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Classical polarization optics usually examines paraxial light 
and its two-dimensional (2D) polarization states1. Similarly, 
the spin of photons in quantum electrodynamics textbooks is 

also described by 2D circular polarizations of plane electromagnetic 
waves2. However, modern nano-optics is based on the use of struc-
tured non-paraxial fields, where all three spatial components of the 
field vector generically play a role3. This has required extending 
existing polarization theory to the 3D case4–12. This extension is by 
no means trivial, with the four Stokes parameters describing generic 
2D polarization being substituted by nine polarization parameters 
characterizing generic 3D polarization.

Simultaneously, the notion of spin has had to be augmented to 
3D structured fields13–17. The local spin density is well defined for 
monochromatic waves and can be associated with the radiation 
torque on small dipole particles17. This has led to the discovery of the 
unusual transverse spin in inhomogeneous fields, which has several 
remarkable properties18–32 (for reviews, see refs. 17,33–35). This spin, 
orthogonal to the main propagation direction and wavevectors, is 
a very robust phenomenon that has found applications for spin–
direction coupling using evanescent waves, which is highly efficient 
and largely independent of the details of the system22–25,27–29,33–35. 
Moreover, it was recently found that the transverse spin is equally 
present in inhomogeneous sound waves36–38 (which are traditionally 
considered to be scalar, that is, spinless), quantum electron waves29 
and even gravitational waves39.

In this Article, we demonstrate, both theoretically and experi-
mentally, that the transverse spin is essentially a 2D-polarization- 
independent phenomenon, which survives even in 3D fields gener-
ated from totally unpolarized paraxial light (Fig. 1). This is in sharp 
contrast to the usual longitudinal spin, which is directly related to 
the 2D polarization and vanishes in unpolarized fields. We show 
that this phenomenon is intimately related to the difference between 
the 2D and 3D polarization descriptions. Namely, the totally unpo-
larized 2D field is, at the same time, half-polarized in the 3D sense 
(according to the definition5). Indeed, 2D depolarization implies a 
single random phase between the two orthogonal field components 

(with equal amplitudes), while complete 3D depolarization requires 
two random phases between the three mutually orthogonal field 
components. Therefore, any regular optical transformation produc-
ing a non-paraxial 3D field from a 2D-unpolarized far-field source 
will have partial 3D polarization, with the degree of polarization not 
less than 1/2. In particular, a local increase of the degree of polariza-
tion up to almost 1 has been demonstrated for the tight focusing of 
an unpolarized paraxial beam40,41. In the following, we show that the 
transverse spin appears in any paraxial-to-non-paraxial transforma-
tion (Fig. 1), even without a change in the degree of polarization. 
The minimal value of 1/2 allows for non-zero spin in such fields. The 
origin of this phenomenon lies in the intrinsic spin–orbit interac-
tion of light34, where any transformation in the wavevector direction 
produces spin-related phenomena, even for 2D-unpolarized light.

Because spin is a fundamental dynamical property of light, 
which is very important in both quantum and classical theoretical 
and applied optics (for example, for optical manipulation of micro- 
and nanoparticles), our findings provide a novel opportunity to use 
polarization-independent spin from unpolarized sources.

Theoretical background
Non-paraxial optical fields are usually generated from far-field 
sources of paraxial light via some optical transformations (Fig. 1):  
focusing, diffraction, scattering and so on. In this Article, we con-
sider two of the most common examples of non-paraxial fields: 
(1) tightly focused Gaussian-like beams and (2) evanescent waves. 
These are generated via high-numerical-aperture (NA) focusing and 
total internal reflection of the incident paraxial light, respectively.

The incident paraxial light can be approximated by a plane wave, 
so its 2D polarization state can be described by the 2 × 2 polarization 
(density) matrix Φ̂2D

I
 or, equivalently, by four real Stokes parameters 

~s ¼ s0; s1; s2; s3ð Þ
I

, where Φ̂2D ¼ 1
2

P3
l¼0 slσ̂l

I
, with σ̂l

I
 being the basic 

Pauli matrices1. Here, the normalized parameter s3 corresponds 
to the normalized spin angular momentum density of the wave 
(z-directed along the wave propagation), Sz=I ¼ s3=s0 2 �1; 1½ 

I
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(ref. 17), where I = W/ω is the wave intensity expressed via the 
energy density W and frequency ω. The degree of paraxial 2D 

polarization is defined as P2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

i¼1 s
2
i

q
=s0 2 0; 1½ 

I

. For totally 

2D-unpolarized light, ~s / 1; 0; 0; 0ð Þ
I

, P2D = 0, and the spin vanishes: 
Sz = 0 (Fig. 1).

For the generated non-paraxial field, all three components 
are significant, and its polarization state at a point is described 
by a 3 × 3 Hermitian polarization (density) matrix Φ̂

3D

I
 or, 

equivalently, by nine real parameters ~Λ ¼ Λ0;Λ1; :::;Λ8ð Þ
I

: 
Φ̂

3D ¼ 1
3

P8
l¼0 Λl λ̂l

I
, with λ̂l

I
 being the basic Gell–Mann matrices4–12 

(Supplementary Information). In such fields, the polarization ellip-
soid can have an arbitrary orientation, and the spin angular momen-
tum density involves all three components14,17. Its normalized value 
can be expressed via the properly normalized parameters Λ2, Λ5 and 
Λ7 (Supplementary Information):

S
I
 1

I
Sx; Sy; Sz
� �

¼ 2
3Λ0

�Λ7;Λ5;�Λ2ð Þ: ð1Þ

There are several quantities characterizing the degree of polar-
ization of a 3D field, which can be more or less relevant to 
the particular problem4–12. In our case, one of the most com-
mon definitions of the 3D degree of polarization is useful—
P3D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP8
i¼1 Λ

2
i

q
=

ffiffiffi
3

p
Λ0 2 0; 1½ 

I
 (refs. 5,10–12,40,41)—because it explic

itly involves the norm of the spin given by equation (1), so that 

P3Dð Þ2
I

 is a sum of spin-dependent and spin-independent parts. For 
a totally unpolarized 3D field, one should expect ~Λ / 1; 0; 0; :::; 0ð Þ

I
, 

P3D = 0 and the corresponding vanishing spin S = 0.
One remarkable feature of the above definition of the degree of 

polarization is that totally 2D-unpolarized paraxial light, P2D = 0, 
is partially polarized in the 3D sense, P3D = 1/2 (refs. 5,11,12 and 
Supplementary Information). This is because total 3D depolariza-
tion requires total mutual decoherence of all three field components 
with equal amplitudes, while in paraxial light, the longitudinal 
z component vanishes. As a result, Λ8 ¼

ffiffiffi
3

p
=2

� 
Λ0≠0

I
, even for a 

totally 2D-unpolarized paraxial field. This ‘discrepancy’ between 

the 2D and 3D polarization degrees naturally manifests itself as a 
non-zero transverse spin in a non-paraxial field generated from a 
2D-unpolarized paraxial source (Fig. 1).

We first consider the case of a focused polarized field. Both the 
incident paraxial and focused non-paraxial fields can be modelled 
by the post-paraxial description of a Gaussian beam17, with infinite 
and finite Rayleigh range zR, respectively. Using the natural cylindri-
cal coordinates (r,φ,z), the normalized spin density in the focal plane 
of a polarized Gaussian beam can be written as (Supplementary 
Information)

S
I
’ 1

1þ ~r=2
S0
I0

þ ~rφ

� �
 Sk

I
þ S?

I
: ð2Þ

Here, S0=I0 ¼ s3=s0ð Þ�z
I

 is the spin density in the plane-wave 
limit, I / 1þ ~r2=2

� �
e�kr2=zR

I
 is the intensity distribution, k is the 

wavenumber, ~r ¼ r=zR
I

, and the overbars indicate the unit vec-
tors of the corresponding axes. Equation (2) exhibits the usual 
polarization-dependent longitudinal spin, as well as the transverse 
spin component17,26,32,33, which is independent of the polarization 
(Stokes parameters) of the incident plane wave.

The totally 2D-unpolarized Gaussian beam can be considered as 
an incoherent superposition of two Gaussian beams with mutually 
orthogonal polarization states (for example, with ~s / 1; 1; 0; 0ð Þ

I
 and 

~s / 1;�1; 0; 0ð Þ
I

). The corresponding 3 × 3 polarization matrix and 
parameters ~Λ in the focal plane of such unpolarized Gaussian field 
become (Supplementary Information): Λ1 = Λ2 = Λ3 = Λ4 = Λ6 = 0,

Λ8

Λ0
’

ffiffiffi
3

p

2
1� ~r2

1þ ~r2=2
;
Λ5

Λ0
’ 3

2

~x

1þ ~r2=2
;
Λ7

Λ0
’ 3

2

~y

1þ ~r2=2
; ð3Þ

where ~x ¼ x=zR
I

 and ~y ¼ y=zR
I

. In the paraxial limit zR ! 1
I

, only 
the Λ8/Λ0 ratio survives, providing the 3D degree of polarization 
P3D = 1/2 (refs. 5,11,12). In the non-paraxial case, non-zero param-
eters Λ5 and Λ7 appear. These parameters exactly describe the 
transverse part of spin (2), in agreement with equation (1), 
S?=I ¼ 2

3Λ0
�Λ7;Λ5; 0ð Þ

I
, while the longitudinal spin naturally van-

ishes: Sk ¼ 0
I

 (Fig. 1).
We next consider an evanescent wave, which can be gener-

ated via total internal reflection of a paraxial incident field (plane 
wave). Such a z-propagating and x-decaying wave is characterized 
by the propagation constant kz>k � ω=c

I
 and the decay constant 

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z � k2

p

I
. Assuming, for simplicity, that the transmission coef-

ficients of the total internal reflection are polarization-independent, 
generation of the evanescent field can be regarded as a transition 
from the plane-wave limit κ = 0, kz = k to a given finite κ > 0. The 
normalized spin density of the polarized evanescent wave is17,20

S
I
¼ k

kz

S0
I0

þ κ

kz
�y  Sk

I
þ S?

I
: ð4Þ

Here, as before, S0=I0 ¼ s3=s0ð Þ�z
I

 is the spin density in the plane-wave 
limit, and the intensity distribution is I / e�2κx

I
. As for the focused 

field, the spin (4) consists of the longitudinal polarization-dependent 
component and the transverse (y-directed) polarization-independent 
term17,20,29,33,34.

The totally 2D-unpolarized evanescent field is obtained as an inco-
herent superposition of evanescent waves with orthogonal polariza-
tion states. The corresponding parameters ~Λ for such an evanescent 
field are (Supplementary Information): Λ1 = Λ2 = Λ4 = Λ6 = Λ7 = 0,

Λ8

Λ0
¼

ffiffiffi
3

p

2
k2 � κ2=2

k2z
;

Λ3

Λ0
¼ 3

4
κ2

k2z
;

Λ5

Λ0
¼ 3

2
κ

kz
ð5Þ

In the plane-wave limit κ = 0, only the ratio Λ8/Λ0 survives, yielding 
P3D = 1/2. In the evanescent-wave case, both Λ3

I
 and Λ5

I
 are different 
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Fig. 1 | Spin and polarization in paraxial and non-paraxial fields. Schematic 
of the longitudinal and transverse spin for the paraxial (plane-wave) and 
non-paraxial regimes for polarized and unpolarized (in the two-dimensional 
(2D) sense) fields. Transverse spin S?

I
 appears in non-paraxial fields, while 

the depolarization of the paraxial source eliminates only the longitudinal 
spin Sk

I
.
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from zero, the latter corresponding precisely to the transverse part of 
spin (4), in agreement with equation (1), S?=I ¼ 2

3Λ0
�Λ7;Λ5;�Λ2ð Þ

I
, 

whereas the longitudinal spin vanishes, Sk ¼ 0
I

 (Fig. 1).
Importantly, considering r/zR and κ/k as a small parameter 

ε in the above two problems, the 3D degree of polarization of 
the 2D-unpolarized focused and evanescent fields has the form 
P3D ¼ 1

2 þ δP3D

I
, with δP3D � ε2

I
 and δP3D � ε4

I
, respectively 

(Supplementary Information), while the transverse spin is of 
order ε. This means that, to first order, focusing or total-reflection 
processes (with polarization-independent transmission ampli-
tudes) do not change the 3D degree of polarization of the incident 
2D-unpolarized light40,41, while the spin changes from zero in the 
incident wave to the non-zero transverse spin in the non-paraxial 
field. This appearance of spin without polarization originates from 
the intrinsic spin–orbit interaction of light34. The plane-wave trans-
versality condition k  E ¼ k H ¼ 0

I
 imposes constraints on the 

relations between longitudinal and transverse field components, 
which therefore have some intrinsic mutual coherence even for 
fields generated from 2D-unpolarized sources. Transformations 
from paraxial to non-paraxial fields can be approximated by k
-vector transformations (redirections), which do not affect the 
degree of polarization but inevitably generate the transverse spin, as 
schematized in Fig. 1.

Another important point in our calculations is that we consid-
ered both electric and magnetic field contributions to all quadratic 
quantities (Supplementary Information): spin S = S(e) + S(m), inten-
sity I = I(e) + I(m), polarization parameters ~Λ ¼ ~Λ

ðeÞ þ~Λ
ðmÞ

I
 and so 

on. For polarized fields, the electric and magnetic contributions 
are not equal to each other, and additional terms generally appear 
when considering only the electric or the magnetic fields17,20,26,32. By 
contrast, for 2D-unpolarized fields, these contributions are always 
equal to each other, so that one can only consider the electric (or 
magnetic) field contributions. One can say that unpolarized light 
and its transverse spin have a dual-symmetric nature16,42, similar to 
circularly polarized fields with well-defined helicity15.

In what follows, we present experimental measurements of 
the non-zero transverse spin from equations (2) and (4) in tightly 
focused and evanescent fields generated from 2D-unpolarized 
sources. The two experiments use different types of unpolarized 
sources and measure both the electric and magnetic contributions 
to the spin.

Focused-beam experiment
To measure the transverse spin of a 2D-unpolarized tightly focused 
beam, we first prepared a suitable input field. We sent a Gaussian 
beam (wavelength λ = 2π/k = 620 nm, linewidth ΔλFWHM ’ 5 nm

I
) 

through a linear polarizer and two liquid-crystal variable retarders 
(LCs) oriented at 45° and 90° with respect to the axis of the lin-
ear polarizer, respectively. A schematic of the experimental set-up 
is shown in Fig. 2a32,43. With this arrangement, the polarization 
state of the generated beam can span the whole Poincaré sphere P3

i¼1 s
2
i ¼ s20

� 

I
, with the position on the sphere depending on the 

settings of the LCs. These LCs were controlled via a voltage applied 
to the corresponding devices to induce a voltage-dependent bire-
fringence. For the applied voltage, we used two random numbers 
in a range spanning multiple wavelengths of retardance, updated 
10 times per second. This produced a beam that is fully and homo-
geneously polarized over its cross-section for a fixed instance 
in time. However, the beam appears totally 2D-unpolarized 
P2D ¼ P3

i¼1 s
2
i ¼ 0

� 

I
 when averaged over a certain time frame.

For tight focusing and subsequent collimation of the light beam, 
we used two confocally aligned microscope objectives (MOs) with 
numerical apertures NA1 = 0.9 and NA2 = 1.3, respectively (Fig. 2a). 
Following a scheme developed recently32 for the reconstruction of 
the electric and magnetic parts of transverse spin, we used a spheri-
cal silicon nanoparticle of diameter d ¼ 168 nm

I
 as a local probe in 

the focal volume. The NA of the collection MO2 was considerably 
larger than 1 to access the angular range above the critical angle, 
which is required for the applied reconstruction technique. We then 
performed a polarization analysis in the back focal plane (BFP) of 
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Fig. 2 | Focused-beam experiment. a, Experimental set-up for the reconstruction of the transverse spin in a tightly focused 2D-unpolarized field. A linear 
polarizer and two liquid-crystal variable retarders (LCs) are used to prepare a beam with randomly varied polarization. Subsequently, two confocally 
aligned microscope objectives (MOs) focus and collimate the beam. A spherical silicon nanoparticle is placed on a coverslip in the focal plane. This 
produces scattered light with wavevectors outside of the aperture of the transmitted beam, which carries information about the local transverse spin 
density in the beam26,32. Polarization-resolved back focal plane images using the scattered light are recorded by using another LC, a linear polarizer and a 
lens. b, Experimental results of the reconstructed electric and magnetic transverse spin, SðeÞ?

I
 and SðmÞ

?
I

 (normalized to the maximum absolute value), which 
equal each other in the 2D-unpolarized field (Supplementary Information). The results of numerical calculations are shown as insets.

Nature Photonics | VOL 15 | February 2021 | 156–161 | www.nature.com/naturephotonics158

http://www.nature.com/naturephotonics


ArticlesNaTure PHOTOnIcs

MO2, imaged onto a camera, which allowed us to access the far field 
of the scattered light. This polarization analysis involved an LC, a 
linear polarizer and an imaging lens (Fig. 2a). At this stage of the 
set-up, a single LC is sufficient, because, for reconstruction of the 
transverse spin, we only need to distinguish between the x and y 
polarizations. According to the method in ref. 32, the intensities of 
the x and y components of the scattered field, dependent on the 
transverse wavevectors Iscx;y k?ð Þ

I
, allow unambiguous reconstruction 

of both the electric and magnetic field contributions to the trans-
verse spin density, SðeÞ?

I
 and SðmÞ

?
I

, in the focused field at the location 
of the particle.

To provide a full map of the transverse electric and magnetic 

spin densities, SðeÞ?
I

 and SðmÞ
?
I

, shown in Fig. 2b, we raster-scanned the 

nanoparticle across the focal plane (over a square area of 1.5 × 1.5 μm2 
with a step size of 30 nm) and recorded the polarization-resolved BFP 
images for each particle position. For each position and polarization, 
the data were averaged over a time frame of 40 s. The distributions 
of the transverse spin obtained experimentally are in good agree-
ment with simple theoretical expression (2) with the fitted Rayleigh 
range zR ’ 527 nm

I
. We also performed more accurate numerical 

calculations of the transverse spin densities using vectorial diffrac-
tion theory44 (which takes into account the finite aperture of the 
focused beam); these are plotted in the insets of Fig. 2b. In doing so, 
we adjusted all parameters of the focusing system and the incoming 
beam to the experimental case. One can see that the experimental 
results are in excellent agreement with the numerical data.

Importantly, the electric and magnetic spin densities in Fig. 2b 
exhibit very similar spatial distributions, in agreement with the 
dual-symmetric nature of the transverse spin for 2D-unpolarized 
light: SðeÞ? ¼ SðmÞ

? ¼ S?=2
I

 (Supplementary Information). The same 
feature is present in non-paraxial fields with well-defined helicity15, 
such as fields obtained by focusing circularly polarized input light45. 
However, in our case of an unpolarized source, the helicity and lon-
gitudinal spin vanish. Note also that the change in the 3D degree 

of polarization upon focusing40,41 is small: δP3D ’ ~r2=4 ’ 0:036
I

, 
where we used r ’ 200

I
 nm, corresponding to the maximum of the 

spin density in Fig. 2b (Supplementary Information).

Evanescent-wave experiment
To measure the transverse spin of a 2D-unpolarized evanescent wave, 
the total internal reflection of collimated far-field light coming from 
an unpolarized tungsten lamp was employed. To generate the eva-
nescent wave, a BK7 glass prism (Thorlabs, refractive index n = 1.51 
at the wavelength λ = 600 nm) was illuminated by an unpolarized 
tungsten lamp of wavelength 500–800 nm. The angle of incidence 
was measured to be 49°, which changed to 47° following refrac-
tion when entering the right-angle prism. This is above the critical 
angle of 41°, producing total internal reflection and an evanescent 
wave with κ=kz ’ 0:43

I
 above the glass. Such an evanescent wave 

has noticeable transverse spin (4) and negligible change in the 3D 
degree of polarization: δP3D ’ 0:75 κ=kzð Þ4’ 0:026

I
 (neglecting the 

anisotropy of the Fresnel coefficients, Supplementary Information). 
Akin to the focused-beam experiment, a small nanoparticle act-
ing as a probe for the local field polarization—in this case a gold 
nanoparticle (diameter d = 150 nm, Sigma Aldrich)—was placed 
in the evanescent field above the prism and the far-field scattered 
radiation was analysed (Fig. 3a).

The scattered signal from the gold nanoparticle was collected by 
a ×100 microscope objective with NA = 0.9, allowing us to analyse 
the scattered light within a very large solid angle. The BFP of the 
detection objective (Fourier plane) was then imaged onto an imag-
ing spectrometer using a set of relay lenses. The scattered signal 
was analysed using a linear polarizer and a quarter wave plate to 
reconstruct the full Stokes parameters of the light scattered from 
the particle in all directions in the upper half-space (Supplementary 
Information). Figure 3b shows the results of these measurements, 
that is, the angular dependences of the normalized Stokes param-
eters s1,2,3/s0, as well as the 2D degree of polarization, P2D, for the 
far-field scattering from the nanoparticle.
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Note that the gold nanoparticle in this experiment behaves as 
an electric dipole; that is, it is sensitive to the electric- rather than 
magnetic-field properties. However, we have already shown that the 
magnetic field shares the same features in 2D-unpolarized light, so 
we omit the superscript ‘(e)’.

The degree of polarization P2D and third Stokes parameter s3/s0 
in the scattered radiation show that the scattered light becomes 
partially polarized and acquires opposite-sign spins in the ±y 
directions. This is in perfect agreement with the y-directed trans-
verse spin in equation (4) and the well-established fact that this 
transverse spin in an evanescent field is converted to the usual 
far-field spin (that is, the third Stokes parameter) upon transverse 
scattering by a dipole particle23–25,27–29,33–35. The insets in Fig. 3b  
show the analytically calculated Stokes parameters of the scat-
tered light for an unpolarized λ = 600 nm source. (The patterns 
depend very weakly on wavelength, so they are almost constant 
within the whole 500–800-nm range.) The analytical calculation 
was performed by matching the experimental parameters (angle 
of incidence, type of glass, particle diameter and material), includ-
ing the total internal reflection of the incident beam, the particle 
modelled as a point dipole, and the subsequent scattering of the 
particle (taking into account the effects of the surface reflections; 
Supplementary Information). Very good agreement between the 
theory and experiment can be seen.

Conclusions
We have shown that pure redirection of wavevectors can gen-
erate non-zero spin angular momentum in initially completely 
2D-unpolarized paraxial light. This surprising result establishes an 
important link between two areas of research: 3D polarization in 
non-paraxial fields4–12,40,41 and transverse spin17–39. The direct rela-
tion between the redirection of wavevectors and the appearance of 
spin points to the fundamental spin–orbit interaction origin of this 
phenomenon34. We have provided theoretical calculations and two 
sets of experimental measurements for the transverse spin gener-
ated upon tight focusing and total internal reflection (that is, gen-
eration of an evanescent wave) of unpolarized paraxial light. All 
these results use well-established methods for spin calculations and 
measurements, and are in perfect mutual agreement.

Our work has revealed one more exceptional feature of trans-
verse spin. Together with other properties found previously, we can 
conclude that transverse spin is not just ‘one of the components of 
spin angular momentum density’, but rather a separate physical 
entity whose main features are completely different from those of 
the usual polarization-controlled longitudinal spin of paraxial light 
or photons. As such, the transverse spin can offer novel phenomena 
and applications in angular-momentum and polarization optics. 
The remarkable ‘spin–momentum locking’ associated with the 
transverse spin has already found promising applications for highly 
efficient spin–direction couplers22–25,27–29,33–36. The present study 
opens an avenue for the use of spin from unpolarized and incoher-
ent sources. It also sheds light onto the appearance of non-zero local 
spin in non-paraxial sound waves36–38, which do not feature a polar-
ization degree of freedom in the paraxial regime and correspond to 
spin-0 quantum particles (phonons).

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41566-020-00733-3.
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