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Chirality-induced quantum non-reciprocity

Zimo Zhang1,11, Zhongxiao Xu1,2,11, Ran Huang    3,11, Xingda Lu4, Fengbo Zhang1, 
Donghao Li1, Şahin K. Özdemir    5, Franco Nori    3,6, Han Bao    7, 
Yanhong Xiao    2,8, Bing Chen    9  , Hui Jing    10   & Heng Shen    1,2 

Chirality, non-reciprocity and quantum correlations are at the centre 
of a wide range of intriguing effects and applications across natural 
sciences and emerging quantum technologies. However, the direct link 
combining these three essential concepts has remained unexplored. 
Here we establish a chiral non-Hermitian platform with flying atoms 
and demonstrate chirality-induced non-reciprocal bipartite quantum 
correlations between two channels: quantum correlation emerges when 
two spatially separated light beams with the same polarization propagate 
in opposite directions in the atomic cloud, and it becomes zero when 
they travel in the same direction. Thus, by just flipping the propagation 
direction of one of the beams and keeping its polarization the same as the 
other beam, we can create or annihilate quantum correlations between the 
two channels. We also show that this non-reciprocal quantum correlation 
can be extended to multicolour sidebands with Floquet engineering. Our 
findings may pave the road for realizing one-way quantum effects, such as 
non-reciprocal squeezing or entanglement, with a variety of chiral devices, 
for emerging applications in, for example, directional quantum networks or 
non-reciprocal quantum metrology.

Chirality, the asymmetry of an object and its mirror image, widely 
exists in nature and has a key role in the essential laws of physics, 
chemical reactions1, biological structures, nanoscience2 and materi-
als engineering3,4, as well as in the distribution of galaxies. In quantum 
physics, chirality provides a powerful tool to control light–matter 
interactions5–7 towards the realizations of chiral quantum networks, 
chiral imaging and directional photonics8,9. By leveraging chiral behav-
iours10–17, quantum routers18, circulators19 and diodes20,21 have been 
realized, offering tools for directional signal processing, back-action-
immune communication and invisible sensing22. Yet considerable 

previous efforts have been devoted to the one-way control of coher-
ent light or single photons5,18–22. To go beyond what has already been 
demonstrated, it is essential to find non-reciprocal quantum effects 
without any classical counterpart, such as one-way anti-bunching 
or entanglement23,24. Such an effort, in turn, requires the control of 
quantum correlations in a highly directional way. Along this line, non-
reciprocity in the correlations of photon pairs in a reciprocal resonator 
was recently reported25. However, the quantum non-reciprocity of 
multipartite correlations, fully induced and controlled by chirality, 
has not been observed so far.
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chirality and quantum non-reciprocity, making it possible to realize 
and utilize a variety of chirality-enabled directional quantum effects, 
such as non-reciprocal squeezing or entanglement, for future applica-
tions in chiral quantum optics, non-reciprocal quantum engineering 
and one-way quantum sensing.

We note that non-Hermitian chiral phononics was reported 
very recently26, which explored only the one-way energy flow 
between mechanical modes in the classical regime, and did not 
consider one-way quantum correlations. Non-Hermitian linear 
couplings have been studied in the classical regime, too, for realiz-
ing anti-parity-time symmetry27 or photon–magnon interference28, 
without mentioning either non-reciprocity or quantum correlations. 
Even in recent works on non-Hermitian quantum correlations29, 
the possibility of achieving non-reciprocal quantum effects and its 
link to chirality remained unexplored. We also note that classical 

Here we report the first experiment on the chirality-induced break-
ing of reciprocity in quantum correlations. Specifically, we build a 
non-Hermitian light-atom system and find clear evidence of quantum 
non-reciprocity for optical two-channel correlations in the system, 
that is, the appearance or the vanishing of quantum correlations by 
flipping only the flow direction of a laser through the same atoms. We 
emphasize that the chirality of light serves as the source of the observed 
quantum non-reciprocity. In fact, due to chiral light-atom interac-
tions, an effective one-way nonlinearity emerges only for a specific 
input port, whereas it is absent for the reversed input port even when 
the polarization of the light is kept the same. The resulting one-way 
quantum correlations can be further extended into multicolour quan-
tum non-reciprocities emerging at different frequencies, by using the 
technique of Floquet engineering, that is, by periodically driving the 
non-Hermitian chiral system. Our work establishes the link between 
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Fig. 1 | Quantum non-reciprocity versus classical non-reciprocity. a, Doppler-
shift-induced non-reciprocal classical light transmission. Two control lights with 
the same circular polarizations propagate along the same direction in two 
channels (CH1 and CH2), with a probe light propagating along (forward; left) or 
against (backward; right) the control in CH2. For atoms flying with velocity v 
along the control, two-photon resonance (detuning), Δ = 0 (Δ = 2kv), occurs in the 
forward (backward) case due to the same (different) Doppler shifts of the control 
and probe, resulting in EIT (blockade of the probe). Here k is the magnitude of the 
wavevector. b, Chirality-induced quantum non-reciprocity. Without the probe, 
two RHCP control beams propagate in the same (forward; top) or opposite 
(backward; bottom) directions. The coupling of the controls is mediated by the 

atomic diffusion at rate Γ. Quantum non-reciprocity occurs by reversing the input 
direction of the control in CH2. In the presence of thermal motion, the atoms see 
the same (blue) and opposite (orange) circular polarizations for the control beam 
in the forward or backward case. Such chirality leads to different interactions 
between the channels, resulting in correlations in the backward case but not in 
the forward case. The ground states |1〉 and |2〉 are Zeeman sublevels of |F = 2〉, and 
the excited state |3〉 is |F′ = 1〉 of the 87Rb D1 line. A bias magnetic field B is used to 
shift the homodyne measurement from d.c. to twice the Larmor frequency 
(~300 kHz) to bypass low-frequency technical noises; ̂J

†
 and ̂a†1,2 denote the 

creations of atomic spin excitation and photons in CH1 (or CH2), respectively.
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non-reciprocity was reported in a recent experiment as one-way 
interchannel light transport30, but neither quantum non-reciprocity 
nor the link between chirality and non-reciprocity was demon-
strated. Other experiments revealed the directional flow of single 
photons18 or self-correlations19 with the coherent chiral coupling of 
spin-momentum-locked light with emitters in nanostructures. In con-
trast to all previous works, here we use optical chirality to achieve a 
dissipative and propagation-direction-dependent interaction, which 
enables chirality-induced non-reciprocal quantum correlations. 
Our work uncovers the first direct connection between two funda-
mentally distinct asymmetries—chirality and non-reciprocity—at 
the quantum cross-correlation level. Also, our work highlights the 
counterintuitive role of dissipation in chiral quantum control, puts 
forward conceptually new ways for building chirality-controlled 
one-way quantum devices and—in a broader view—provides a new 
bridge between a wide range of frontier fields such as chiral quantum 
optics, non-reciprocal devices and non-Hermitian physics, as well as 
Floquet engineering.

Our system consists of two optical channels (CH1 and CH2) sepa-
rated transversely by 1 cm inside an anti-relaxation-coated vapour 
cell containing isotopically enriched 87Rb vapour at a temperature of 
54 °C. In our experiments, the atoms do not move in a specific direction 
but instead undergo thermal motion. In the classical non-reciprocity 
experiments (Fig. 1a), the control or probe light couples to the atomic 
transition of |1〉→|3〉 or |2〉→|3〉 with detuning Δc or Δp. In the forward 
case, with the probe co-propagating with the control beam, an atom 
always ‘sees’ the probe and control fields with the same Doppler fre-
quency shifts, and their effects on the two-photon detuning, Δ = Δc – Δp, 
are cancelled (Δ = 0), leading to a Λ-type electromagnetically induced 
transparency (EIT) process. By contrast, for the backward case, when 
the probe propagates against the direction of the control field, oppo-
site Doppler frequency shifts enhance the two-photon detuning, 
Δ = 2kv, resulting in the blockade of probe light. Here v is the veloc-
ity of atoms moving along the control field and k is the magnitude 
of the wavevectors of the control and probe (for simplicity, we take 
|kc| = |kp| = k). Such classical non-reciprocity is revealed by the differ-
ent transmission spectra of the same probe laser for opposite input 
directions (Extended Data Fig. 1). The mechanism behind this classical 
non-reciprocity is the Doppler shift induced by the moving atoms, 
which is independent of the interaction between the two channels, as 
already known in previous works31,32.

In quantum non-reciprocity experiments (Fig. 1b), we remove the 
probe laser and let it be the vacuum, that is, only a fixed right-hand 
circularly polarized (RHCP) control field is set in each channel, which 
forms Λ-type EIT configuration, together with a particular optical mode 
in a vacuum fulfilling the energy and momentum conversations in the 
interaction. Importantly, the collective spin wave ρ12 (ground-state 
coherence) created in the channels is dissipatively coupled to each 
other through the intrinsic ballistic motion of thermal atoms27,29. We 
find that quantum correlations emerge when the control beam in CH2 
propagates against the direction of control in CH1 (backward case), but 
do not exist when the CH2 control propagates along the direction of 
the CH1 control (forward case). Here the chirality of the control beams 
serves as the source of the observed non-reciprocity.

The underlying principle can be understood as follows: when the 
RHCP control beams in CH1 and CH2 propagate in the same +z direc-
tion (Fig. 2a), the atoms ‘feel’ the same electric field and, thus, see the 
same chirality for the fields in CH1 and CH2. This leads to an effective 
dissipative coupling between the channels that can be described by 
the linear dissipative beamsplitter (DBS) model.

On the other hand, when the RHCP beams in CH1 and CH2 propa-
gate in opposite directions (for example, beam in CH1 propagates in 
the +z direction whereas the beam in CH2 propagates in the –z direc-
tion), the atoms feel different electric fields and, thus, see opposite 
chirality for the fields in CH1 and CH2. Namely, the atoms see the RHCP 

field propagating in the –z direction as a left-hand circularly polarized 
(LHCP) beam propagating in the +z direction, effectively creating a 
situation in which two beams with opposite chirality propagate in the 
same +z direction (Methods provides more theoretical details). This 
then leads to an effective dissipative coupling between the channels 
that can be described by a nonlinear non-Hermitian parametric ampli-
fier (NHPA) model. To summarize, the atoms see the same or opposite 
chirality for the two control beams in the forward or backward cases, 
respectively, leading to an effective propagation-direction-dependent 
coupling between CH1 and CH2, which, thus, results in non-reciprocal 
quantum correlations.

More specifically, in the forward case, the atoms see the same 
chirality for the beams having the same polarization and propagating 
in the same direction in CH1 and CH2 (Fig. 1b, top). In this case, one 
atomic spin excitation ̂J

†
 (|2〉→|1〉) in CH1 is accompanied by a 

lower-sideband photon annihilation (|2〉→|3〉) locally, represented as 
̂H1 ∝ ̂a1 ̂J

†
+ h.c. This excitation may diffuse either to the dark region 

outside the beam into the reservoir resulting in dissipation or to CH2 
where it interacts with light of the same polarization. In the latter case, 
the photon in the lower sideband (|3〉→|2〉) is forward scattered along 
with the annihilation of the same spin excitation ̂J  (|1〉→|2〉), described 
by ̂H2 ∝ ̂a†2 ̂J + h.c.

Owing to the collective effect buildup along the propagation 
direction of light, this two-step interaction results in a linear DBS cou-
pling between CH1 and CH2, which is described by the Hamiltonian 
̂HD ∝ ̂a1 ̂a†2 − ̂a†1 ̂a2, and hence, no quantum correlation emerges.

By contrast, in the backward case, the atoms see the opposite 
chirality for the beams having the same polarization but propagating 
in opposite directions in CH1 and CH2 (Fig. 1b, bottom). In this case, a 
photon in the lower sideband (|3〉→|2〉) is scattered in CH1 along with 
the annihilation of a spin excitation ̂J  (|1〉→|2〉) captured by the Hamil-
tonian ̂H1 ∝ ̂a1 ̂J

†
+ h.c. When it diffuses to CH2, in the reversed Λ-type 

EIT polarization configuration, this annihilation of the spin excitation 
̂J  (|1〉→|2〉) in CH1 is equivalent to the creation of a spin excitation ̂S

†
 

(|1〉→|2〉) in CH2. Thus, in CH2, the control beam locally interacts with 
atoms, which results in the annihilation of a spin excitation ̂S accom-
panied by the upper-sideband photon creation (|3〉→|1〉) in CH2, as 
described by ̂H

′
2 ∝ ̂a†2 ̂S + h.c. = ̂a†2 ̂J

†
+ h.c.

Different from the forward case, this two-step interaction with a 
collective dissipative coupling produces a nonlinear interaction, 
namely, ̂HN ∝ ̂a†1 ̂a†2 − ̂a1 ̂a2, leading to the buildup of quantum correla-
tions between light (denoted by ̂a†1  and ̂a†2) in the channels. More theo-
retical derivations can be found in the Supplementary Sections 1 and 2.

In a broader view, our approach suggests dissipation engineering 
as a means of creating quantum correlations and provides a feasible 
way to explore and utilize the quantum nature of non-Hermitian chiral 
systems33,34.

To detect quantum correlations, we apply a bias magnetic field 
that provides a quantization axis and enables Zeeman levels in the 
Λ-type three-level scheme to be manipulated. In this way, we shift the 
homodyne detection frequency from d.c. to twice the Larmor fre-
quency (~300 kHz) to bypass the low-frequency technical noise, which 
then enables the optical shot-noise-limited measurement of quantum 
fluctuations. We note that the magnetic field itself does not have any 
direct role in creating quantum non-reciprocity in our study. With the 
development of experiment techniques, quantum non-reciprocity may 
be observed with ultraweak magnetic fields35,36 or even using a fictitious 
magnetic field induced by an additional laser beam37.

In our experiment, we use two sets of polarization homodyne 
detection systems at the output to measure the quantum fluctuations 
of the generated lights in each channel29, that is, Var ( ̂Xi) and Var ( ̂Pi), 
(i = 1 and 2) as carried in the photocurrents, where the position and 
momentum operators of the ith channel are defined as ̂Xi = ̂S

i
x/√||Siz|| 

and ̂Pi = ̂S
i
y/√||Siz||, with ̂S

i
x, ̂S

i
y and ̂S

i
z  denoting the Stokes operators. 

Here the control beams act as the local oscillators (Methods). 
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Moreover, to evaluate the bipartite quantum correlation or quantum 
correlation between two channels, we perform joint polarization 
homodyne detection by combining signals from the two sets of polari-
zation homodyne detectors aforementioned into two radio-frequency 
power splitters to obtain the joint variance Var( ̂X1 ± ̂X2) and Var( ̂P1 ± ̂P2) 
(Fig. 2b). Quantum correlation between the fields in CH1 and CH2  
can be evaluated from the above-measured noise spectra via the  
formula Q = B – A, with A = Var[( ̂X1 − ̂X2)/√2] + Var[( ̂P1 + ̂P2)/√2] and 
B = [Var( ̂X1) + Var( ̂X2)]/2 + [Var( ̂P1) + Var( ̂P2)]/2 . Here Q > 0 (Q = 0) 
indicates the presence (absence) of bipartite quantum correlation. We 
find that bipartite quantum correlation occurs in the backward case 
(Q ≈ 0.91) due to the nonlinear NHPA interaction, whereas no quantum 
correlation emerges in the forward case (Q = 0) because of the linear 
DBS interaction (Fig. 2c). The observed quantum non-reciprocity, with 
Q ≈ 0.91 as the difference between the bipartite quantum correlations 
for opposite directions, is fundamentally different from the classical 
non-reciprocity of transmission rates. In addition, we find that when 
the chirality of the control in CH2 is reversed, such quantum 
non-reciprocal effect still exists, but the results are reversed, that is, 
bipartite quantum correlations occur in the forward case but not in 
the backward case (Extended Data Fig. 2). We further confirm the 
direction-dependent emergence of quantum correlations using Gauss-
ian discord 𝔇𝔇1—a good indicator of quantum correlations beyond 
entanglement38,39—which has the value of 𝔇𝔇1 = 0 for the forward case 
and 𝔇𝔇1 = 2.4 × 10−3 for the backward case in our experiment (Methods 
and Supplementary Section 3).

The non-reciprocal quantum correlation in our system is restricted 
to a monochromatic mode (Fig. 2c), because the phases of the spin 
waves are not synchronized27,29, reducing the efficiency of mutual 
coherence stimulation between the two channels, which limits the 
bandwidth of the NHPA process to ~100 Hz. To overcome this limitation, 
a periodic drive is used to spectrally tailor our system with synthetic 
levels, through the photon-assisted Floquet coherent transition. We 
note that Floquet engineering has been recently used in trapped ions 
and atomic gases to realize discrete time crystals40, topological band 
structures41 and Floquet masers42. However, to the best of our knowl-
edge, it has not been used for controlling quantum correlations in any 
non-Hermitian system.

Next, we show that periodic modulations help expand the single-
colour quantum non-reciprocity to multicolour sidebands, thereby 
increasing the bandwidth of our system. For this purpose, we add an 
oscillating magnetic field B1cos(ω1t) to the static field B0 along the z 
axis to realize periodically driven Zeeman levels. According to the 
Floquet theorem43, the evolution dynamics of a periodically driven 
two-level system can be described with Floquet quasi-energy states 
|±⟩n = ∑m𝒥𝒥n−m (±πγB1/ω1) |±,m⟩  and the associated ladder-level ener-
gies41: E±,n = ±ω0 + nω1, where γ is the gyromagnetic ratio of 87Rb. Here 
𝒥𝒥n−m is the Bessel function of the first kind of order (n – m), and |±, m〉 
indicates that the spin is in the up |+〉 or down |–〉 state with photon 
number m in the periodic driving field (Fig. 3a). When the system is 
configured as NHPA and only a control beam is used in CH2, the periodi-
cally driven EIT spectra of CH2 exhibit first- and second-order 
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of the control laser in CH2 is reversed, whereas its polarization is kept as RHCP 
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non-reciprocity (QNR), that is, bipartite quantum correlation occurs in the 
backward case (orange) but not for the forward case (blue), is observed at around 
298.8 kHz (yellow zone). The orange (blue) markers and solid (dashed) curve 
indicate the experimental and theoretical results for the backward (forward) 
case, respectively.
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sidebands (Fig. 3b), implying multimode oscillations at tunable fre-
quencies of transition between synthetic quasi-energy states. Here 
both control and probe beams are switched on in CH1, and the probe 
frequency of CH1 is swept around the two-photon resonance location 
of the carrier (Δ = 0). The non-zero frequency of the carrier EIT centre 
is attributed to the a.c. Stark shift from the control beam. We calibrate 
the peak amplitude of the carrier and the prominent first-order side-
bands by fitting with a zero- and first-order Bessel function of the first 
kind 𝒥𝒥0(1) (kU/ν1)  as a function of the modulation frequency ν1 with 
ω1 = 2πν1, confirming the Floquet theorem in our system. Here kU is a 
parameter proportional to the modulation depth U. We observe a 
multimode feature with carrier and first-order sidebands in the EIT 
spectra for ν1 = 3 kHz and U = 6 V. To explore quantum correlations in 
this regime, we perform quantum noise measurements via joint polari-
zation homodyne detection. Intriguingly, we find that quantum non-
reciprocity indeed emerges at different frequencies by tuning the 
modulation depth (Fig. 3c). Specifically, non-reciprocal quantum 
correlations occur at 299 kHz and 299 ± 3 kHz for U = 5.5 V and 
ν1 = 3 kHz. Moreover, for the case of U = 7.6 V and ν1 = 2 kHz, we also 
observe the multicolour quantum non-reciprocity with the first, second 
and third sidebands, with the carrier at 298.3 kHz (Extended Data Fig. 
3 shows more results for other cases).

In conclusion, we have demonstrated a chirality-induced quan-
tum effect, that is, non-reciprocal optical two-channel correlations 
by using a non-Hermitian macroscopic system. We find that by only 
flipping the input direction of the same laser through the same atomic 
vapour, quantum two-channel correlations can be switched on and off. 
Also, we demonstrate an efficient way to achieve multicolour quantum 
non-reciprocity by using Floquet engineering, offering opportuni-
ties to reveal new features or functionality of non-Hermitian chiral 
systems with synthetic dimensions. Our findings establish a unique 
link between two important topics—chirality and non-reciprocity—in 
the quantum cross-correlation level, highlight the roles of dissipative 
interactions and vacuum fields in observing such a unique link. This is 
a step towards exploring multipartite quantum effects with chiral non-
Hermitian systems, for a wide range of potential future applications in, 
for example, chiral quantum engineering44, one-way quantum informa-
tion processing or in-memory computing45, as well as non-reciprocal 
quantum sensing45 or imaging46.

We note that classical non-reciprocity, that is, the one-way trans-
mission of classical light47, has a key role for improving the perfor-
mance of optical networks by preventing signal interference, and by 
enabling essential devices used in optical signal processing, such as 
optical isolators and circulators8,48,49. Thus, quantum non-reciprocity 
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Fig. 3 | Multicolour quantum non-reciprocity induced by Floquet engineering. 
a, States modulated by a periodic drive show the two-photon transitions |+, 
n〉→|−, n〉, |+, n〉→|−, n ± 1〉 and |+, n〉→|−, n ± 2〉, which indicate the carrier, first 
sideband and second sideband in the EIT spectra, respectively. b, Peak amplitude 
of the carrier (green) and first-order sidebands (orange) as a function of the 
modulation frequency ν1 with the modulation depth kept fixed (U = 6.0 V). The 
green and orange curves illustrate the theoretical fitting with the Bessel function. 

Here Δ is the two-photon detuning with respect to the carrier. c, Multicolour 
quantum non-reciprocity, compared with the monochromatic one shown in Fig. 
2c, occurs by tuning U and ν1. The coloured markers denote the experimentally 
measured results, whereas the solid (dashed) black curve is a theoretical fitting 
for the backward (forward) case. The noise spectra for U = 5.5 V and ν1 = 3 kHz are 
plotted in the right panels.
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is also expected to have important applications in, for example, 
achieving one-way quantum network (without quantum information 
backflow)5, making non-reciprocal quantum sensors46, or protect-
ing quantum states against random noises24. Moreover, we note that 
classical non-reciprocity was already utilized as a powerful resource 
for sensing, which allows one to exceed the fundamental bounds con-
straining any conventional, reciprocal sensor50. We expect that quan-
tum non-reciprocity can also be used to improve the performance of 
quantum sensors by enhancing one-way quantum correlations against 
backscattering losses46. We also believe that the fundamental link 
between chirality and quantum non-reciprocity, as revealed here, can 
provide a deeper understanding of both concepts, and may stimulate 
future efforts for building and using devices and systems that exploit 
quantum directional effects.
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Methods
Experiment setup
We use a paraffin-coated cylindrical cell, with a diameter of 2.5 cm and 
length of 7.5 cm, containing isotopically enriched 87Rb vapour. The cell 
is mounted inside magnetic shielding, in which a set of coils provides 
precise control over the internal longitudinal magnetic field. The num-
ber density of Rb atoms is controlled by adjusting the temperature of 
the pull-off of the cell (54 °C in this work). A diode laser is tuned to the 
D1 line of 87Rb and is split into the control and probe beams. As shown in 
Extended Data Fig. 4, in each channel, a relatively strong control beam 
completely overlaps with the weak probe beam (or vacuum mode) with 
orthogonal circular polarizations (5 mm in diameter), forming the 
Λ-type EIT configuration with Zeeman sublevels. In practice, we always 
stabilize the pump laser frequency to cross the peak of |F = 2〉 to |F′ = 1〉 
and |F = 2〉 to |F′ = 2〉 of the D1 transition via the locking technique based 
on saturation absorption spectroscopy. The intrinsic ballistic motion 
of thermal atoms has a key role for realizing the dissipative coupling 
between two optical channels: the atoms can move back and forth 
many times between the channels within the coherence lifetime due 
to their high atomic velocity (160 m s–1) and the small diameter of the 
atomic cell (only 2.5 cm). This is enabled by the anti-relaxation coat-
ing inside the vapour cell, which allows atoms to undergo hundreds 
or thousands of wall collisions with little demolition of their internal 
quantum state.

In the quantum non-reciprocal experiment, we switch off the input 
probe fields in both channels, replacing them with a coherent vacuum. 
In the forward scattering process, the control and vacuum states in the 
optical mode satisfy the energy and momentum conservation condi-
tion. Specifically, when the control beam resonantly couples to the 
transition |1〉→|3〉 (|2〉→|3〉), the frequency of this optical mode fulfils the 
two-photon resonance condition in the Λ-type three-level scheme, that 
is, the optical mode resonantly couples to |2〉→|3〉 (|1〉→|3〉). In addition, 
the polarization of this optical mode is orthogonal to that of the control 
beam. Due to the forward scattering process, the newly generated 
quantum light field in this particular optical mode corresponding to 
the transition |3〉→|2〉 (|3〉→|1〉) propagates along the direction of the 
control field in each channel.

To extract quantum noise and correlation information, each out-
put beam of the cell is detected by a separate polarization homodyne 
measurement setup, which is composed of a polarization beamsplitter 
and custom-built balanced homodyne detector. The noise power of 
the amplified difference photocurrents in the balanced homodyne 
detector is recorded using a spectrum analyser. The circularly polarized 
control fields also have the role of the local oscillators of the homodyne 
detectors at the output for quantum noise measurements of the probe 
fields. The optical transmission between the end window of the vapour 
cell and the balanced photodetector is 92%. The quantum efficiency of 
the balanced photodetector is 92%.

Bipartite quantum correlation or quantum correlation between 
two channels are measured by joint homodyne detection, typically 
used in the measurement of continuous variable entanglement29, 
consisting of two sets of polarization homodyne detectors and two 
radio-frequency power splitters/combiners29,51.

In classical non-reciprocal experiments, to obtain the spectra 
of EIT carried by the probe, circularly polarized probe and control 
beams after the cell are converted to orthogonal linear polarization 
by quarter-wave plates, and directed to the polarization beamsplit-
ter (Extended Data Fig. 4, inset). The frequency of the probe in CH1 is 
swept by scanning the driving frequency on the second acousto-optic 
modulator (Extended Data Fig. 4). Here the +1-order diffracted beam 
of the first acousto-optic modulator (at 80 MHz) is fed into the second 
acousto-optic modulator, and the –1-order diffraction of the second 
acousto-optic modulator (at 80 MHz + Δ) is utilized as the probe of 
CH1, to ensure the accuracy of the frequency detuning with respect 
to the control.

There are three main differences between classical and quan-
tum non-reciprocal effects. (1) The physical principles are different. 
The mechanism behind classical non-reciprocity is the Doppler shift 
induced by the moving atoms, which is independent of the interaction 
between the two channels. However, the principle behind quantum 
non-reciprocity is the chirality of light. (2) The experimental systems 
are different. An additional probe light is required in the experiments of 
classical non-reciprocal effects for the measurements of transmission 
spectra. For the measurements of quantum noise and correlations, we 
remove the input probes and let them be the vacuum in the experiments 
of quantum non-reciprocity. (3) The measured observables are differ-
ent. In the classical non-reciprocal effects, we measure the transmission 
spectra of the probe. For the experiments of quantum non-reciprocity, 
we measure the quantum fluctuations in the output vacuum modes, as 
well as the quantum correlations between the two channels.

Chirality of light
Consider the plane-wave solution to Maxwell’s equations given by

E⃗ ( ⃗r, t) = E⃗0 exp [i(k⃗ ⋅ ⃗r − ωt)] . (1)

The wavevector k⃗  specifies the direction of propagation, and k⃗  
and E⃗0 are perpendicular. For k⃗  in the +z direction, we can write two 
orthogonal complex electric-field components in the x and y 
directions:

E⃗x (z, t) = E0 cos (ωt − kz) , E⃗y(z, t) = E0 sin (ωt − kz) . (2)

For LHCP light, the amplitudes of these two components are equal, 
and the phase difference is π/2. When light propagates along the +z 
direction, these two components can be merged into a single complex 
electric field: E⃗0 = (E0, E0ei

π
2 ,0) = (E0, iE0,0); therefore,

E⃗ = (E0ei(kz−ωt), iE0ei(kz−wt),0). (3)

Taking the real part gives the actual electric field:

Re [E⃗]
−
= (E0 cos (kz − ωt) , −E0 sin (kz − ωt) ,0). (4)

where ‘_’ indicates LHCP light. By ignoring the time-dependent term, 
the LHCP light propagating in the +z direction is written as

Re [E⃗]
−
= (E0 cos (kz) , −E0 sin (kz) ,0). (5)

Similarly, RHCP light propagating in the +z direction is given by

Re [E⃗]
+
= (E0 cos (kz − ωt) , E0 sin (kz − ωt) ,0) . (6)

If we keep using k⃗  as the wavevector, when the RHCP light propa-
gates in the –z direction, it can be described as

Re [E⃗]
′

+
= (E0 cos (−kz − ωt) , E0 sin (−kz − ωt) ,0) . (7)

By ignoring the time-dependent term, the RHCP light propagating 
in the –z direction is given by

Re [E⃗]
′

+
= (E0 cos (−kz) , E0 sin (−kz) ,0) ,

= (E0 cos (kz) , −E0 sin (kz) ,0) ,
(8)

which is the same as the LHCP light propagating in the +z direction. 
Therefore, two controls with the same RHCP propagating in the forward 
case, the ‘atoms’ see the same chirality of the control beams. However, 
in the backward case, the atoms see the opposite chirality of the control 
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beams, since the reversed RHCP light is similar to the LHCP light in the 
forward case.

Measuring quantum noise for the quadratures of light
The quantum state of light can be characterized by the Stokes operators 
̂Sx, ̂Sy and ̂Sz, which are given by the differences of the number operators 
̂npolarization of photons polarized in different orthogonal bases. In the 

circular polarization bases of ̂aR (RHCP) and ̂aL (LHCP), we have

̂Sx = − 12 (
̂a†R ̂aL + ̂a†L ̂aR) , (9)

̂Sy = − 1
2i (

̂a†R ̂aL − ̂a†L ̂aR) , (10)

̂Sz = − 12 (
̂a†R ̂aR − ̂a†L ̂aL) . (11)

In the experiments, we use σ± circularly polarized coherent light 
to interact with the atomic ensembles (input probes are vacuum), which 
means ̂Sz  can be treated as a large classical value proportional to the 
photon flux Φ = P/ℏω. Here P represents the optical power, and ℏω is 
the energy of a single photon. The quantum variables ̂Sx  and ̂Sy are the 
physical variables we are interested in, and they have a zero mean 
value52. The control light of CH1 is RHCP and that of CH2 is LHCP. Thus, 
in CH1, we have

̂X1 = − ̂Sx/√Sz =
1
√2

( ̂aL + ̂a†L) , ̂P1 = − ̂Sy/√Sz =
1
i√2

( ̂aL − ̂a†L) , (12)

and in CH2, we have

̂X2 = − ̂Sx/√Sz =
1
√2

( ̂aR + ̂a†R) , ̂P2 = − ̂Sy/√Sz =
1
i√2

( ̂aR − ̂a†R) .

(13)

The sign difference in ̂P1 and ̂P2 has taken into account the fact that 
̂Sz in the two channels have opposite signs, and [ ̂X1, ̂P1] = [ ̂X2, ̂P2] = i (ℏ = 1) 

is satisfied.
At the output of the two channels, we use the combination of a 

λ/2-wave plate and a λ/4-wave plate to rotate the Stokes vectors ̂Sx, ̂Sy 
and ̂Sz  so that the desired quadrature of light ̂X  or ̂P  is detected by the 
balanced detector. The noise power spectra of X1(ω), X2(ω), P1(ω) and 
P2(ω) are then obtained from the spectrum analyser.

Extracting the Gaussian discord
Gaussian quantum correlations beyond entanglement are captured by 
the measure of Gaussian discord. In a bipartite system, the total amount 
of correlations (classical and quantum) is given by the von Neumann 
mutual information as

I (ρAB) = S (ρA) + S (ρB) − S (ρAB) , (14)

where S(ρ) is the von Neumann entropy, and ρA(B) is the reduced density 
matrix of the subsystem A (B). Another measure of mutual informa-
tion is

JA (ρAB) = S (ρA) − infσMS (ρA |σM ) , (15)

which quantifies only the amount of classical correlations and can be 
extracted by a Gaussian measurement. Here σM is the covariance matrix 
of the measurement on mode B. As it only indicates the classical correla-
tions, the difference in the above two definitions of mutual information 
is a measure of Gaussian quantum correlation that is referred to as the 
Gaussian quantum discord38,39, that is,

𝔇𝔇A = I (ρAB) − JA (ρAB) . (16)

The discord of a bipartite system can be calculated from its covari-
ance matrix, which can be reconstructed using single/joint homodyne 
detection. The 4 × 4 covariance matrix for the state ρAB written in the 
standard form is

σAB = (
α γ

γT β
) , (17)

where the submatrices α, β and γ are defined as

α = diag [Var (XA) ,Var (PA)] , (18)

β = diag [Var (XB) ,Var (PB)] , (19)

γ = diag [Cov (XA,XB) ,Cov (PA,PB)] , (20)

with

Cov (Ô1, Ô2) =
1
2 ⟨Ô1Ô2 + Ô2Ô1⟩ . (21)

The covariance value can be obtained through joint homodyne 
detection using power splitters or combiners as

Cov (XA,XB) =
1
2 [Var (XA + XB) − Var (XA) − Var (XB)] , (22)

Cov (PA,PB) = − 12 [Var (PA − PB) − Var (PA) − Var (PB)] . (23)

With the covariance matrix σAB in hand, one can calculate the dis-
cord using

𝔇𝔇(σAB) = h (√I2) − h (ν−) − h (ν+) + h (√Emin) , (24)

where

h (x) = 1
2 (x + 1) log [

1
2 (x + 1)] −

1
2 (x − 1) log [

1
2 (x − 1)] , (25)

ν2± = 1
2 [δ ±√δ2 − 4I4] ,δ = I1 + I2 + 2I3, (26)

I1 = det [α] , I2 = det [β] , I3 = det [γ] , I4 = det [σAB] . (27)

If the following condition is satisfied

(I4 − I1I2)
2 ≤ I23 (I2 + 1) (I4 + 1) , (28)

we have

Emin = [2I23 + (I2 − 1) (I4 − 1) + 2 |I3|√I23 + (I2 − 1) (I4 − 1)] /(I2 − 1)
2. (29)

Otherwise, we have

Emin = [I1I2 − I23 + I4 −√I43 + (I4 − I1I2)
2 − 2I23 (I4 + I1I2)] /2I2. (30)

The above derivations provide the results of Gaussian quantum 
discord calculated in Fig. 2. In addition, we provide the values of Gauss-
ian quantum discord, with the error bars shown in Supplementary Fig. 
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2. The error bars are very small, which ensure that the quantum discord 
is non-zero (Supplementary Section 3 provides more discussions about 
Gaussian quantum discord).

Floquet engineering
In addition to the common magnetic field produced by the coils, an 
oscillating magnetic field at a frequency ν1 is applied in the same direc-
tion to modulate the Zeeman levels. A time-periodic modulation forces 
a quantum state in each spatial channel dressed by all harmonics of 
the driving frequency and the different harmonics that manifest as 
sidebands (n = 0, 1, 2…) of the atomic spin waves (Fig. 3). More interest-
ingly, the multicolour quantum non-reciprocity, that is, non-reciprocal 
quantum correlations occurring at different frequencies, are observed 
by using this periodic modulation.

Furthermore, such a method could enable the creation and 
manipulation of a dissipative coupling between two arbitrary Flo-
quet atomic sidebands emerging in two spatially separated optical 
channels. By tuning the frequency difference between the control 
beams in two channels to satisfy Δ0 ≈ ±nν1 with the frequency differ-
ence of atomic spin waves Δ0, one can realize the dissipative coupling 
between the collective spin waves associated with the sideband 
indices n1 and n2 (n = n1 – n2) in CH1 and CH2, respectively. Along this 
way, we demonstrated the propagation-direction-dependent chiral 
interactions between different sidebands with n = 1 (Extended Data 
Fig. 5).

Data availability
Source data are provided with this paper. All other data that support 
the plots within this paper and other findings of this study are available 
from the corresponding authors upon reasonable request.

Code availability
The computer codes used to generate the data that support the find-
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Extended Data Fig. 1 | Measured data of the classical nonreciprocity introduced by the Doppler shift. The experimental schematic and three-level Λ-type EIT 
configurations are shown in Fig. 1. When the probe in CH2 propagates in the forward direction, there is a classical EIT spectrum in CH2. When it propagates in the 
backward direction, no EIT spectrum exists.
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Extended Data Fig. 2 | Nonreciprocal bipartite quantum correlations under 
the reversed polarizations configuration. When the polarizations of the fields 
are orthogonal, nonlinear non-Hermitian parametric-amplifier (NHPA) and linear 
dissipative beam-splitter (DBS) interactions are created for co-propagating (left 
panels) and counter-propagating (right panels) fields, respectively. Here, ↻ and 
↺ represent RHCP and LHCP polarizations, respectively. The markers of ⨂ and 

⨀ denote the propagation direction. Quantum correlation induced by NHPA is 
clearly seen in the measured quantum noises, while no quantum correlation can 
be observed with DBS. This direction-dependent quantum correlation (that is, 
quantum nonreciprocity) is further confirmed by the Gaussian quantum discord 
with 𝔇𝔇1 = 0.9× 10

−3.
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Extended Data Fig. 3 | Multicolor bipartite quantum correlations with different periodic modulations. Quantum correlations with broader bandwidth can be 
obtained by using periodic modulation (that is, Floquet techniques), where the carrier and first sideband are shown in the noise spectra with different modulation 
frequencies ν1 and modulation depths U .
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Extended Data Fig. 5 | Propagation-direction-dependent chiral interactions 
between different sidebands with Floquet engineering. a, Floquet modulated 
multi-color EIT spectra with different sidebands. Compared to the case with same 
sidebands shown in Fig. 3, the EIT spectra of the light in CH1 (red) and CH2 (blue) 
show the transparency windows with different sidebands: 1st sideband (CH1) with 
carrier (CH2), carrier (CH1) with +1st sideband (CH2), and +1st sideband (CH1) 
with +2nd sideband (CH2). Here, the spectra correspond to the backward case in 
b with pump power at 100 μW, the Floquet modulation frequency is 2 kHz, and 

the control frequency in CH2 has a 2 kHz difference from that in CH1. b, Nonlinear 
NHPA and linear DBS interactions between different sidebands are generated in 
the forward and backward cases for two channels with same polarizations, 
respectively. Such propagation-direction-dependent chiral interactions is 
revealed by the EIT response amplitudes in the two channels. c, A nonlinear NHPA 
(linear DBS) interaction can also be introduced in the backward (forward) case 
for two channels with orthogonal polarizations. Here, error bars represent s.d. 
from three measurements.
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