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1. Theoretical calculations  

1.1. Spin and polarization in 2D and 3D fields 

The spin angular momentum density in a monochromatic electromagnetic field in free space is 
given by [17,33] 

 
  
S = 1

16πω
Im E* ×E+ H* × H( ) ≡ S(e) + S(m) , (S1) 

where we use Gaussian units and take into account both electric and magnetic field 
contributions,   S

(e)  and   S
(m) . Notice that the electric and magnetic fields  E  and  H  are complex 

because we are using the analytic signal representation; the real fields are the real part of the 
complex fields. The intensity of the field can be determined by the ratio of its energy density to 
the frequency:   I =W /ω , which yields 

 
   
I = 1

16πω
E

2
+ H

2( ) ≡ I (e) + I (m) . (S2) 

Let us consider the polarization properties of the electric wave field  E , the properties of 
the magnetic field  H  following a similar description. Polarization of a 2D paraxial field 
propagating in the positive-z direction is determined by the 2×2 polarization (density) matrix or, 
equivalently, by 4 real Stokes parameters    

!s = s0 ,s1,s2 ,s3( )  [1,2]: 
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where  ...  denotes time averaging. The corresponding degree of 2D polarization is given by 

 
  
P2D(e) =

si
(e)2

i=1

3∑
s0

(e) ∈ 0,1⎡⎣ ⎤⎦ . (S4) 

From Eqs. (S1)–(S4) and their magnetic-field counterparts, it is easy to find the following 
relations: 

 
   

S(e,m)

I (e,m)
=

s3
(e,m)

s0
(e,m) z , (S5) 

where the overbar denotes the unit vector of the corresponding axis. For totally polarized light, 
  P2D(e,m) = 1 , the averaging brackets can be omitted, and Eq. (S5) yields the usual relation between 
the plane-wave spin and degree of circular polarization (helicity) [2,17]. For totally unpolarized 
2D field,   P2D(e,m) = 0 , the Stokes vector is    

!s (e,m) ∝ 1,0,0,0( ) , and the time-averaged spin vanishes: 

  
S(e,m) = 0 .  

The polarization of a generic 3D nonparaxial field at a given point is determined by the 
3×3 polarization (density) matrix or, equivalently, by 9 real polarization parameters 

  
!
Λ = Λ0 ,Λ1,...,Λ8( )  [4–12]: 
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⎟
⎟
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(S6) 
The corresponding degree of 3D polarization can be defined as [5,10–12,40,41] 

 
  
P3D(e) =

Λ i
(e)2

i=1

8∑
3Λ0

(e)
∈ 0,1⎡⎣ ⎤⎦ . (S7) 

From Eqs. (S1), (S2), (S7), and its magnetic-field counterpart, we find the following relations 
between the spin density and 3D polarization parameters: 

 
   

S(e,m)

I (e,m)
= −

2Λ7
(e,m)

3Λ0
(e,m) x +

2Λ5
(e,m)

3Λ0
(e,m) y −

2Λ2
(e,m)

3Λ0
(e,m) z . (S8) 

For totally polarized light,   P2D(e,m) = 1 , the spin density is still associated with the ellipticity of 
the polarization ellipse in 3D space and directed normally to its plane [14,17]. For completely 
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unpolarized 3D light (e.g., in the interior of a black-body cavity),   P3D(e,m) = 0 , the polarization 
parameters are   

!
Λ(e,m) ∝ 1,0,0,...,0( ) , and the time-averaged spin vanishes:   

S(e,m) = 0 . 
Here we should make an important remark about the electric and magnetic field 

characteristics. In paraxial light, the electric and magnetic parameters are equal:    
!s (e) = !s (m) ≡ !s , 

  
S(e) = S(m) = S

2
, 

  
I (e) = I (m) = I

2
. This is a consequence of the relation  H = z ×E  between the 

fields. For nonparaxial light, on the other hand, the electric and magnetic fields are not locally 
locked with each other, and therefore in general   

!
Λ(e) ≠

!
Λ(m) ,   S

(e) ≠ S(m) ,   I
(e) ≠ I (m)  

[17,18,20,26,32,33]. 

1.2. Unpolarized plane wave 

A paraxial 2D field at a given point can be approximated by a plane wave. A totally unpolarized 
plane wave can be considered as a field with equal amplitudes of the orthogonal and mutually 
incoherent components  Ex  and  

Ey . With vanishing z-component,   Ez = 0 , this yields the 
following 2D and 3D polarization matrices (S3) and (S6): 

 
 
Φ̂2D(e) ∝ 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
,     

 

Φ̂3D(e) =
1 0 0
0 1 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (S9) 

The corresponding 2D and 3D polarization parameters are: 

    
!s (e) ∝ 1,0,0,0( ) ,     

  

!
Λ(e) ∝ 1,0,0,0,0,0,0,0, 3 / 2( ) , (S10) 

which yield the degrees of polarization (S4) and (S7): 

   P2D(e,m) = 0 ,     
  
P3D(e,m) = 1

2
. (S11) 

Thus, a totally unpolarized plane wave is half-polarized in the 3D sense [5,11,12]. This is 
related to the fact that the third component of a paraxial field vanishes, and the 3D polarization 
matrix is not proportional to the unit 3×3 matrix. The spin density vanishes in an unpolarized 
plane wave,   

S(e,m) = 0 , but its partial polarization in the 3D sense means that the spin can 
appear after optical transformations generating a nonzero z-component in the field.  

1.3. Focused field from an unpolarized source 

A nonparaxial focused field can be described by a simple model of a Gaussian beam with the 
inclusion of its longitudinal field components     Ez , Hz{ } ! ik −1 ∇⊥ ⋅E⊥ ,∇⊥ ⋅H⊥{ } , where the 

subscript “⊥ ” indicates transverse   x, y( )  components. In this manner, a polarized Gaussian 
beam in the focal plane is described by the fields [17] 

 

   

E⊥ , H⊥{ }∝ 1

1+ m
2

x + my,− mx + y{ }eikz−kr2 /2zR ,       Ez , Hz{ } ! −i "r Er , Hr{ } . (S12) 
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Here,  m  is a complex parameter describing the polarization state of the wave,   k =ω / c  is the 
wave number,   r,ϕ , z( )  are the cylindrical coordinates,    !r = r / zR , and  zR  is the Rayleigh range. 

The intensity distribution (S2) of the beam (S12) is given by 
   
I ∝ 1+ !r 2 / 2( )e−kr2 /zR .  

The focusing process can be considered as a transition from a plane-wave limit  zR = ∞ , 

  Ez = Hz = 0 , to a given finite  zR . The incident paraxial field is characterized by the Stokes 

parameters 

   

!s ∝ 1,
1− m

2

1+ m
2 ,

2Re m( )
1+ m

2 ,
2 Im m( )
1+ m

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 and normalized spin density    S0 / I0 = s3 / s0( ) z . 

For the focused field with a finite  zR , the normalized spin density is described by Eq. (2) in the 
main text:  

 
    

S
I
!

1
1+ "r 2 / 2

S0

I0

+ "rϕ
⎡

⎣
⎢

⎤

⎦
⎥ ≡

S#
I
+

S⊥

I
. (S13) 

We emphasize that this expression is valid for the total (electric plus magnetic) spin (S1) and 
(S2), while the electric and magnetic parts,   S

(e)  and   S
(m) , have more complicated forms and are 

generally not equal to each other [17,26,32]. 
Let us now consider the focused beam produced from a totally unpolarized paraxial (plane) 

wave. This field can be considered as an incoherent superposition of two beams (S12) with same 
intensities and orthogonal polarizations (e.g., with   m = 0  and  m = ∞ ). Such incoherent 
superposition means additive properties of quadratic field quantities, including the spin (S1), 
intensity (S2), and polarization matrix (S6). Direct calculations with fields (S12) result in the 
following polarization matrix:  

 

   

Φ̂3D(e) = Φ̂3D(m) ∝
1 0 −i !x
0 1 −i !y

i !x i !y !r 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

, (S14) 

where    !x = x / zR  and    !y = y / zR . Notably, for the nonparaxial 3D field produced from an 
unpolarized source, the electric- and magnetic-field-based polarization parameters are 
equivalent, similarly to the paraxial case. Equation (S14) with Eq. (S6) corresponds to the 
polarization parameters Eq. (3) in the main text:  Λ1 = Λ2 = Λ3 = Λ4 = Λ6 = 0 , 

 
   

Λ8

Λ0

= 3
2

1− !r 2

1+ !r 2 / 2
,    

   

Λ5

Λ0

= 3
2

!x
1+ !r 2 / 2

,    
   

Λ7

Λ0

= 3
2

!y
1+ !r 2 / 2

. (S15) 

From here, the 3D degree of polarization (S7) is found to be 

 
   
P3D = 1+ 2 !r 2

2+ !r 2 . (S16) 

For    !r ≪1 , this reduces to 
   
P3D !

1
2

1+
"r 2

2
⎛
⎝⎜

⎞
⎠⎟

.  

Substituting Eq. (S15) into Eq. (S8), we obtain the time-averaged spin density in the 
focused field from an unpolarized source: 
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S

I
=

S(e)

I (e)
=

S(m)

I (m)
=
!xy − !yx

1+ !r 2 / 2
=

!rϕ
1+ !r 2 / 2

=
S⊥

I
. (S17) 

Thus, depolarization of the incident paraxial wave eliminates the longitudinal spin determined by 
the Stokes parameters,    S0 / I0 = s3 / s0( ) z , (because we consider an incoherent superposition of 

states with opposite   s3 ), while the transverse spin  S⊥  remains unaffected. The only new feature 
of the transverse spin from an unpolarized source is that it now has equal electric and magnetic 
field contributions; for polarized light, these contributions depend on the Stokes parameters of 
the incident field [17,26,32].  

1.4. Evanescent wave from an unpolarized source 

We now consider an evanescent wave, which can be generated via total internal reflection of a 
paraxial incident field (plane wave). As before, we start with the polarized evanescent wave, 
which has the electric and magnetic fields [17,20]: 

 

   

E, H{ }∝ 1

1+ m
2

x + m
k
kz

y − i
κ
kz

z, − mx + k
kz

y + im
κ
kz

z
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

eikzz−κ x , (S18) 

where  kz > k  and   κ = kz
2 − k 2  are the propagation and decay constants of the wave. The 

intensity distribution is given by   I ∝ e−2κ x .  
Assuming, for simplicity, that the transmission coefficients of the total internal reflection 

are polarization-independent, the generation of the evanescent field (S18) can be regarded as a 
transition from the plane-wave limit  κ = 0 ,  kz = k , to the given finite κ  (assuming the local z-
axis to be aligned with the propagation direction in both incident and evanescent fields). The 
incident plane wave has the same properties as in the focused-field case, including the 
normalized spin density    S0 / I0 = s3 / s0( ) z . In the evanescent field with finite κ , the normalized 
spin density is described by Eq. (4) of the main text:  

 
    

S
I
= k

kz

S0

I0

+ κ
kz

y ≡
S!
I
+

S⊥

I
. (S19) 

As before, the evanescent wave produced from a totally unpolarized plane wave can be 
described as an incoherent superposition of two waves (S18) with orthogonal polarizations (e.g., 
with   m = 0  and  m = ∞ ). Direct calculations with fields (S18) result in the following polarization 
matrix (S6):  

 

  

Φ̂3D(e) = Φ̂3D(m) ∝

1 0 −iκ / kz

0 k 2 / kz
2 0

iκ / kz 0 κ 2 / kz
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

. (S20) 

As in the case of the focused field, the electric- and magnetic-field-based polarization 
parameters are equivalent. Equation (S20) with Eq. (S6) corresponds to the polarization 
parameters Eq. (5) in the main text:  Λ1 = Λ2 = Λ4 = Λ6 = Λ7 = 0 , 

 
  

Λ8

Λ0

= 3
2

k 2 −κ 2 / 2
kz

2 ,    
  

Λ3

Λ0

= 3
4
κ 2

kz
2 ,    

  

Λ5

Λ0

= 3
2
κ
kz

. (S21) 
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From here, the 3D degree of polarization (S7) equals 

 
  
P3D =

1+ 3κ 4 / kz
4

2
. (S22) 

For    κ / kz ≪1, it behaves as 
   
P3D !

1
2

1+ 3
2
κ 4

kz
4

⎛

⎝⎜
⎞

⎠⎟
.  

Substituting Eq. (S21) into Eq. (S8), we obtain the time-averaged spin density in the 
evanescent wave generated from an unpolarized source: 

 
   

S
I

=
S(e)

I (e)
=

S(m)

I (m)
= κ

kz

y =
S⊥

I
. (S23) 

As before, depolarization of the incident paraxial wave eliminates the longitudinal spin 
determined by the Stokes parameters, while the transverse spin  S⊥  remains unaffected, and with 
equal electric- and magnetic-field contributions. For polarized evanescent waves, these 
contributions depend on the Stokes parameters of the incident field [17,20].  

2. Details of the evanescent-wave experiment  

2.1. Stokes parameters retrieval 

In the evanescent wave experiment, only quantities related to the electric field were actually 
measured. We therefore omit the corresponding superscript “(e)” in what follows. In order to 
reconstruct the Stokes parameters describing the polarization state of the scattering signal from a 
single nanoparticle, a set of 12 measurements were recorded. The parameters   s0 ,   s1 , and   s2  were 
measured by sending the scattering signal through a linear polarizer and recording the scattering 
intensity for 4 angles of the polarizer: 0° (along the z-axis), 45°, 90° and 135°. The remaining 
Stokes parameter   s3  was measured by inserting a quarter-wave plate (QWP), with its fast axis 
set along the z-axis, just before the linear polarizer and recording the scattering intensity for the 
linear polarizer set at 45° and 135°. The same set of 6 measurements was repeated on an area of 
the sample without a nanoparticle (background measurements), in order to remove any 
contributions from parasite signals to the scattering signal of the nanoparticle. 

We use the scattering intensity of the nanoparticle   
I sc φ,θ( ) = I p

sc φ,θ( )− I0
sc φ,θ( ) , where 

  
I p

sc  and   I0
sc  are the scattering intensities with and without the nanoparticle, respectively, φ  is the 

angle of the fast axis of the QWP (defined as “∅ ” in the case where the QWP is not present), 
and θ  is the angle of the linear polarizer. Then, the Stokes parameters   s0 ,   s1 , and   s2  are 
calculated as 

   s0 = I sc ∅,0°( ) + I sc ∅,90°( ) ,  

   s1 = I sc ∅,0°( )− I sc ∅,90°( ) ,  

   s2 = I sc ∅,45°( )− I sc ∅,135°( ) . (S24) 

Due to the imperfect retardance of the QWP in the whole visible range used in the experiment, a 
correction based on Ref. [S1] was applied to the calculation of the Stokes parameter   s3 , given by 
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s3 =

1
cosδ

I sc 0°,45°( )− I sc 0°,135°( ) + s2 sinδ⎡⎣ ⎤⎦ , (S25) 

where δ  is the phase difference error of the QWP, obtained from the manufacturer’s 
specifications. 

2.2. Theoretical modelling  

Here we describe theoretical modelling of the evanescent-wave experiment (inserts in Fig. 3b). 
In order to model unpolarized light, we performed two separate calculations using two 
orthogonal states of incident light. We then computed the Stokes parameters of the scattered light 
for each of the two orthogonal polarizations and added them up. Since the Stokes parameters are 
quadratic forms of fields, this is an incoherent superposition describing the unpolarized light 
similar to the Supplemental sections 1.3 and 1.4. We confirmed that our results are invariant with 
respect to which two pairs of mutually orthogonal incident polarizations we chose for the 
analysis. For the two chosen orthogonal polarizations, the following steps were done in order to 
calculate the theoretical insets on Fig. 3b in the main text. 

1. Incident light undergoes total internal reflection in the glass-air interface   z = 0 , with an 
experimentally measured incident angle of 47° inside the glass, generating an evanescent wave 
whose 3D field   Eev  can be theoretically calculated including the Fresnel transmission 
coefficients of the interface. 

2. The evanescent wave interacts with a point-polarizable particle located at    r0 = z0z  and 

induces an electric dipole:   p =α effEev . The value of the effective polarizability  α
eff  takes into 

account multiple reflections from the surface, following an approach similar to Ref. [S2]: 

 
  
p =α Einc ≡ α Eev +Eref( ) =α Eev + Ĝrefp( ) , (S26) 

so that 

 
  
p = Î −α Ĝref⎡⎣ ⎤⎦

−1
α Eev ≡ α eff Eev . (S27) 

Here   Einc  is the total incident field, including the incident evanescent wave   Eev  and the reflected 
fields of the dipole   Eref  acting back on itself, which is expressed via Green’s tensor of the 
surface reflected field,   E

ref r( ) = Ĝref r,r0( )p , and α  is the polarizability of the particle in a 
homogeneous medium. Using the quasistatic approximation for the metallic particle of 

permittivity  
ε p  surrounded by the medium with permittivity ε , 

  
α = 4πR3ε0

ε p − ε
ε p + 2ε

 (in the SI 

units) [S3], where  R  is the particle’s radius. The calculation of   Ĝ
ref  is detailed later. 

3. Once the induced dipole  p  is known, the far-field radiation in the upper half space is 
calculated by coherently adding the fields radiated by the dipole towards the upper half space 
and the fields radiated by the dipole towards the bottom half-space and subsequently reflected 
from the glass surface: 

 
  
Esc r( ) = E0 r( ) +Eref r( ) = Ĝ0 r,r0( ) + Ĝref r,r0( )⎡⎣ ⎤⎦ p , (S28) 

The Green function for the reflected field,   Ĝ
ref , required in the steps 2 and 3, can be obtained 

from the angular spectrum decomposition of the dipolar fields as derived in Refs. [S4,S5]: 
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Eref r( ) = Ĝref r,r0( )p = ik 2

8π 2εkz

Rs es ⋅p( )es + Rp ep
− ⋅p( )ep

+⎡
⎣

⎤
⎦∫∫ ek⋅ r+r0( )dkxdky . (S29) 

Here we used the unit vectors for the s and p polarizations defined over the k-space as 

   
es = −

ky

k⊥

,
kx

k⊥

,0
⎛

⎝
⎜

⎞

⎠
⎟  and 

   
ep
± = ±

kxkz

k⊥k
,±

kykz

k⊥k
,−

kz

k

⎛

⎝
⎜

⎞

⎠
⎟ , 

  
k⊥ = kx

2 + ky
2 = k 2 − kz

2 , 

  k = nω / c = ε / ε0ω / c , as well as the corresponding Fresnel reflection coefficients of the air-

glass interface, 
  
Rs,p kx ,ky( ) . Using the identity   es ⋅p( )es = es ⊗ es( )p , where ⊗  denotes the 

outer product, we arrive at the Green function required for step 2: 

 
   
Ĝref r,r0( ) = ik 2

8π 2εkz

Rs es ⊗ es( ) + Rp ep
− ⊗ ep

+( )⎡
⎣

⎤
⎦∫∫ ek⋅ r+r0( )dkxdky , (S30) 

The Green function for the radiated dipolar fields in the upper half space (without reflection) is 

 
   
Ĝ0 r,r0( ) = ik 2

8π 2εkz

es ⊗ es + ep
+ ⊗ ep

+⎡⎣ ⎤⎦∫∫ ek⋅ r−r0( )dkxdky , (S31) 

We emphasize that this model accounts for both (i) multiple reflections acting on the particle and 
modifying its effective polarizability, and (ii) reflection of the scattered fields adding up to the 
direct scattering from the particle. Both of these effects are required to achieve the close match to 
experiment. In particular, surface reflections are responsible for breaking the mirror symmetry 

 kz →−kz  in the scattering patterns in Fig. 3b. 
In order to compute the far-field radiation patterns and polarization from the angular 

spectrum, we use the known relation 

 
   
Efar r( ) = Epattern ϑ ,ϕ( ) eikr

r
= −2π ikz E kx ,ky( ) eikr

r
, (S32) 

where 
   
E kx ,ky( ) = Ep kx ,ky( )ep

+ kx ,ky( ) + Es kx ,ky( )es kx ,ky( )  corresponds to the angular spectrum 

   
E r( ) = E kx ,ky( )eik⋅r∫∫ dkxdky , and    k = k sinϑ cosϕ ,k sinϑ sinϕ ,k cosϑ( ) . 

 
 

Supplementary References 

S1. Kihara, T. Measurement of Stokes Parameters by Quarter-Wave Plate and Polarizer. Appl. 
Mech. Mater. 3–4, 235–242 (2006). 

S2. Petrov, M. I., Sukhov, S. V., Bogdanov, A. A., Shalin, A. S. & Dogariu, A. Surface plasmon 
polariton assisted optical pulling force. Laser Photon. Rev. 10, 116–122 (2016). 

S3. Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles 
(Wiley, 1983). 

S4. Rotenberg, N., Spasenović, M., Krijger, T. L., le Feber, B., García de Abajo, F. J. & 
Kuipers, L. Plasmon Scattering from Single Subwavelength Holes. Phys. Rev. Lett. 108, 
127402 (2012). 

S5. Picardi, M. F., Manjavacas, A., Zayats, A. V. & Rodríguez-Fortuño, F. J. Unidirectional 
evanescent-wave coupling from circularly polarized electric and magnetic dipoles: An 
angular spectrum approach. Phys. Rev. B 95, 245416 (2017). 


