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SUPPLEMENTARY NOTE 1: DECAY OF THE OVERLAP ON (t)

As discussed in the main body of the paper, the dynamical features that we have reported are a function of the value of the
cutoffN chosen. In particular, the larger the number of modes we consider (largerN ), the lower g/ωc needs to be for the single-
mode physics to break down and the evolution to consist of a succession of sharp revival peaks. The key of this observation lies
in ON (t), the overlap between the two multi-mode cavity states | ∓ ξN (t)〉 that evolve in association with the two qubit states,
|±〉. As this overlap tends to zero, so does the coupling between the qubit states |+〉 and |−〉 induced by the Hamiltonian term
ωxσz/2. As can be seen in Supplementary Figure 1, the evolution of ON (t), given by the exponential of Eq. (10) in the main
body of the paper, consists of a rapid decay, on a timescale τ ≈ 2π/(ωcN) mostly independent from g, to a stationary value
approximately given by

ŌN ≈ 1/[2eγ(N + 1)]4g
2/ω2

c , (1)

(where γ is the Euler-Mascheroni constant) that tends to zero with N . Supplementary Equation (1) is obtained from the evalu-
ation of Eq. (10) at the middle point between revivals, t/(2π/ωc) = 1/2, and it shows the impact of N in making the overlap
vanish to be logarithmic when compared to the effect of the coupling strength g. To give a more qualitative idea of the depen-
dence of ŌN on g, we plot it in Supplementary Figure 2(a) for values of N going from 10 to 100. For values of g/ωc � 1, we
see that ŌN tends to zero sublinearly with N . In the realistic range of tens to hundreds of cavity modes that we consider here,
the variation of ŌN with N can thus be neglected, as one can appreciate from the accumulation of curves in Supplementary
Figure 2(a).

SUPPLEMENTARY NOTE 2: BREAKDOWN OF THE SINGLE-MODE PHYSICS

We have shown that the multi-mode dynamics characterized by the collapse and revival peaks on ON (t)—and consequently
on the population of the TLS—is directly linked to the propagation of photonic wavefronts inside the cavity. This effect appears
immediately when one disregards the Hamiltonian term HII = ωxσz/2. Therefore, we will talk of a breakdown of the single-
mode physics whenever this term does not play a role in the dynamics if a few modes are involved, but it does in the single-mode
case N = 1. Even with N = 1, such a regime of collapse and revivals can be reached if g is well within the deep coupling
regime g/ωc > 1, as was reported in [1] and is clear from our calculations and analytical expressions for ON (t). The novelty of
our analysis is to reveal that, even with just a few cavity modes involved, this regime emerges at values of the coupling already
in the ultrastrong coupling regime, 0.1 < g/ωc < 1, which can be understood as being enforced by relativistic causality.

For ωx = ωc, a number of cavity modes N > 10 already ensures that the fast decay of ON (t)—occurring on the timescale
τ ≈ 2π/(ωcN)— will not be affected by such a term, i.e., the condition Nωc � ωx is fulfilled. The breakdown of the single-
mode physics will then occur when, considering the overlap between cavity states has already decayed to a stationary value
ŌN , the coupling between the qubit states |±〉 through the ωxσz/2 term is sufficiently reduced by such overlap, i.e., when
ŌNωx � g. The ratio g/(ŌNωx) versus g is shown in Supplementary Figure 2(b), for the same range ofN as in Supplementary
Figure 2(a). We can mark the onset of multi-mode effects when this ratio becomes larger than one, and therefore define a
critical coupling rate gc as the one which fulfills gc/[ŌN (gc)ωx] = 1. Beyond this coupling rate, that will depend on N , we can
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Supplementary Figure 1. Overlap ON (t) between the two cavity states | ∓ ξN (t)〉 associated to the qubit states |±〉 versus time, for N = 100
and values of g/ωc increasing from 0.1 to 1. Red gridlines are displayed at times t/(2π/ωc) = (σ/2, 1±σ/2), with σ = 1/N . The timescale
of the decay of overlap is not significantly dependent on g.
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Supplementary Figure 2. (a) Steady overlap ŌN versus the normalized coupling rate g/ωc for values of N going from 10 to 100. (b) Ratio
between coupling rate g and ωxŌN . A ratio equal to one marks the onset of the multi-mode physics, provided that N is large enough so that,
also, Nωc � ωx. (c) Normalized critical coupling rate versus N . The convergence to zero is slow, and in the range considered in this text,
gc/ωc ≈= 0.25. Solid-blue: numerical calculation. Dashed-red: analytical estimation from Supplementary Equation (2)

expect the single-mode physics to break down. By using Supplementary Equation (1), we can obtain the following approximate
expression for gc/ωc:

gc
ωc
≈

√
W{8ω2

x log[2eγ(N + 1)]/ω2
c}

8 log[2eγ(N + 1)]
. (2)

where W (x) is the Lambert-W function. The dependence of gc/ωc with N is shown in Supplementary Figure 2(c). As N
increases, gc tends to zero very slowly, and for the range of N that we consider in this work, we find gc/ωc ≈ 0.25. This
manifests clearly on Supplementary Figure 3, where we can observe how the single-mode model fails to describe the dynamics
that emerge when one adds just a few number of modes, and this occurs approximately around the critical value g/ωc ≈ 0.25
that we have obtained here.

SUPPLEMENTARY NOTE 3: LIGHT PROPAGATION IN MORE GENERAL MODELS

The results in the main body of the paper are obtained using a TLS approximation, which assumes that the emitter is well
characterized by only two energy levels. The physics that we have described is, however, linked to the propagation of light.
While the dipolar approximation can be used such a phenomenology is thus expected to be largely independent on the specific
level-scheme of the emitter. In this section we demonstrate this explicitly considering, instead of a TLS emitter, a system in
which the emitter consists of a nonlinear cavity with bosonic annihilation operator b and Kerr nonlinearity χ. The Hamiltonian
reads:

H = ωxb
†b+ χb†b†bb+

N∑
n=0

{
ωc(n+ 1)a†nan + g

√
n+ 1(a†n + an)(b† + b)

}
. (3)
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Supplementary Figure 3. Contour plot of the TLS population versus time and coupling rate for different values of N . The dashed line marks
the critical coupling rate g/ωc ≈ 0.25.
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Supplementary Figure 4. Spatial profile of the electric field inside a cavity versus time, for an emitter consisting of a Kerr resonator. Parameters:
g/ωc = 0.6, χ = 10ωc.

The dynamics of this system, which can be computed by the method described in the main body of the paper, yields the same
type of physics that we have presented so far. This is shown in Supplementary Figure 4, in which we chose a Kerr nonlinear
coefficient small enough to have multiple electronic transitions resonantly coupled to the cavity photonic field. We see that the
electric field inside the cavity features a localized photonic state bound to the emitter, and free propagating wavefronts. This
calculation shows that our results, linked to light propagation in multi-mode systems, are robust and can manifest in a variety of
systems.
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