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REVIEWER COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

Report on "Cubic singularities in binary linear electromechanical oscillators” by Xin Zhou et al. 

 

The submitted manuscript introduces a micromechanical resonator as a platform to realize cubic 

singularities in a coupled binary system without involving nonlinearities. The idea is novel and could be 

of interest to specialists in higher-order singularities in binary systems. 

 

I regret, however, that I cannot conclude that the paper provides the sort of clear advance in scientific 

understanding that would likely excite the interest of Nature Communications' readership. The present 

manuscript would find a more appropriate audience in a journal that publishes more specialized 

research. 

 

A significant issue with the manuscript is that it is challenging to follow. Without a careful reading of the 

Supplementary Information, it is impossible to understand the details of the mechanical resonator, the 

experimental setup, and the measurements. Moreover, the description of the resonator and the 

experiment is minimal. I realized that the micromechanical resonator is encapsulated in a vacuum, so an 

SEM picture of the device is not possible, but a more detailed description of the rationale behind the 

device's design would be helpful. Why are there nine concentric rings, and why the inner ones are 

different than the outer rings? Does the ring-down measurement show in Figure 1d start at t=0 or t=2 

seconds? Coherently coupled mechanical modes exhibit constant amplitude oscillations even after 

turning off the external driving force. 

 

Using the Coriolis force to couple the modes coherently is an interesting idea. The authors should 

explain this phenomenon in more detail in the main document. Moreover, the experimental setup used 

to rotate the micromechanical resonator and the read-out circuitry must be described in more detail. 

There is only a brief mention of it in the Supplementary Information document. How fast the 

"temperature-controlled high precision rate table" rotates? Is the out-of-plane wobble reported small 

enough that it won’t induce mode coupling? The micromechanical resonator reported is pretty big: a 

mechanical device with a diameter of around 10 mm won't be considered micro-mechanical nowadays 

and will exhibit considerable out-of-plane vibrations. 

 

Another attractive result of the manuscript is the demonstration of a physical system where the 

nonreciprocity can be controlled electrostatically. It would be helpful for the readers to include a 

discussion on how much the nonreciprocity can be augmented in linear systems using the new “knob.” 



The manuscript claims that "although we experimentally demonstrate the phase tomographic closed-

loop cubic singularity based on the Coriolis coupling, in principle, it can also be realized using ordinary 

linear coherent coupling." I don't understand this statement. If this is true, what is the advantage of the 

Coriolis force? A linear coherent coupling could be implemented using electronic circuitry among the 

resonators, which significantly simplifies the implementation of this idea. 

 

In summary, the manuscript reports an interesting prototype to study singularities in coupled binary 

systems without involving nonlinearities, but it requires substantial modifications and does not seem a 

good fit for Nature Communications. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The paper describes an experimental observation of hysteretic phenomena in a system of two coupled 

micromechanical modes. The detuning of the modes and the coupling are the control parameters. One 

of the modes is driven close to resonance. The central (albeit unannounced) idea is that the system can 

be made effectively nonlinear, and that this is accomplished by fixing the phase difference between the 

vibrations of the driven mode and the drive. Unexpectedly, this nonlinearity leads to the multi-branch 

response and, respectively, to hysteresis. The qualitative features of the emerging behavior are familiar 

from the bifurcation theory, but this theory had not been applied to the system studied in the paper. 

The observations are new. I find them interesting. 

 

Some details: The coupled modes are standing waves formed by whispering gallery modes in a 

micromechanical system that has the shape of a disk. The circular symmetry of the system makes the 

modes almost degenerate. Rotation of the disk leads to mode coupling via the Coriolis force. The 

coupling is controlled by the angular frequency. One of the modes is driven, its phase is measured, and 

the displacements of the modes are detected. The phase difference between the vibrations of the 

driven mode and the drive is set to \pi/2. 

 

The frequency of the drive that maintains the phase difference is a function of the mode coupling and 

the frequency detuning. It satisfies a cubic equation. If plotted as a surface with respect to the control 

parameters, it has two folds that merge at the nexus. The folds are the sets of the bifurcation values of 

the control parameters. 

 

A few comments now. 

I think the paper has to be re-written. It has real results, there is no need in overselling them. Terms like 

“phase-tomographic singularity” are irrelevant and confusing. 



 

The “stability’ has to be defined. In the text there is a reference to the stability of the drive frequency, 

but I believe that the stability refers to the mode vibrations. The corresponding equations have to be 

provided and loss of stability when crossing the folds has to be demonstrated. 

 

The picture of the drive frequency as a function of the parameters is a standard picture of the 

bifurcation theory, see Ref. 1. It is drawn in multiple textbooks and monographs (a recent one is 

Kamenev’s “Field Theory of Non-Equilibrium Systems”). There are standard names for the corresponding 

bifurcations, co-dimension 1 for the folds (usually the saddle-node bifurcation) and co-dimension 2 for 

the cusp. These terms have been broadly used in micro- and nanomechanics, for example in the analysis 

of the bistability of the response of nonlinear modes to a resonant drive. The analysis can be and should 

be formulated in standard terms. 

 

To continue on the terminology: There are no phase transitions in the studied system and there are no 

phases of matter, there are phases of the modes. Calling hysteresis “nonreciprocity” does not add to the 

understanding, just makes it confusing to see what is being discussed. Calling the phase shift between 

the modes “circular polarization” does not help to understand what is going on. Panel (d) in Fig. 2 makes 

an impression that the “circular polarization phase” emerges immediately after crossing the bifurcation 

point, which is incorrect, I guess. Besides, the term “phase” here refers, judging from the context, to the 

“phase of matter”, although this is in fact a vibrational phase. 

 

I believe the mapping on the Bloch sphere is counterproductive. It makes the formulation look 

“quantum”, but rather distracts from what is going on. The modes are dissipative, and there is no 

Poisson bracket between the variables. Projecting the folds on the Bloch sphere instead of the standard 

projection on a plane makes the picture confusing. 

 

If the authors want to put emphasis on the phase shift between the modes and the change of their 

amplitude, they could use the Stokes parameters. This is unnecessary, but at least this is a standard 

language for a two-mode system where the modes vibrate at the same frequency. 

 

I note also that the high sensitivity of a mechanical system near the cusp point (nexus) has been 

demonstrated by Aldridge and Cleland [PRL 94, 156403 (2005)]; the authors demonstrated that, in fact, 

the sensitivity can be made exponentially strong if one looks at the response to fluctuations in the 

corresponding parameter range. But the scaling of the dynamics is certainly the same as in the present 

paper. 

 



Given the novelty of the results, a significantly revised version of the paper can be considered for 

publication in Nature Communications.  



Response to Reviewers 

We express our sincere gratitude to the reviewers for their detailed reviews. The 
manuscript has been modified considerably to address the feedback received. Please 
find below our response to the reviewers. Reviewers' comments are in black, authors’ 
responses are in Blue, and the Red bullets indicate the corresponding modifications in 
the manuscript. 

 

Reviewer #2 (Remarks to the Author): 

Report on “Cubic singularities in binary linear electromechanical oscillators” by Xin 
Zhou et al. 

The submitted manuscript introduces a micromechanical resonator as a platform to 
realize cubic singularities in a coupled binary system without involving nonlinearities. 
The idea is novel and could be of interest to specialists in higher-order singularities in 
binary systems. I regret, however, that I cannot conclude that the paper provides the 
sort of clear advance in scientific understanding that would likely excite the interest of 
Nature Communications’ readership. The present manuscript would find a more 
appropriate audience in a journal that publishes more specialized research. 

A significant issue with the manuscript is that it is challenging to follow. Without a 
careful reading of the Supplementary Information, it is impossible to understand the 
details of the mechanical resonator, the experimental setup, and the measurements. 
Moreover, the description of the resonator and the experiment is minimal. I realized 
that the micromechanical resonator is encapsulated in a vacuum, so an SEM picture of 
the device is not possible, but a more detailed description of the rationale behind the 
device’s design would be helpful. Why are there nine concentric rings, and why the 
inner ones are different from the outer rings? Does the ring-down measurement shown 
in Figure 1d start at t=0 or t=2 seconds? Coherently coupled mechanical modes exhibit 
constant amplitude oscillations even after turning off the external driving force. 

Response: We would like to express our sincere thanks to the Referee for the valuable 
feedback, which is very constructive for revising the manuscript. We apologize for the 
weak description of the device in our initial manuscript. In fact, the device used to 
demonstrate the singularities in this study is the core of an established MEMS 
gyroscope called the disk resonator gyroscope (DRG). As one of the most precise 
MEMS gyroscopes, its bias instability can reach inertial grade, as reported in Ref. [1-
5] of the Supplementary Information. The high performance of the DRG is due to its 
superb controllability, excellent tuneability, good stability, and high signal-to-noise 
ratio of the displacement transduction. The advantages mentioned above and the 
integration nature of this device make it a very convenient experimental platform for 
basic research (e.g. Ref. [6.7] of the Supplementary Information). The singularities 
reported in this study are not restricted by the structural design of our disk resonator. 
We just demonstrated the singularity physics in our established device, which was 



previously designed in Ref. [1] of the Supplementary Information for the purpose of 
enhancing the transduction signal-to-noise ratio. 

As the Referee suggested, we have made additional introductions of the mechanical 
resonator, the experimental setup, and the measurements in the main text, to make the 
main story comprehended completely without referring to the Supplementary 
Information. Moreover, more detailed descriptions of the device, experimental setup, 
and measurements are included in Supplementary Note 1. 

The device we tested is indeed encapsulated in a ceramic leaded chip carrier, rendering 
it imperceptible to visual observation. The picture in the manuscript was taken using 
another device with an identical design, which is not the very device employed in our 
experiments. The vague representation in the original manuscript has been corrected. 

The ring-down signal in our original manuscript might be misleading, we thank the 
Referee for pointing this out. We have redefined the origin of the measuring time to 
avoid this misunderstanding in the revised Supplementary Figure 1d. 

Here, we would like to provide some clues about the potential implications of this paper 
for the kind consideration of the Referee. Singularities, as exotic phase transitions 
emerging naturally in diverse fields, have many surprising features and intriguing 
functionalities in practical applications (e.g. Ref. [2-15] of the main text). Higher-order 
(≥3) singularities can provide even higher performances (Ref. [16-21] of the main text). 
However, thus far, the only way to realize and control high-order singularities is to 
utilize multipartite or highly nonlinear systems, which turns out to be very challenging 
for many fields in practice. To overcome this difficulty, this paper reports the first 
realization of a cubic singularity in a binary system, without the need for multi-mode 
(≥3) interactions or even nonlinearity. Four outcomes of our discovery make this 
manuscript stand out from related studies: (1) Our method may open new avenues for 
building and engineering advanced singular devices with simple and well-controllable 
elements, thus stimulating more studies and applications of singularity physics. (2) Our 
cubic singularity provides a highly practical and efficient method for enhancing 
sensitivities for gyroscopes, mass spectrometers, electrometers, gravimeters, and other 
sensors. (3) The compactness of the phase space engenders rich topological physics, 
our work may open up a new tomographic dimension for studying such interactive 
physics in phase space. (4) We present an alternative approach for creating cubic 
bifurcations by establishing a phase-tracked closed-loop oscillation in a coupled system 
without relying on nonlinearity. This not only enhances our understanding of closed-
loop oscillation dynamics but also extends coherent control into the singularity region. 

Changes made:  

• We have revised the representation of the Experimental realization part of the main 
text: From Line 121 to Line 131, the device is described in more detail. We make 
a statement that the micrograph is a device identical to the one we test. From Line 
132 to Line 151, we describe the modes and the Coriolis coupling in detail. From 
line 152 to Line 166, we provide adequate information for the experiment setup. 



From Line 167 to Line 187, the open-loop characterization is introduced to show 
the equi-phase contours. From Line 188 to Line 212, the phase-tracked closed-loop 
characterization that observes the singularities is represented. 

• More details about the device, experimental setup, and measurements are included 
in Figure 2 of the main text. Figure 2a provides information on the device, mode 
shapes, and the Coriolis coupling. Figure 2b provides the experimental setup. 
Figure 2d-f provide the open-loop characterization results. 

• In Supplementary Note 1, a more detailed description of the device is included in 
the first paragraph.  

• The ring-down result in Supplementary Figure 1d is revised. The measuring time 
is started when the drive is turned off. The corresponding description in Line 53 of 
the Supplementary Information is also revised. 

• The experimental setup is described in more detail in Section B. Experimental 
setup of Supplementary Note 1. Supplementary Figure 3 is extended to show more 
details about the signal-processing circuitry and experimental environment. 

 

Using the Coriolis force to couple the modes coherently is an interesting idea. The 
authors should explain this phenomenon in more detail in the main document. Moreover, 
the experimental setup used to rotate the micromechanical resonator and the read-out 
circuitry must be described in more detail. There is only a brief mention of it in the 
Supplementary Information document. How fast does the "temperature-controlled high 
precision rate table" rotate? Is the out-of-plane wobble reported small enough that it 
won’t induce mode coupling? The micromechanical resonator reported is pretty big: a 
mechanical device with a diameter of around 10 mm won't be considered micro-
mechanical nowadays and will exhibit considerable out-of-plane vibrations. 

Response: We really thank the Referee for pointing out the important concern about 
the experiment testbed. As the Referee suggested, the Coriolis coupling effect has been 
explained in the revised main text. The experimental setup used to rotate the 
micromechanical resonator and the read-out circuitry have been described in detail in 
Section B. Experimental setup of Supplementary Note 1 and Supplementary Figure 3.  

The rate table is a commonly used characterization equipment in gyroscope tests. The 
rate table used in this study can provide a stable programmed angular velocity in a range 
of 0°/s to ±1200°/s. The precision of the applied angular velocity at stable rotation can 
be < 0.001°/s. During the test, the device and the circuitry are fixed on the rate table, 
and electrically connected to the outside equipment through slip rings, such that the 
device and circuitry can perpetually rotate without affecting the electric connection with 
the equipment. 

The operational modes in this study are perfectly in-plane, and there is no out-of-plane 
wobbling in this gyroscopic resonator. We apologize for the vague description of the 
mode vibration. In the revised manuscript, we have made a clearer description of this. 



As mentioned previously, this device is a core of an established MEMS gyroscope. Our 
previous study indicates that the 8-mm diameter disk resonator can resist more than 
1000g of shock acceleration and is very robust in conventional measuring environments 
like that in this study. The gyroscope performances of the 8-mm disk resonators are 
reported in Ref. [1-5] of the Supplementary Information, which can support the 
reliability of the experiment in this study. 

Changes made:  

• From Line 132 to Line 151 of the revised main document, we explain the rotation-
induced Coriolis coupling. 

• From Line 60 to Line 72 of Supplementary Information and in Supplementary 
Figure 3a, a detailed description of the read-out circuitry has been provided. 

• From Line 81 to Line 89 of Supplementary Information and in Supplementary 
Figure 3c, the experimental setup used to rotate the micromechanical resonator has 
been explained. 

• In Line 127 of the main document and Line 49 of Supplementary Information, we 
have made a statement that the deformations of the operational modes are perfectly 
in-plane. 

• From Line 138 to Line 141 of the main document, we have made an explanation 
about the rate table. 

Another attractive result of the manuscript is the demonstration of a physical system 
where the nonreciprocity can be controlled electrostatically. It would be helpful for the 
readers to include a discussion on how much the nonreciprocity can be augmented in 
linear systems using the new “knob.” 

Response: We thank the Referee for this constructive suggestion. The nonreciprocal 
process in this study is very similar to the dynamical encircling of the EP singularity 
(e.g. Ref. [17,18] of the main document). Following a closed loop that circles the EP, 
the clockwise or counter-clockwise traversing would result in different final states. The 
clockwise encircling will irreversibly transfer the lower state to the higher state; The 
counter-clockwise encircling will irreversibly transfer the higher state to the lower state. 
In this study, we can obtain a similar effect, the difference is that we can observe such 
nonreciprocal state transfer by traversing a voltage-controlled 1D closed loop. The 
down-up-down trajectory will irreversibly transfer the higher state to the lower state, 
while the up-down-up trajectory will irreversibly transfer the lower state to the higher 
state. 

The full state information of the starting and ending states is recorded. In the revised 
manuscript, we extrapolate the state amplitudes of the starting and ending states. The 
asymmetric transforming matrices that describe such nonreciprocal state transfer are 
obtained. The ratio of the nondiagonal elements of the asymmetric transforming matrix 
is used to characterize the isolation of the nonreciprocity. Based on the measured data, 
an isolation ratio of 59 dB (−43 dB) for the up-down-up (down-up-down) traversing 



process is obtained.  

Changes made:  

• From Line 318 to Line 332 of the revised manuscript, we have made a background 
explanation of the singularity-related nonreciprocal state transfer.  

• From line 345 to line 361, a more detailed description of the nonreciprocal state 
transfer is provided.  

• In Supplementary Note 9, an extended explanation of the calculation of the 
transforming matrix and the isolation ratio is provided. 

The manuscript claims that "although we experimentally demonstrate the phase 
tomographic closed-loop cubic singularity based on the Coriolis coupling, in principle, 
it can also be realized using ordinary linear coherent coupling." I don't understand this 
statement. If this is true, what is the advantage of the Coriolis force? A linear coherent 
coupling could be implemented using electronic circuitry among the resonators, which 
significantly simplifies the implementation of this idea. 

Response: We apologize for this confusing statement. We have modified the 
statement in the revised manuscript. Our experimental demonstration in this paper 
focuses on Coriolis coupling, which makes this effect very useful for enhancing 
gyroscope performance. For example, using the high sensitivity of the singularity nexus, 
we can realize deep-sub-linewidth mode matching, which remains a remarkable 
challenge in the Coriolis vibratory gyroscope community. Besides, by modifying the 
configuration, we can realize the amplification of the Coriolis effect based on this cubic 
singularity, which will be reported in our follow-up work. 

It is theoretically possible to realize the same effects using ordinary linear coherent 
coupling, but it still needs more verification. This is what we want to pursue in our 
future research.  

Changes made:  

• From Line 392 to Line 398 of the Discussion part of the main document, we have 
made a statement to prevent confusion. “The PhT cusp singularity resulting from 
Coriolis coupling can be directly used to enhance gyroscope sensitivity and achieve 
deep-sub-linewidth mode matching. While our experimental demonstration 
focuses on Coriolis coupling, it is theoretically possible to realize the same effects 
using ordinary linear coherent coupling (see Supplementary Discussion).” 

In summary, the manuscript reports an interesting prototype to study singularities in 
coupled binary systems without involving nonlinearities, but it requires substantial 
modifications and does not seem a good fit for Nature Communications. 

Response: Once again, we sincerely thank the Referee for giving such constructive 
comments and suggestions. We have carefully studied and responded to all the 
comments, and made considerable modifications to address those concerns, which we 
hope meet with approval.  



Reviewer #3 (Remarks to the Author): 

The paper describes an experimental observation of hysteretic phenomena in a system 
of two coupled micromechanical modes. The detuning of the modes and the coupling 
are the control parameters. One of the modes is driven close to resonance. The central 
(albeit unannounced) idea is that the system can be made effectively nonlinear and that 
this is accomplished by fixing the phase difference between the vibrations of the driven 
mode and the drive. Unexpectedly, this nonlinearity leads to the multi-branch response 
and, respectively, to hysteresis. The qualitative features of the emerging behaviour are 
familiar from the bifurcation theory, but this theory had not been applied to the system 
studied in the paper. The observations are new. I find them interesting. 

Response: We sincerely thank the Referee for the positive assessment of our work 
and the excellent comments. The revision guided by those comments has greatly 
enhanced our paper.  

We thank the Referee for reminding us that the idea of using phase tracking to realize 
cubic bifurcation is unannounced in the paper. As the Referee suggested, we have made 
a statement that our study provides an alternative approach for building cubic 
bifurcation by constructing a phase-tracked closed-loop oscillation of a coupled linear 
system without the need for nonlinear vibration. 

Changes made:  

• In Line 380 of the revised Discussion Section, we have made a statement that 
“Furthermore, we present an alternative approach for creating cubic bifurcations 
by establishing a phase-tracked closed-loop oscillation in a coupled system without 
relying on nonlinearity. This not only enhances our understanding of closed-loop 
oscillation dynamics but also extends coherent control into the singularity region.” 

Some details: The coupled modes are standing waves formed by whispering gallery 
modes in a micromechanical system that has the shape of a disk. The circular symmetry 
of the system makes the modes almost degenerate. Rotation of the disk leads to mode 
coupling via the Coriolis force. The coupling is controlled by the angular frequency. 
One of the modes is driven, its phase is measured, and the displacements of the modes 
are detected. The phase difference between the vibrations of the driven mode and the 
drive is set to \pi/2.  

The frequency of the drive that maintains the phase difference is a function of the mode 
coupling and the frequency detuning. It satisfies a cubic equation. If plotted as a surface 
with respect to the control parameters, it has two folds that merge at the nexus. The 
folds are the sets of the bifurcation values of the control parameters. 

A few comments now. 

I think the paper has to be rewritten. It has real results, there is no need to oversell them. 
Terms like “phase-tomographic singularity” are irrelevant and confusing. 

Response: We thank the Referee for this constructive suggestion. As the Referee 



suggested, we have rewritten this manuscript following all the feedback received. It is 
really true that the definition of “phase-tomographic singularity” might lead to 
confusion. We have also considered the definition of “phase-locked singularity”, but 
the expression of “phase-locking” has an existing meaning that is related to the 
synchronization effect and is totally different from the topic of this study, so it would 
lead to more serious confusion. The essence of the control in this study is to track the 
driven-mode phase response. Therefore, we define it as “phase-tracked (PhT) 
singularity” in the revised manuscript. 

Changes made:  

• We have rewritten the manuscript based on all the feedback received. 

• We have replaced the “phase-tomographic singularity” with “phase-tracked (PhT) 
singularity” throughout the paper. 

The ‘stability’ has to be defined. In the text, there is a reference to the stability of the 
drive frequency, but I believe that the stability refers to the mode vibrations. The 
corresponding equations have to be provided and loss of stability when crossing the 
folds has to be demonstrated. 

The picture of the drive frequency as a function of the parameters is a standard picture 
of the bifurcation theory, see Ref. 1. It is drawn in multiple textbooks and monographs 
(a recent one is Kamenev’s “Field Theory of Non-Equilibrium Systems”). There are 
standard names for the corresponding bifurcations, co-dimension 1 for the folds 
(usually the saddle-node bifurcation) and co-dimension 2 for the cusp. These terms have 
been broadly used in micro- and nanomechanics, for example in the analysis of the 
bistability of the response of nonlinear modes to a resonant drive. The analysis can be 
and should be formulated in standard terms. 

Response: We thank the Referee for pointing out this important issue. The stability 
of the phase-tracked states is indeed the vibrational stability. We have included the 
stability analysis following the standard bifurcation theory in Supplementary Note 4 of 
the revised Supplementary Information. The phase-tracked states are the fixed points 
of the phase-tracked dynamics. The stability of each state is determined by the Jacobian 
matrix of the phase-tracked dynamical equations, which describes the divergence or 
convergence of the system near the fixed points with small perturbations. If the real 
parts of all the Jacobian eigenvalues are negative, the perturbed system near the fixed 
point is convergent. In this case, the phase-tracked state is stable. Otherwise, if any of 
the Jacobian eigenvalues have positive or zero real parts, the phase-tracked state will 
be unstable or critically stable, respectively. The critically stable phase-tracked states 
are referred to as the singularities.  

In the revised Supplementary Figure 8, the process of losing stability when crossing the 
singularities has been demonstrated by showing all the eigenvalue real parts of the 
Jacobian matrix. 

Changes made:  



• In the revised Supplementary Information, we have included the stability analysis 
in Supplementary Note 4. The corresponding equations have been provided. 

• In Supplementary Figure 8, we show the calculated real Jacobian eigenvalues of 
some typical cross sections. The loss of stability when crossing the singularities 
has been demonstrated. 

• The description of the stability of the phase-tracked state has been revised 
accordingly in Line 108 of the main document. 

• We have included the book “Field Theory of Non-Equilibrium Systems” in our 
reference list.  

To continue on the terminology: There are no phase transitions in the studied system 
and there are no phases of matter, there are phases of the modes. Calling hysteresis 
“nonreciprocity” does not add to the understanding, just makes it confusing to see what 
is being discussed. Calling the phase shift between the modes “circular polarization” 
does not help to understand what is going on. Panel (d) in Fig. 2 makes an impression 
that the “circular polarization phase” emerges immediately after crossing the 
bifurcation point, which is incorrect, I guess. Besides, the term “phase” here refers, 
judging from the context to the “phase of matter”, although this is, in fact, a vibrational 
phase. 

Response: We thank the Referee for reminding us of the terminology in this paper. 
There is indeed no transition of matter phase. The ‘phase’ used in this paper indicates 
the vibrating state. Recently, in analogy but differently from the real matter phase 
transition, the transitions of different vibrating or oscillating states in photonic or 
acoustic resonators are also regarded as a generalized phase transition. A typical 
example is the parity-time-symmetric phase and the parity-time-symmetry broken 
phase [e.g. Miri et al., Science 363, eaar7709 (2019)]. Sometimes, the nonlinear 
oscillating state transition is also regarded as a generalized phase transition [e.g. 
Arkadev et al., Nature Physics, 19, pages 427–434 (2023)]. This is because those 
oscillating states can be classified by the purities of some vibrating characteristics, and 
the effective order parameter can be defined to describe the population/purity of 
different characteristics in oscillating states very similar to the definition of the order 
parameter of the matter phase. As the Referee suggested, we avoid the use of “phase 
transition” in the revised manuscript. Instead, we call it “the transition of oscillation 
phase”. 

We would like to thank the Referee for pointing out the error in describing the 
oscillation phase above the singularity nexus as the “circular polarization phase” in Fig. 
2d of the original manuscript. It should be called the “chiral symmetry broken phase” 
because the linear polarization evolves to the ellipse polarization at first. In the revised 
manuscript, this error has been corrected. This representation mistake did not appear in 
the main text. 

We apologize for the unclear description of the nonreciprocal state transfer in the 
original manuscript. It was previously demonstrated that by dynamically encircling the 



second-order EP singularity, one can observe a nonreciprocal state transfer [e.g. H. Xu, 
et al, Nature 537, 80 (2016)]. Recently, it has been proved that the nonreciprocal state 
transfer can also be realized by encircling the cubic EP singularity [e.g. H. Wang, et al., 
Optics Letters 44, 638 (2019)]. Moreover, it is also discovered that the winding process 
is not a must for this nonreciprocity. By taking advantage of the non-trivial landscape 
of the spectrum surface near the singularity, nonreciprocal state transfer can be realized 
by traversing an EP-excluding cycle [e.g. H. Nasari, et al., Nature 605, 256 (2022)]. 
Here, we show that the PhT cubic singularity can also produce a closed-loop controlled 
nonreciprocal state transfer. Besides, compared to the previous studies that depend on 
two-parameter-controlled encircling, we can realize the nonreciprocal state transfer by 
traversing a single-parameter-controlled 1D closed loop. The down-up-down trajectory 
will irreversibly transfer the higher state to the lower state, while the up-down-up 
trajectory will irreversibly transfer the lower state to the higher state. By extrapolating 
the amplitudes of the starting and ending states, we can describe such nonreciprocal 
state transfer using an asymmetric transforming matrix. The ratio of the nondiagonal 
elements of the asymmetric transforming matrix is used to characterize the isolation of 
the nonreciprocity. Based on the measured data, an isolation ratio of 59 dB (−43 dB) 
for the up-down-up (down-up-down) nonreciprocal process is obtained. Benefiting 
from the electrostatic tunability of our device, the PhT cubic singularity has provided a 
desirable voltage-controlled nonreciprocity. In the revised paper, we have included a 
more detailed explanation of the background and the details of the nonreciprocal state 
transfer process. 

Changes made:  

• We have replaced the representation of “phase transition” with “transition of 
oscillation phase” throughout the revised manuscript. 

• The “circular polarization phase” representation in the original Figure 2d has been 
corrected.  

• From Line 318 to Line 332 of the revised manuscript, we have made a background 
explanation of the singularity-related nonreciprocal state transfer.  

• From line 345 to line 361 of the revised manuscript, a more detailed description of 
the nonreciprocal state transfer is provided.  

• In Supplementary Note 9, an extended explanation of the calculation of the 
transforming matrix and the isolation ratio is provided. 

I believe the mapping on the Bloch sphere is counterproductive. It makes the 
formulation look “quantum”, but rather distracts from what is going on. The modes are 
dissipative, and there is no Poisson bracket between the variables. Projecting the folds 
on the Bloch sphere instead of the standard projection on a plane makes the picture 
confusing.  

Response: We apologize for the improper organization of the original manuscript, 
which made the state information described by the classical Bloch sphere hard to 



understand. We have reorganized the manuscript to solve this problem. In the revised 
Results Section of the paper, we first introduce the concept of the PhT singularity. Then, 
we describe the experimental realization and observation of the PhT singularity. The 
state information behind the PhT frequency is separately explained in the following 
subsection, which would not distract from understanding the catastrophe effect on the 
PhT frequency surface. 

We agree with the Referee that this singularity should be described classically. In the 
revised Supplementary Notes 2 and 3, we have replaced the original quantum 
description with the classical theory. The operators are replaced with variables, the 
Hermitian conjugate ‘†’ is replaced with the complex conjugate ‘*’, and the quantum 
Poisson bracket or the commutator ‘[]’ is replaced with the classical Poisson bracket 
‘{}’. 

In our opinion, state information is very important and even indispensable for 
explaining the singularities for two reasons. First, just like the eigenstates that are 
described by eigenfrequencies and the corresponding eigenvectors, the PhT states are 
also described by PhT frequencies and the corresponding state vectors. The PhT 
frequency is an index, but the PhT state vector is the essence. Second, demonstrating 
the PhT state vector is crucial to understanding the physical mechanism of the PhT 
singularity. By studying the state information behind each PhT frequency, we show that 
the “pitchfork” bifurcation is caused by the breaking of chiral symmetry, and the 
singularities are associated with transitions of oscillation phases with different chirality. 
Only by studying the PhT state vector, we can figure out the evolution of the oscillation 
phases. 

One of the best ways to describe a state vector is to use the “bra-ket” notation because 
it can concisely and unambiguously describe an abstract vector without the need to 
predefine a basis. The projection of different states can be easily described by the “bra-
ket” inner product. Though the states in this study are all classical, the “bra-ket” 
notation can still fully describe them.  

To illustrate the state information of this two-mode system with a single driving 
frequency, we employ the classical Bloch sphere, which is equivalent to the Poincaré 
sphere characterized by the Stokes parameters. The difference is the choice of gauge. 
In the classical Bloch sphere that we use, the north (south) pole is the standing-wave 
eigenstate |1˃ (|2˃) that can be directly measured in our setup. For the Poincaré sphere, 
the north (south) pole is the |CW˃ (|CCW˃) chiral state, which is a travelling-wave 
state that cannot be directly measured in our setup. Since the state vectors are more 
convenient to be described in standing-wave eigenstate basis {|1˃, |2˃}, we use the 
classical Bloch sphere in this study. 

Changes made:  

• We have reorganized the Results Section of the manuscript. First, we introduce the 
concept of the phase-tracked singularity. Next, we describe the experimental 
realization and observation of the PhT singularity. Then, we explain the state 



information behind the PhT frequency. We show that the “pitchfork” bifurcation is 
caused by the breaking of chiral symmetry, and the singularities are associated with 
transitions of oscillation phases with different chirality. 

• Figure 2 of the original main document is separated. The revised Figure 2 describes 
the experimental realization of the PhT singularity. The revised Figure 3 explains 
the state information. 

• In the revised Supplementary Notes 2 and 3 and Supplementary Discussion, we 
have replaced the original quantum description with the classical theory. The 
operators are replaced with variables, the Hermitian conjugate ‘†’ is replaced with 
the complex conjugate ‘*’, and the quantum commutator ‘[]’ is replaced with the 
classical Poisson bracket ‘{}’. 

• From Line 213 to Line 280 of the revised main document, A new state information 
subsection is additionally provided in the revised manuscript. The corresponding 
representation is reorganized. Some of the major modifications include: From Line 
213 to Line 217 of the revised manuscript, we made a statement that “In the 
following, we will delve into the details of the state information corresponding to 
each PhT frequency. We will show that the pitchfork bifurcation is caused by the 
breaking of chiral symmetry, and the singularities are associated with transitions 
of oscillation phases with different chirality.” In Line 222 of the revised manuscript, 
we made a statement that “It is important to note that all states involved in this 
study are classical.” From Line 247 to Line 250 of the revised manuscript, we 
explain that the frequency bifurcation is produced by the spontaneous breaking of 
chiral symmetry and the rotational Doppler effect. Some other modifications are 
also made to adapt to the context. 

• We have redefined the order parameter as the relative population of the CW and 
CCW states, which equals the chirality. The sign of the order parameter is reversed 
compared to that of the original manuscript.  

If the authors want to put emphasis on the phase shift between the modes and the change 
of their amplitude, they could use the Stokes parameters. This is unnecessary, but at 
least this is a standard language for a two-mode system where the modes vibrate at the 
same frequency. 

Response: We thank the Referee for the suggestion of using Stokes parameters to 
describe the state information. As the Referee suggested, we have provided the Stokes 
parameters S1, S2, and S3 in the main document. Here, the three parameters are the 
sphere coordinates of the classical Bloch sphere, which is the rotated Poincaré sphere.  

Changes made:  

• From Line 225 to Line 227 of the revised main document, the Stokes parameters 
are provided, where S1, S2, and S3 stand for ellipticity, chirality, and orientation, 
respectively. 

• From Line 180 to Line 183 of the revised Supplementary Information, the 



explanations of the Stokes parameters are provided. 

• The state information is provided in Figure 3a of the revised manuscript. 

I note also that the high sensitivity of a mechanical system near the cusp point (nexus) 
has been demonstrated by Aldridge and Cleland [PRL 94, 156403 (2005)]; the authors 
demonstrated that, in fact, the sensitivity can be made exponentially strong if one looks 
at the response to fluctuations in the corresponding parameter range. However, the 
scaling of the dynamics is certainly the same as in the present paper. 

Response: We thank the Referee for reminding us of this related work. It is a very 
important demonstration of sensitivity enhancement provided by the nonlinearity-
related (cubic) cusp point. We have included this paper in reference.  

Given the novelty of the results, a significantly revised version of the paper can be 
considered for publication in Nature Communications. 

Response: Once again, we sincerely thank the Referee for the constructive comments. 
We have tried our best to address all these concerns and suggestions. The revisions 
based on the comments have strengthened our paper from the aspects of significance 
and stringency. We hope our revisions and responses meet the expectations of the 
Referee. 



REVIEWER COMMENTS 

 

Reviewer #2 (Remarks to the Author): 

 

The latest version of the manuscript has improved significantly. Most of the issues raised by the 

reviewers have been addressed properly. The manuscript is now suitable for publication in Nature 

Communications. 

 

 

Reviewer #3 (Remarks to the Author): 

 

The authors have significantly modified the paper. However, more work is needed before I would feel 

comfortable recommending the paper for publication. I reiterate that, from my point of view, the 

observations are interesting. 

 

In their rebuttal the authors agree with the comments and acknowledge the mistakes in the first 

version. They have redrawn the Bloch sphere using the Stokes parameters and made a few more 

important changes. However, in the text they still keep much of the old language. Moreover, wrong 

statements have been added. 

 

It is my impression that the authors are trying to hide behind artificially introduced terms to make the 

paper look more significant. In fact, the paper would be more impressive if it were made 

understandable and put into the proper context. 

 

Specific comments: 

1. I again encourage the authors to look more closely at the standard text [1] or any other text on the 

bifurcation theory. The folds do not intersect, contrary to the statement in the paper, they merge at the 

cusp point. The “singularity arc” – is this just the projection of the fold on the parameter space, the 

standard line of saddle-node bifurcations? What is “cubic singularity arc”? What is “remarkable” about 

the standard structure of the bifurcation lines? Why not use standard terms? 

 

2. It is true that, if you vary a certain combination of the parameters, the cusp point looks like a pitchfork 

bifurcation. No quotes are needed. However, there are no “unbalanced pitchfork bifurcations”. Is the 



term used here to describe standard saddle-node bifurcations? What is the difference with the standard 

analysis of the dynamics near a cusp point? 

 

Also, there are no “degenerate” bifurcations. There are no "cubic bifurcations". 

 

3. The authors keep talking about “nonreciprocity” instead of the standard hysteresis. Hysteretic 

response is very familiar in nano and micromechanics. Sophisticated 3D color pictures do not add to 

what is already well understood. I think this part can be shortened or eliminated. 

 

4. I believe the Introduction should be rewritten. It is put into the title and italicized in the text that the 

system is “binary linear”. In the rebuttal the authors agree that the system is strongly nonlinear as, in 

addition to the two modes, it contains a PLL, a strongly nonlinear control device. It is the nonlinearity 

that makes the system interesting. 

 

The claim of the novelty of the onset of folds and cusp points in a two-mode system has to be removed. 

The corresponding bifurcations have been well-known even for a single nano/micromechanical mode 

and have been described in the experimental paper the authors are now referring to (Ref.37); more 

examples and more types of bifurcations observed in nanomechanics as well as the underlying theory 

can be found in Bachtold et al., Rev. Mod. Phys. (2022). 

 

It is also well-known in nanomechanics that, because nanomechanical systems have high quality factors, 

there is no need in “overexcited conditions, which … bring intrinsic power consumption and reliability 

limits”. Already weak resonant drives lead to a variety of strongly nonlinear effects, including dynamical 

chaos, cf. the above RMP and in particular Guttinger et al., Nat. Nano (2017), and Houri et al., PRL 

(2020). 

 

The interesting and unexpected result of the paper, from my point of view, is that, by attaching a PLL to 

a MEMS gyroscope, it is possible to make the driven system bistable in a way qualitatively different from 

the familiar bistability due to the Duffing nonlinearity and to investigate the emerging bifurcations. I 

would emphasize this. 

  



Response to Reviewers 

We express our sincere gratitude to the reviewers for their kind reviews. The manuscript 
has been revised to address the feedback received. Please find below our response to 
the reviewers. Reviewers' comments are in black, authors’ responses are in Blue, and 
the Red parts indicate the corresponding modifications in the manuscript. 

 

Reviewer #2 (Remarks to the Author): 

The latest version of the manuscript has improved significantly. Most of the issues 
raised by the reviewers have been addressed properly. The manuscript is now suitable 
for publication in Nature Communications. 

Response: We sincerely thank the Referee for the valuable comments, which have 
greatly improved our paper.  

Reviewer #3 (Remarks to the Author): 

The authors have significantly modified the paper. However, more work is needed 
before I would feel comfortable recommending the paper for publication. I reiterate that, 
from my point of view, the observations are interesting. 

In their rebuttal the authors agree with the comments and acknowledge the mistakes in 
the first version. They have redrawn the Bloch sphere using the Stokes parameters and 
made a few more important changes. However, in the text they still keep much of the 
old language. Moreover, wrong statements have been added. 

It is my impression that the authors are trying to hide behind artificially introduced 
terms to make the paper look more significant. In fact, the paper would be more 
impressive if it were made understandable and put into the proper context. 

Response: We express our sincere gratitude to the Referee for the constructive 
comments and valuable suggestions. We are truly grateful to the Referee for providing 
us with the opportunity to present our results in a more unambiguous manner. 
Additionally, we also thank the Referee for bringing to our attention the nonstandard 
representations, which we have now revised based on the standard representations from 
refs. V. I. Arnold, Catastrophe Theory (Springer-Verlag, 1984) and S. H. Strogatz, 
Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and 
engineering, 2nd ed. (CRC Press, 2015). 

Specific comments: 

1. I again encourage the authors to look more closely at the standard text [1] or any 
other text on the bifurcation theory. The folds do not intersect, contrary to the statement 
in the paper, they merge at the cusp point. The “singularity arc” – is this just the 
projection of the fold on the parameter space, the standard line of saddle-node 
bifurcations? What is “cubic singularity arc”? What is “remarkable” about the standard 



structure of the bifurcation lines? Why not use standard terms? 

Response: We thank the Referee for pointing out the nonstandard representations. In 
the revised manuscript, we have corrected the nonstandard statements such as 
“intersect”, “singularity arc”, and “cubic singularity arc”. 

Changes made:  

• From Line 53 to Line 62 of the revised main text, we correct the representations 
about the singularities: “Notably, by examining the equiphase contour of the 
coherent-coupling phase response, we find that the system can exhibit bistability 
in a way qualitatively different from the Duffing nonlinearity. The boundaries of 
stability are constituted by a series of saddle-node bifurcation points, leading to 
the singularity named folds to describe the abrupt transitions that occur during 
parametric sweeping across these boundaries. Two folds tangentially merge at a 
pitchfork bifurcation point referred to as a nexus, which defines a cusp singularity 
if projected onto the parameter plane.” 

• From Line 113 to Line 120 of the revised main text, we correct the representations 
about the singularities: “If the control parameters g and Δω steer across the stability 
boundaries made by the saddle-node bifurcation points adiabatically, 
catastrophic jumps in the oscillation state take place, defining the singularity called 
folds. The folds tangentially merge at the pitchfork bifurcation point (star in Fig. 
1d), giving rise to a nexus and a markedly twisted ω∗

d geometry. The projection of 
the nexus onto the Δω-g parameter plane defines a cusp singularity.” 

• From Line 258 to Line 262 of the revised main text, we correct the representations 
about the singularities: “A series of saddle-node bifurcation points (white-faced 
points) on the lower hemisphere constitute the folds (blue curves). Two folds 
tangentially merge at the pitchfork bifurcation point referred to as the nexus (blue 
point), forming a cusp singularity.” 

• In the revised caption of Fig.3a, we make a statement: “The blue curve represents 
the singularities, which are composed of a series of bifurcation points.” 

• Some other related minor modifications in the main text and the Supplementary 
Information are also made for the cohesiveness of the content. 

2. It is true that, if you vary a certain combination of the parameters, the cusp point 
looks like a pitchfork bifurcation. No quotes are needed. However, there are no 
“unbalanced pitchfork bifurcations”. Is the term used here to describe standard saddle-
node bifurcations? What is the difference with the standard analysis of the dynamics 
near a cusp point? 

Also, there are no “degenerate” bifurcations. There are no “cubic bifurcations”. 

Response: We thank the Referee for pointing out the nonstandard representations 
such as “unbalanced pitchfork bifurcations”, “singularity arc”, “cubic singularity arc”, 
“degenerate bifurcation”, and “cubic bifurcations”. They have been revised using 



standard representations.  

Changes made:  

• In Lines 99, 184, and 272 of the revised main text, the “degenerate bifurcation 
point” in the original manuscript is replaced by the “pitchfork bifurcation point”. 

• From Line 102 to Line 103 of the revised main text, the statement about the 
bifurcation has been revised: “As the degeneracy is broken, the pitchfork 
bifurcation of ω∗

d disconnects into a stable branch and a saddle-node bifurcation.” 

• From Line 109 to Line 111 of the revised main text, the statement about the 
bifurcation has been revised: “The inflectional region (highlighted in red) within 
the folded ω∗

d surface in Fig. 1d is made by the unstable bifurcation branches.” 

• From Line 185 to Line 189 of the revised main text, the statement about the 
bifurcation has been revised: “In cases where the degeneracy is broken, the 
symmetry of normal mode splitting in the |q1| responses is broken, and the θ1 = -
π/2 equiphase contour in the θ1 responses illustrates a stable branch and a saddle-
node bifurcation.” 

• In Line 235 of the revised main text, the “balanced pitchfork bifurcation” in the 
original manuscript is replaced by the “pitchfork bifurcation”. 

• From Line 253 to Line 258 of the revised main text, the statement about the state 
evolutions of the bifurcations has been revised: “In the degeneracy-broken case, 
the state evolutions associated with the bifurcation patterns in Fig. 2e and f are 
shown by the orange and magenta trajectories on the Bloch sphere in Fig. 3a, 
respectively. The introduction of rotation immediately leads to the breaking of 
chiral symmetry, as shown by the stable branches on the upper hemisphere.” 

• From Line 331 to Line 334 of the revised main text, the statement about the 
bifurcations has been revised: “Furthermore, we present an alternative approach 
for creating bistability and bifurcations by establishing a phase-tracked closed-loop 
oscillation in a coupled system without relying on nonlinear potential energy.” 

• In the revised caption of Fig.2d, e and f, the term “unbalanced pitchfork 
bifurcations” has been replaced by “saddle-node bifurcations”. 

• In the revised caption of Fig.3b, the “degenerate bifurcation” has been replaced by 
“pitchfork bifurcation”. 

• Some other related minor modifications in the main text and the Supplementary 
Information are also made for the cohesiveness of the content. 

3. The authors keep talking about “nonreciprocity” instead of the standard hysteresis. 
Hysteretic response is very familiar in nano and micromechanics. Sophisticated 3D 
color pictures do not add to what is already well understood. I think this part can be 
shortened or eliminated. 

Response: We sincerely appreciate the Referee for reminding us of the similarities 



between the nonreciprocal traversal process in this study and the hysteresis sweep 
process in Duffing nonlinear frequency responses. We accept the suggestion of the 
Referee to shorten the section in the main text about the nonreciprocal state transfer.  

However, we also note that the PhT singularity explored in our research differs slightly 
from the Duffing nonlinearity-induced bifurcation, particularly in terms of the 
underlying state information for each bistability. In the case of Duffing nonlinearity-
induced bifurcation, the bistable states are associated with the same mode, without any 
mode transfer occurring when the states are switched. In contrast, for the hysteretic 
effect in our study, the bistable states correspond to two distinct linear oscillating modes 
located at different regions on the Bloch sphere. Switching between these bistable states 
enables state transfer, making our PhT singularity more akin to exceptional point 
singularities. 

Given that the nonreciprocal state transfer is not the primary innovation of this paper, 
we have followed the Referee's suggestion. We have relocated most of the content 
regarding nonreciprocal state transfer to SUPPLEMENTARY DISCUSSION 1. In the 
revised DISCUSSION section of the main text, we provide a concise statement about 
nonreciprocal state transfer, highlighting it as one of the supporting applications of the 
PhT singularity.  

Changes made:  

• The “Voltage-controlled nonreciprocity” section and Fig. 5 of the original 
manuscript have moved into the SUPPLEMENTARY DISCUSSION 1 of the 
revised Supplementary information.  

• From Line 342 to Line 349 of the revised main text, we make a succinct statement 
about the voltage-controlled nonreciprocity state transfer: “Additionally, the PhT 
cubic singularity can also facilitate the realization of closed-loop controlled 
nonreciprocal state transfer (see Supplementary Discussion 1). In contrast to 
previous studies that rely on two-parameter-controlled encircling, we demonstrate 
the achievement of nonreciprocal state transfer through the highly desirable single-
parameter (voltage)-controlled traversal, resulting in an impressive isolation ratio 
of 59 decibels.” 

4. I believe the Introduction should be rewritten. It is put into the title and italicized in 
the text that the system is “binary linear”. In the rebuttal the authors agree that the 
system is strongly nonlinear as, in addition to the two modes, it contains a PLL, a 
strongly nonlinear control device. It is the nonlinearity that makes the system interesting. 

The claim of the novelty of the onset of folds and cusp points in a two-mode system 
has to be removed. The corresponding bifurcations have been well-known even for a 
single nano/micromechanical mode and have been described in the experimental paper 
the authors are now referring to (Ref.37); more examples and more types of bifurcations 
observed in nanomechanics as well as the underlying theory can be found in Bachtold 
et al., Rev. Mod. Phys. (2022).  



It is also well-known in nanomechanics that, because nanomechanical systems have 
high quality factors, there is no need in “overexcited conditions, which … bring 
intrinsic power consumption and reliability limits”. Already weak resonant drives lead 
to a variety of strongly nonlinear effects, including dynamical chaos, cf. the above RMP 
and in particular Guttinger et al., Nat. Nano (2017), and Houri et al., PRL (2020). 

The interesting and unexpected result of the paper, from my point of view, is that, by 
attaching a PLL to a MEMS gyroscope, it is possible to make the driven system bistable 
in a way qualitatively different from the familiar bistability due to the Duffing 
nonlinearity and to investigate the emerging bifurcations. I would emphasize this. 

Response: As the Referee suggested, we have rewritten the Introduction and 
rephrased the contribution of this study as “We demonstrate theoretically and 
experimentally the existence of an unexplored third-order singularity in the phase-
tracked steady states of a pair of coherently coupled mechanical modes. Notably, by 
examining the equiphase contour of the coherent-coupling phase response, we find that 
the system can exhibit bistability in a way qualitatively different from the Duffing 
nonlinearity.” The title of the manuscript is also revised as “Higher-order singularities 
in phase-tracked electromechanical oscillators”. 

The bistability of this study indeed can be regarded as an effective nonlinearity because 
the governing equation is cubic. Nonetheless, we also concur with the Referee in noting 
that the PhT singularity mechanism is fundamentally distinct from the Duffing 
nonlinearity-induced bifurcation. In the case of the PhT singularity, the bifurcation 
pattern is solely determined by the landscape of the coherent-coupling phase response, 
as illustrated in Figure 1b (also provided below). The role of the PLL is merely to track 
the equiphase contour (depicted as the black curve). Consequently, we believe that the 
nature of the PhT singularity is primarily predicated upon the linear response of the 
coherently coupled modes. The PLL serves as a technique to track this contour. Hence, 
we feel that it would be irresponsible for us to attribute the PhT singularity solely to the 
nonlinear control of the PLL. While some other schemes might lead to more intriguing 
linear or nonlinear phase-tracked patterns, the nature of these patterns would still be 
governed by the landscapes of the linear phase responses, rather than the nonlinear 
control of the PLL. Nevertheless, we acknowledge that the nonlinear control device 
PLL is crucial for executing the phase tracking. Following the Referee's suggestion, we 
have removed the claim regarding the singularity being linear in the revised manuscript. 
We think focusing on the actual results would be better. 



 

We also would like to thank the Referee for reminding us that the Duffing nonlinearity 
can introduce pitchfork bifurcations and cusp singularities in a single mode. Based on 
this, we have revised the Introduction part and made a statement that “Interestingly, 
nonlinearities can facilitate the emergence of higher-order singularities, such as 
dynamical pitchfork bifurcation points and higher-order exceptional points, while 
requiring fewer degrees of freedom.” The related references including Bachtold et al., 
Rev. Mod. Phys. (2022) have been included. we have also removed the emphasis on the 
binary nature of the PhT singularity in the revised manuscript following the Referee’s 
suggestion.  

Generally, conventional nonlinearity relies on nonlinear potential energies that can 
provide nonlinear restoring forces. We wholeheartedly agree that nanomechanical 
resonators can readily achieve nonlinearity. As advised by the Referee, we have 
removed the improper claim from the original paper that mentioned “overexcited 
conditions, which … bring intrinsic power consumption and reliability limits.”  

However, in micro/mesoscale mechanical resonators, we must acknowledge that 
nonlinearity is still relatively less controllable compared to established techniques such 
as PLL and coherent coupling, which have been extensively utilized in the development 
of mature devices. 

We deeply appreciate the Referee's overall perspective regarding the contribution of 
this study. We agree with the Referee's viewpoint that through PLL-enabled phase 
tracking, we can achieve a qualitatively distinct bistability in the driven coupled system 
compared to the familiar bistability resulting from Duffing nonlinearity. This enables 
us to investigate emerging bifurcations in a novel manner. As advised by the Referee, 
we have revised the Abstract, Introduction, and Discussion sections to reflect these 
changes. 

Changes made:  

• From Line 35 to Line 43 of the revised main text, we have rewritten the background 
of this study: “Interestingly, nonlinearities can facilitate the emergence of higher-
order singularities, such as dynamical pitchfork bifurcation points and higher-order 
exceptional points, while requiring fewer degrees of freedom. Exploring these 
phenomena not only expands our understanding of singularity dynamics but also 



paves the way for engineering controllable devices. Nevertheless, these 
nonlinearities are often associated with well-established nonlinear potential 
energies.” 

• From Line 50 to Line 56 of the revised main text, we have rephrased the 
contribution of this study: “We demonstrate theoretically and experimentally the 
existence of an unexplored third-order singularity in the phase-tracked steady 
states of a pair of coherently coupled mechanical modes. Notably, by examining 
the equiphase contour of the coherent-coupling phase response, we find that the 
system can exhibit bistability in a way qualitatively different from the Duffing 
nonlinearity.” 

• From Line 323 to Line 325 of the revised main text, we have rephrased the 
contribution of this study: “In summary, our study has discovered a cubic 
singularity in the phase-tracked coherent-coupling dynamics of a pair of 
microelectromechanical modes.” 

• Some other related minor modifications in the main text and the Supplementary 
Information are also made for the cohesiveness of the content. 



REVIEWERS' COMMENTS 

 

Reviewer #3 (Remarks to the Author): 

 

The paper has been significantly improved. As suggested in the report, the title has been changed and 

the emphasis on linearity has been removed. However, there are a few things that need to be cleaned 

up before I would recommend publishing it. 

 

1. Singularities are not a phenomenon. Consequences of bifurcations are observable and could be called 

phenomena. 

 

2.“Cubic singularities” – this is an obscure term. The authors are talking about a codimension-2 

bifurcation, a cusp point on the parameter plane. And, in contrast to the claim in the paper, in the 

studied case reaching this point also requires “meticulous tuning”, as in the case studied in Ref. 32 and 

in many other papers on nano- and micromechanical systems. In terms of applications, besides Ref. 32, 

this point was suggested as a means of suppressing phase noise in the very well-known paper by 

Greywall et al., PRL 72 (1994). This reference could have been found in the review [33] to which I 

referred earlier. 

 

3. “Superior performance” has to be compared with ref. 32 and with the Greywall paper and subsequent 

papers by Kenig et al (PRE 86, (2012), PRE 88 (2013)). 

 

4. A lot of experimental work on hysteresis and dynamics near bifurcation points in micro- and 

nanomechanical systems has been done over the years, in particular by the groups of Roukes, Ho Bun 

Chan, Collin, Kenny, Sheer, and others. I don't think this work should be disregarded. 

 

5. A pitchfork bifurcation does not “disconnect into a stable branch…”. 

 

6. The last paragraph in red has, again, to be modified to explain the nature of the specific codimension-

2 bifurcation studied in this paper. 

  



Response to Reviewer 

We express our sincere gratitude to the Referee for the kind reviews. The manuscript 

has been revised to address the feedback received. Please find below our response to 

the reviewers. The Referee’s comments are in black, authors’ responses are in Blue, 

and the Red parts indicate the corresponding modifications in the manuscript. 

 

Reviewer #3 (Remarks to the Author): 

The paper has been significantly improved. As suggested in the report, the title has been 

changed and the emphasis on linearity has been removed. However, there are a few 

things that need to be cleaned up before I would recommend publishing it. 

Response: We extend our sincere thanks to the Referee for the valuable and 

constructive comments. The feedback has greatly enhanced our manuscript, both in 

terms of scientific content and representation. 

1. Singularities are not a phenomenon. Consequences of bifurcations are observable 

and could be called phenomena. 

Response: As the Referee suggested, the improper representation of “Singularities 

are a ubiquitous phenomenon…” has been revised in the revised paper. 

Changes made:  

• In the first sentence of the revised abstract, we correct the representations about 

the singularity: “Singularities ubiquitously exist in different fields and play a 

pivotal role in probing the fundamental laws of physics and developing highly 

sensitive sensors.” 

2.“Cubic singularities” – this is an obscure term. The authors are talking about a 

codimension-2 bifurcation, a cusp point on the parameter plane. And, in contrast to the 

claim in the paper, in the studied case reaching this point also requires “meticulous 

tuning”, as in the case studied in Ref. 32 and in many other papers on nano- and 

micromechanical systems. In terms of applications, besides Ref. 32, this point was 

suggested as a means of suppressing phase noise in the very well-known paper by 

Greywall et al., PRL 72 (1994). This reference could have been found in the review [33] 

to which I referred earlier. 

Response: We sincerely thank the Referee for the insightful comments regarding the 

representation of "Cubic singularities." It is true that the PhT singularity is classified as 

the codimension-two cusp singularity/catastrophe. As per the Referee's suggestion, we 

have revised the term in the manuscript to "cusp singularity." The codimension-two 

nature of the PhT singularity is also demonstrated in the Methods section. 

In the abstract, the expression “meticulous” is to describe the tuning of multiple (≥ 3) 

coupled degrees, where at least six controlling parameters are involved. The tuning of 

the cusp singularities is much simpler because only two controlling parameters are 

involved. To avoid misunderstanding, the representation in the abstract has been revised. 



We are grateful to the Referee for reminding us about the application of suppressing 

noise using the Duffing-nonlinearity-induced bifurcation point. As per the 

recommendation, we have included the recommended references in the revised 

manuscript. 

Changes made:  

• From Line 113 to Line 115 of the revised main text, we have made a statement that 

equation (1) “describes a cusp singularity because equ. (1) is right-equivalent to 

the universal unfolding of Thom's codimension-two catastrophe.” 

• In the revised abstract, the statement has been revised as “Nevertheless, achieving 

higher-order (≥3) singularities, which exhibit superior performance, typically 

necessitates meticulous tuning of multiple (≥3) coupled degrees of freedom or 

additional introduction of nonlinear potential energies” to avoid 

misunderstanding. 

• In Line 32 of the revised main text, “suppressing noise” has been added as one of 

the applications of singularities. The references recommended by the Referee are 

included as ref. [13-17]. 

3. “Superior performance” has to be compared with ref. 32 and with the Greywall paper 

and subsequent papers by Kenig et al (PRE 86, (2012), PRE 88 (2013)). 

Response: As the Referee suggested, the recommended references about noise 

suppressing are included in the introduction “Higher-order singularities have the 

potential to provide higher performance and engender richer physics.” 

Changes made:  

• The recommended references are included as ref. [13-17] of the revised manuscript. 

4. A lot of experimental work on hysteresis and dynamics near bifurcation points in 

micro- and nanomechanical systems has been done over the years, in particular by the 

groups of Roukes, Ho Bun Chan, Collin, Kenny, Scheer, and others. I don't think this 

work should be disregarded. 

Response: As the Referee suggested, the recommended experimental studies about 

Duffing-induced bifurcation points are included in the introduction of the revised 

manuscript.  

Changes made:  

• The recommended references are included as ref. [15,17,38-43] of the revised 

manuscript. 

5. A pitchfork bifurcation does not “disconnect into a stable branch…”. 

Response: We apologize for the unclear representation, which has been revised in 

the latest manuscript. 

Changes made:  



• From Line 105 to Line 107 of the revised main text, we revise the description as 

“As the degeneracy is broken, the perturbed pitchfork bifurcation of ω
∗
d splits into 

a saddle-node bifurcation and a stable branch.” 

6. The last paragraph in red has, again, to be modified to explain the nature of the 

specific codimension-2 bifurcation studied in this paper.  

Response: As the Referee suggested, in the Methods section, we have proved the 

codimension-two nature of the PhT singularity by demonstrating that the governing 

cubic equation (1) is right-equivalent to the universal unfolding of Thom’s 

codimension-two cusp catastrophe. By demonstrating this equivalence, we can classify 

the PhT singularity as a codimension-two cusp singularity. 

Changes made:  

• From Line 113 to Line 115 of the revised main text, we have made a statement that 

equation (1) “describes a cusp singularity because equ. (1) is right-equivalent to 

the universal unfolding of Thom's codimension-two catastrophe.” 

• In the Methods section, we have additionally included a subsection “Codimension-

two nature of the PhT singularity”. 

Once again, we extend our gratitude to the Referee for the valuable input and 

suggestions, which have significantly improved the quality of our work. 
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