coupling strength   for fixed tip 15   MHz in Fig. S7b. The normalized 

linewidth of the phonon laser is given by Eq. (S.78) with sponn  from Eq. (S.77) in the regime before the 

exceptional point and from Eq. (S.88) in the regime after the exceptional point, respectively. Both in the 

regime before the EP and in the regime after the EP, the factor sponn is proportional to 𝛽−4, which diverges 

at the EP and thus leads to an infinite linewidth broadening directly at the EP. We speculate that this 

problem of the diverging linewidth is due to the approximations necessary to arrive at our analytical results 

(see above). This divergence is, in fact, already known to occur since the early work by Petermann,  

 

Figure S7. Normalized linewidth of the phonon laser   1

0 peakP     in the vicinity of the 

exceptional point. a,   1

0 peakP     versus the tip-induced loss rate tip . b,   1

0 peakP     versus 

the coupling strength  . The normalized linewidth of the phonon laser is enhanced in the vicinity of the 

exceptional point both in (a) and (b). 
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Siegmann etc. on the linewidth of the optical laser that shows the same divergence. We believe that the 

linewidth divergence at the EP can be tamed by a more rigorous theoretical approach along the lines of 

Ref. [S12] in which finite bounds on the enhancement in spontaneous emission at an EP have recently 

been presented. The challenge will be to merge this new approach with a linewidth calculation as presented 

above. 

 

V. NONDEGENERATE OPTICAL MODES 

In this section, we want to briefly consider the case of non-degenerate (uncoupled) optical cavity 

resonance frequencies 1 2  . Since the two optical modes 1a  and 2a  are coupled to each other, these 

two modes should be near-resonant. Thus, we can assume that 1 2 ,    . Additionally, in order to 

simplify our discussions, we only consider how this non-ideal case will affect our results in the vicinity 

of the exceptional point. Thus, we assume that 
1 2,    . With the above two assumptions, Eqs. 

(S.4)-(S.6) can be reexpressed as 
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with complex eigenfrequencies  
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where  1 2 2    ,  2 1 2    ,  0 1 2 2    ,  2 1 2    , and 
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With similar discussions as those in Sec. III and Sec. IV, the threshold and linewidth of the phonon laser 

can be expressed as 
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Figure S8. Threshold thresholdP  and normalized linewidth of the phonon laser   1

0 peakP     of the 

phonon laser versus the frequency difference  2 1 2    . a, Normalized threshold of the phonon 

laser versus  . b,   1

0 peakP     versus  . The linewidth of the phonon laser decreases very fast in 

the vicinity of the resonant point 0  . 
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Employing the system parameters =17.38m
 
MHz, 1.5omg   kHz, 40m   kHz, 1 3.16   MHz, 

2 13.56   MHz, 12.63   MHz, tip 14.85  MHz, we plot the curves of the phonon laser threshold and 

the normalized linewidth of the phonon laser   1

0 peakP     versus the frequency difference  in Fig. 

S8. It is shown in Fig. S8b that the linewidth of the phonon laser decreases very fast in the vicinity of the 

resonant point 0  . 

 

VI. LINEWIDTH BROADENING OF THE OPTICAL MODES NEAR THE EP 

In order to obtain a physical understanding of the mechanism behind the linewidth broadening of the 

phonon laser, we now take a closer look at the behavior of the optical modes in the vicinity of the EP. 

Previous work has already demonstrated that the linewidth of an optical laser can be significantly 

enhanced when the eigenmodes of the system are non-orthogonal [S13], [S14]. In our system, the lasing 

mode is the mechanical mode while the optical modes are not lasing. As shown below, however, the non-

orthogonality of the optical modes in the vicinity of the EP still leads to an enhancement of the effective 

optical noise strength. 

 

Following a very simple approach, the two coupled optical modes present in our setup can be modeled by 

a system of beamsplitters [S15], see schematic in Fig. S9a. In this picture the coupling strength between 

the two optical modes 1a  and 2a  is determined by the reflection and transmission coefficients r  and t . 

Additionally, each of the two optical modes is coupled to a corresponding loss mode ( c  and d ) via 

beamsplitters with reflection and transmission coefficients ir  and it . All reflection and transmission 
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coefficients satisfy the relation 
2 2

1i ir t  . One roundtrip in this cavity is then described by the 

following four-mode unitary scattering matrix, 
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Since we are only interested in the optical modes 1a  and 2a , we reduce our considerations to the truncated 

scattering matrix for modes 1a  and 2a ,  
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which is sub-unitary and has non-orthogonal eigenvectors in general. With the help of Eq. (S.96), the 

input/output relations for the cavity roundtrip can be formulated as follows, 

1,out 1 1, in 1 2,in 1 1, ,sa t t a r t a r a                                                      (S.97) 

2,out 2 2, in 2 1,in 2 2, ,sa t t a r t a r a                                                    (S.98) 

where the spontaneous emission noise contributions 1,sa  and 2,sa  are introduced to preserve unitarity. 

Under the simplifying assumption that 2a  is recoupled onto itself (i.e., 2,out 2,ina a ) it is straightforward 

to calculate the factor by which the noise acting on 1a  is enhanced as compared to the noise present in Eq. 

(S.97) alone (see Ref. [S15] for further details). This excess noise factor is the well-known Petermann 

factor given here by the following expression 
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Analogously, one can derive the noise enhancement factor for 2a , which is found to be 
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By applying the above formalism to our case, which is described by Eqs. (S.1) and (S.2) with 0omg   and 

0p   , we find 
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Fig. S9b shows the effective optical noise enhancement factor for our system parameters, where one can 

observe a clear maximum of the curve at the EP, where the eigenmodes of the system are identical. Our 

calculations thus reveal very clearly that the optical modes continuously increase their noise (i.e. their 

linewidth) when approaching the EP (without a divergence occurring right at the EP). Since, in turn, the 

mechanical mode in our phonon laser is driven by these noisy optical supermodes, this increase of the 

optical noise power is then transferred to the mechanical mode through the optomechanical interaction 

mechanism. As a result, also the mechanical (phonon) mode features a linewidth broadening when 

approaching the EP. 
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Figure S9. Simplified model for the linewidth broadening due to the non-orthogonality of the optical 

modes. a, The two optical modes 1a  and 2a  are coupled to two loss modes c  and d  via mirrors with 

reflection coefficients 1r  and 2r , and transmission coefficients 1t  and 2t , respectively. Furthermore, we 

assume a perfect coupling without coupling losses between 1a  and 2a , which is characterized by the 

reflection and transmission coefficients r  and t . b, Optical noise enhancement as a function of the 

additional loss tip . The effective optical noise strength features a clear maximum at the EP. 
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