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SUPPLEMENTARY NOTE 1. DYNAMICALLY CROSSING DIABOLIC POINTS WHILE ENCIRCLING
AN EXCEPTIONAL CURVE IN PASSIVE PT -SYMMETRIC FOUR-MODE SYSTEM

In this section we discuss the symmetric-asymmetric mode switching mechanism in the passive PT -symmetric
system consisting of four coupled cavities or waveguides. The schematic realization for such a system is identical to
that in Fig. 1 in the main text, with the exception that the gain now can be smaller than losses. We set the mode
coupling k = 0.5 (which also sets the system units), to ensure the full encirclement of EPs for the same modulation
functions of the system parameters as those in Eq. (7) in the main text. The corresponding perturbed NHH reads

Ĥ(δ) =

iA(t) + δ(t) g(t) 0.5 0
g(t) iA(t) 0 0.5
0.5 0 −i∆(t) g(t)
0 0.5 g(t) −i∆(t)− δ(t)

 , (S1)

where the modulated gain is A(t) = A[1 + cos(ωt + φ0)], such that 0 < A < ∆. Moreover, ∆(t) and g(t) are the
time-dependent dissipation and mode-coupling strength, respectively, and δ(t) is perturbation given in Eq. (7) in the
main text. And ω (φ0) is the winding frequency (initial phase) of the modulation.

The spectrum of the NHH in Eq. (S1) with zero gain A = 0 and mode coupling g > 0 is shown in Fig. 1. We confirm
that for zero gain A = 0, the mode-switching mechanism remains the same as for the system with balanced gain and
loss, as discussed in the main text. We plot the fidelity |〈ψk|ψ(t)〉|2 of the NHH eigenstates (ψk) at times t and the
time-evolving state (ψ(t)) in Fig. 2. The symbol 〈·|·〉 denotes the Hilbert inner product of two states. As one can see,
the state evolution is reminiscent to that in Fig. 4 in the main text, though it has some additional peculiarities. For
instance, one can observe some extra mode switching at times t = T/2, 3T/2 when the system does not cross the DC,
e.g., a seemingly extra swap between states ψ2 and ψ3 at time T/2 < t < T in panel (c) in Fig. 2. This extra state
flip is nothing else but just a reordering of the Riemann sheets (E2 → E3 and E3 → E2), when the two separated
Riemann surface pairs start intersecting each other while moving along the vertical axis in Fig. 1, which is caused by
the mode coupling modulation g(t). Moreover, at larger times t ≈ 2T , instabilities can appear [see panels (a)-(b),
and (g)-(h) in Fig. 2]. However, the mode switching mechanism (as presented in Table 1 in the main text) remains
unchanged for the full double period 2T . Also, with decreasing gain a problem with the fine tuning in the winding
speed may emerge. Nevertheless, by applying the gain, such that A < ∆, one can remove the arising instabilities as
shown in Fig. 3, as well as other problems related the mentioned parameter constraints.

We have, thus, demonstrated that our findings, presented in the main text, remain valid also for passive PT -
symmetric systems which might be useful for classical low-power and even quantum optical applications.

SUPPLEMENTARY NOTE 2. DYNAMICALLY CROSSING DIABOLIC POINTS WHILE ENCIRCLING
AN EXCEPTIONAL CURVE IN AN EIGHT-MODE PT -SYMMETRIC SYSTEM

Here we further extend out results to an eight-mode PT -symmetric system. Following the same approach we
described in the main text, one can construct an eight-mode NHH out of combination of a PT -symmetric dimer and
some 4× 4 Hermitian matrix with DPs. Namely, by taking

M1 =

(
i∆ k
k −i∆

)
, M2 =

0 g 0 0
g 0 l 0
0 l 0 g
0 0 g 0

 , (S2)

one can construct a new matrix H as follows:

H = M1 ⊗ I4 + I2 ⊗M2, (S3)

where I2 (I4) is the 2× 2 (4× 4) identity matrix.
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FIG. 1. Spectrum of the passive PT -symmetric four-mode system. (a) Real and (b) imaginary parts of the spectrum of the
NHH as a function of dissipation strength ∆ and the perturbation δ, according to Eq. (S1). The system parameters are: A = 0
and g = 0.7.
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FIG. 2. A programmable passive PT -symmetric four-mode switch, governed by the NHH in Eq. (S1), as indicated by the fidelity
of the NHH eigenstates ψk at time t, and the time-evolving state ψ(t) during a double period 2T . The initial eigenmodes ψk,
k = 1, . . . , 4, are located in the exact PT -phase. Panels (a)-(d) and panels (e)-(h) are respectively obtained for clockwise and
counterclockwise encircling directions. The system parameters are: φ0 = π, ωt = πt/22.2, and g = 0.7.

The matrix H may correspond to the PT -symmetric NHH, written in the mode representation and describing an
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FIG. 3. A programmable passive PT -symmetric four-mode switch, similar to that in Fig. 2, but with the nonzero gain A = 0.1,
according to Eq. (S1). The remaining system parameters are the same as in Fig. 2.

eight-mode bosonic system. In analogy with Eq. (6) in the main text, we perturb this NHH in the following way:

Ĥ(δ) =



i∆ + δ g 0 0 k 0 0 0

g i∆ + δ l 0 0 k 0 0

0 l i∆ g 0 0 k 0

0 0 g i∆ 0 0 0 k

k 0 0 0 −i∆ g 0 0

0 k 0 0 g −i∆ l 0

0 0 k 0 0 l −i∆− δ g

0 0 0 k 0 0 g −i∆− δ


. (S4)

The schematic representation of the eight-mode system governed by the NHH in Eq. (S4) is shown in Fig. 4. In what
follows, we set k = 1 (establishing system units) and modulate the system parameters as:

∆(t) = 1 + cos(ωt+ φ0),

g(t) = cos2(ωt/2),

l(t) = cos2(ωt/2),

δ(t) = sin(ωt+ φ0). (S5)

A typical spectrum of such a system is illustrated in Fig. 5(a). This spectrum consists of 4 separated pairs of
Riemann sheets. By appropriately modulating either the mode couplings g or l, one can realize various four-mode
switching combinations in analogy with those in the main text. That is, modulating only coupling g(t) and leaving
l = const allows one to implement a symmetric-asymmetric switching between four states ψ2 ↔ ψ4 ↔ ψ5 ↔ ψ7 [see
Figs. 5(a)-(c)]. The modulation of only l(t) with g = const ensures the swapping between two pairs of four-mode
states: ψ1 ↔ ψ2 ↔ ψ3 ↔ ψ4 and ψ5 ↔ ψ6 ↔ ψ7 ↔ ψ8 [see Fig. 5(d)-(f)]. The switching order in all these three
four-mode combinations is similar to that in the main text. For instance, the state swapping between the states
ψ2 ↔ ψ4 ↔ ψ5 ↔ ψ7 is identical to the state switching order between the states ψ1 ↔ ψ2 ↔ ψ3 ↔ ψ4 in the main
text. The same applies to other two four-mode compositions. We additionally confirm these results by plotting the
fidelity between the initial eigenstates ψk(0) at time t = 0 and the time-evolving state ψ(t) in Figs. 6 and 7. As such,
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FIG. 4. Schematic representation of an eight-mode PT -symmetric non-Hermitian Hamiltonian Ĥ, given in Eq. (S1). The red
(blue) balls represent cavities with gain (loss) rate i∆ (−i∆). Various mode couplings are depicted by double arrows. Four
cavities are coherently perturbed by the frequency detuning ±δ.

FIG. 5. Real spectrum of the eight-mode PT -symmetric system in the parameter space (∆, δ) depending on the mode-coupling
modulation. (a)-(c) Shows the cases for the modulated coupling g(t) with constant coupling l = 1, and (d)-(f) for the modulated
coupling l(t) with constant coupling g = 1. Panels (a) and (d) correspond to the initial condition when g = l = 1; panels (b)-(c)
correspond to the case when g = 0, and panels (e)-(f) to the case when l = 0, respectively. It can be seen that, depending
on the choice of the mode coupling modulation, various pairs of Riemann surfaces may form DCs, and, thus, various state
swapping combinations can be realized on demand.

by alternating the modulation between mode couplings g and l one can implement a symmetric-asymmetric mode
switching for all the eight modes in the system.
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FIG. 6. A programmable eight-mode switch by dynamically encircling an exceptional curve, EC, while crossing a diabolic
curve, DC, as indicated by the fidelity of the initial states ψk(0) at t = 0, and the time-evolving ψ(t) state during a double
period 2T with mode coupling modulation g(t). The system parameters are: l = 1, ωt = πt/55.
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FIG. 7. A programmable eight-mode switch by dynamically encircling an exceptional curve, EC, while crossing a diabolic
curve, DC, as indicated by the fidelity of the initial states ψk(0) at t = 0, and the time-evolving ψ(t) state during a double
period 2T with mode coupling modulation l(t). The system parameters are: g = 1, ωt = 2πt/55.
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