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Particle-like topologies in light
Danica Sugic 1,2,3, Ramon Droop4, Eileen Otte 4, Daniel Ehrmanntraut 4, Franco Nori 3,5,

Janne Ruostekoski 6, Cornelia Denz4 & Mark R. Dennis 1,2,7✉

Three-dimensional (3D) topological states resemble truly localised, particle-like objects in

physical space. Among the richest such structures are 3D skyrmions and hopfions, that

realise integer topological numbers in their configuration via homotopic mappings from real

space to the hypersphere (sphere in 4D space) or the 2D sphere. They have received

tremendous attention as exotic textures in particle physics, cosmology, superfluids, and many

other systems. Here we experimentally create and measure a topological 3D skyrmionic

hopfion in fully structured light. By simultaneously tailoring the polarisation and phase profile,

our beam establishes the skyrmionic mapping by realising every possible optical state in the

propagation volume. The resulting light field’s Stokes parameters and phase are synthesised

into a Hopf fibration texture. We perform volumetric full-field reconstruction of the Π3

mapping, measuring a quantised topological charge, or Skyrme number, of 0.945. Such

topological state control opens avenues for 3D optical data encoding and metrology. The

Hopf characterisation of the optical hypersphere endows a fresh perspective to topological

optics, offering experimentally-accessible photonic analogues to the gamut of particle-like 3D

topological textures, from condensed matter to high-energy physics.
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Nontrivial 3D topology has inspired many descriptions of
fundamental particles. Motivated by Lord Kelvin’s knotted
vortex atom hypothesis1, Tony Skyrme2 in 1961 proposed

a topological model for nuclei: particle-like continuous fields in
3D space now called skyrmions. These map 3D real space to the
hypersphere (i.e. the unit sphere in four dimensions, also known
as the 3-sphere3,4), parametrising the field. The skyrmion con-
figuration wraps around the hypersphere an integer number of
times called the Skyrme number. Skyrmions are now seen as a
particular example of more general 3D topological solitons5–7,
related to other topological textures such as monopoles and
hopfions—the latter being fields with a 2-sphere parameter space
(i.e. unit sphere in three dimensions). 3D topological textures have
been studied theoretically as hypothetical objects in various sys-
tems, including high-energy physics5,8, condensed matter6,7,9,10,
and early-universe cosmology11. In recent years, 3D skyrmions
and hopfions have been experimentally realised in cold quantum
matter12,13 and liquid crystals14.

So-called baby skyrmions are the two-dimensional (2D)
counterpart of 3D skyrmions: fields in 2D physical space which
map to, and wrap around, a 2-sphere parameter space. Their study
is much more developed in theory and experiments, notably in
non-singular superfluid vortices15 including those imprinted by
structured light16, and especially magnetic systems17. Here the
direction of spin at each point provides the 2-sphere parameter
space, and magnetic skyrmion excitations have the potential to
represent topological bits for low-power computer memory and
processing17. Recently, 2D baby skyrmion configurations were
created in optical systems, as the direction of electric field vectors,
or photon spin, near a material interface18,19, displaying dynamics
similar to magnetic skyrmions20. In propagating laser light, optical
polarisation can be structured into full Poincaré beams21, which
realise every state of elliptic polarisation in the transverse plane.
These beams can also be interpreted as 2D baby skyrmions22,
since the Poincaré sphere, as the 2-sphere parameter space,
parametrises transverse, elliptic polarisation states. However, 3D
particle-like topological objects have not been considered either
theoretically or experimentally in optical fields.

Optical realisations of 3D topological states can take various
forms. Much interest has focused on singularity lines, such as
optical vortices or polarisation singularities (e.g. C lines)22. In
structured light, with amplitude, phase, and polarisation spatially
varying, these can be woven into loops, links, and knots23,24 and
organise Möbius strips25. The state of elliptic polarisation is right-
or left-handed circular (RH, LH) on C lines, often described as a
skeleton of the complex optical polarisation field26. Topologically
structured light has a wide range of applications including
enhanced free-space optical communications27 and advanced
trapping28, and is related to optical currents29 and orbital angular
momentum30. Singular lines are topologically characterised by
the fundamental homotopy group Π1. The homotopy group Π3,
on the other hand, defines topological particles such as 3D
hopfions and skyrmions5. It is natural to ask whether these 3D
excitations can be created in structured light.

Here we show the design, generation and measurement of a
structured, propagating beam of laser light realising such a
mapping, unifying particle-like 3D topologies in free-space optics
with those studied in high-energy physics, cosmology and various
kinds of condensed matter.

Results
The optical hypersphere of polarisation and phase. Spatially
extended polarised light is represented by a complex transverse
electric field vector at each point r in the propagating beam. Its
RH and LH components are represented by the complex-valued

scalar functions ERðrÞ and ELðrÞ, and the pair ðER; ELÞ which
characterises the optical state at each point is assumed normal-
ised, i.e.

ðReERÞ2 þ ðImERÞ2 þ ðReELÞ2 þ ðImELÞ2 ¼ 1: ð1Þ
Therefore, this normalised optical field defines a mapping from

each point in 3D real space to a point on the 3-sphere, which we
call the optical hypersphere. The optical hypersphere is
conveniently parametrised using spinorial angles α; β; γ:

ER ¼ cos
β

2
eiðγ�αÞ=2 and EL ¼ sin

β

2
eiðγþαÞ=2; ð2Þ

for 0≤ β≤ π, �π<α≤ π and �2π < γ ≤ 2π. The angles α; β; γ have
a direct interpretation in terms of the polarisation and phase of
the electric field state: with S1; S2; S3 the normalised Stokes
parameters, α ¼ arctanðS1; S2Þ is the polarisation azimuth, and
cosβ ¼ S3 is the polarisation ellipticity; γ ¼ argER þ argEL is the
sum of the two electric field components’ phases26,31. Further
details of these parameters and their relationship with the
hypersphere and the Poincaré sphere (2-sphere) parametrising
polarisation may be found in Supplementary Note 1.

The full Poincaré sphere of polarisation states can be realised in
a transverse plane of a structured light field, created from the
superposition of two, differently structured, LH and RH beam
components, similar to a full Poincaré beam21. At each spatial
point, the optical field has some elliptical polarisation state
characterised by α; β. In 3D, points of constant elliptical
polarisation lie on filaments, generalising RH and LH circular
polarised C lines. 3D real space is filled by the set of polarisation
filaments, constituting a polarisation texture (Fig. 1a). Each
filament corresponds to a point on the Poincaré sphere (Fig. 1b),
and many filaments cross each plane (Fig. 1c). Although the
polarisation is fixed on the filaments, the optical phase smoothly
varies along them (Fig. 1c, insets). Any 3D structured light field
with varying transverse polarisation can be represented by such a
texture.

The 3-sphere supports the Hopf fibration4, a fibre bundle
which divides it into linked circles. In the optical hypersphere,
each fixed polarisation state (with α; β constant) traces out a circle
as the phase γ goes through a 4π cycle. The phase and
polarisation parameters therefore realise the Hopf fibration in
the optical hypersphere (this is explained in detail in Supple-
mentary Note 1). The Poincaré sphere is interpreted here as the
base space of the fibration31. We design a 3D structured beam
that realises all the transverse states of light, including polarisa-
tion and phase, in its focal volume (real space). It displays the 3D
Hopf fibration topology in a configuration we call a skyrmionic
hopfion. The skyrmionic hopfion realises, in real space, an image
of the Hopf fibration in the optical hypersphere. The fixed
polarisation filaments can be represented as a 3D topological
texture of entwined curves, in which each pair of loops are linked.

Experimentally realising the skyrmionic hopfion. We design the
skyrmionic hopfion structure in light by superimposing carefully
chosen combinations of vectorial Laguerre−Gauss beams23,30

LGl;p. The LH component, EL, is chosen to be the Laguerre−
Gauss beam LG�1;0, with a negative-signed optical vortex along
the beam axis23. The RH component, ER, is chosen as a super-
position of the Laguerre−Gauss beams LG0;0 and LG0;1, with a
circular vortex loop in the focal plane centred on the axis23.
Therefore, the net polarisation field has an RH C line along the
axis, threading an LH C line loop in the focal plane. The C lines,
at which β ¼ 0; π, organise the rest of the texture: between them
are nested tori with β ¼ constant, including the particular L
surface of linear polarisation at β ¼ π=2, analogous to vortices in
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Fig. 1 3D optical polarisation texture. A light field with position-dependent transverse polarisation and phase is created in a volume from the superposition
of RH and LH circularly polarised beams, whose amplitude and phases are carefully structured. Spatial points characterised by the same state of elliptic
polarisation lie on the filaments (a). The 3D polarisation texture can be visualised by colouring the filaments according to the position of its polarisation
ellipse on the Poincaré sphere (b). The azimuthal angle α, representing the ellipse orientation, is coloured with the hues and the polar angle β, representing
the ellipticity, is associated with the saturation levels. The sphere’s poles, representing the circular polarised states, are black (LH) and white (RH). Each
optical state also has a phase, represented by the position of the arrow along the polarisation ellipse. In the transverse plane in (c), states of light are fully
described by colours and arrowed ellipses. Along filaments of constant polarisation, the phase on the ellipses varies smoothly, as shown in the insets for
three representative planes.
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other skyrmionic textures9. Details of the superposition optimi-
sation are given in the “Methods” and Supplementary Note 2.

Experimentally, the RH and LH beam components are
separately shaped by a spatial light modulator (SLM) (Fig. 2),
before being combined in a joint beam path to shape the
skyrmionic hopfion (Supplementary Fig. 4). The total polarisation
state and phase of the resulting beam are measured at each point
in the propagating volume via vectorial full-field reconstruction
(VFFR, see “Methods”). For the VFFR, we combine established
metrological techniques; namely, Stokes polarimetry, interfero-
metry, and digital propagation32. Our approach explicitly relates
measurements in different 2D planes, reconstructing the full 3D
field volume. Further details of the experiment are given in the
“Methods” and Supplementary Note 3.

The VFFR measurements reveal the polarisation Hopf fibration
in the 3D light structure (Fig. 3a and Supplementary Video). The
polarisation ellipticity is constant on nested tori, made up of
polarisation filaments labelled by constant β and varying azimuth
α (Fig. 3b–d). Our polarimetric resolution identifies these
filaments clearly, particularly the linking between pairs of loops.
This resolution compares very well with experimentally measured
hopfion structures in other systems, such as cold atoms12,13 and
liquid crystals14. As predicted (see Supplementary Notes 1 and 2),
the two linked C lines (vortices in the superposed beams) are the
topological skeleton of the hopfion structure, on which the rest of
the polarisation texture hangs. They are not topologically
privileged—all polarisation filaments are linked loops—but the
C lines form the core filaments for the system of tori, including
the L surface of linear polarisation. We anticipate C lines to play a
similar structural role in other topological 3D polarisation
textures.

Considering the shaped beams’ phase as well as polarisation
allows a comparison of the measured hopfion structure in real
space (Fig. 4a, with phases along the shown filaments in Fig. 4b)
with the optical hypersphere (Fig. 4c), parametrised by α; β; γ.
This direct comparison gives a volume-to-volume mapping
(demonstrated by the grey cubes in Fig. 4a, c). The density of
hypersphere volume with respect to real space volume is the
topological Skyrme density Σ, which can be interpreted as a
continuous measure of linking33 of the polarisation filaments.
Characteristic of 3D skyrmions5,8,9, the real space integral of Σ,
concentrated around the C line loop, integrates to a value very
close to unity, covering the hypersphere of hypersolid angle 2π2,
i.e. a Skyrme number of 1. The Skyrme number is the degree of
the mapping from 3D real space to the hypersphere, correspond-
ing to the element of the homotopy group Π3. More details of this
are provided in Supplementary Notes 1, 2 and 4.

Mathematically, the Skyrme density Σ is the Jacobian
determinant of the map from real space to the hypersphere (see
Supplementary Note 4),

Σ ¼ 1
16π2

∇γ � ∇cosβ ´∇α
� �

: ð3Þ

This is the natural 3D generalisation of the 2D topological
density for 2D skyrmions13,15 (here, full Poincare beams),
1
4π ẑ � ∇cosβ ´∇α

� �
. As the field parameters vary longitudinally

as well as transversely, three parameters are needed to determine
the full, continuous topological density determining the covering
of the optical hypersphere, which is nonzero when the three
gradient vectors are linearly independent. The topological density
in Eq. (3) may be rewritten in terms of the normalised optical
orbital current29 Jo ¼ Im½E*

R∇ER þ E*
L∇EL�,

Σ ¼ 1
4π2

Jo � ∇ ´ Jo: ð4Þ

Details are given in Supplementary Note 4. An analogous
expression applies to 3D skyrmions in other systems6,7, with an
appropriate current or velocity substituted. It is also the topological
helicity, describing knotted fields in high-energy physics5,
superfluids6,7, magnetic fields and hydrodynamics34. Its appearance
in Eq. (4) suggests a relation between the 3D Skyrme density of a
polarisation field and the Poynting vector of optical energy flow.

We determine the Skyrme density explicitly from the measured
data, as shown in Fig. 4d. The sum over the measured voxels gives a
Skyrme number of 0.945, which is less than unity since low
intensities limit the measured volume boundary. The corresponding
covering of the optical hypersphere, with the image of the real space
measurement boundary, is represented in Supplementary Fig. 10.
Rather than a smooth interpolation of the optical field measure-
ments, this density is determined discretely from a simplicial cell
complex of spherical tetrahedra in the optical hypersphere arising
from the measured data points. Details of the technique and its
implementation are in the “Methods” and Supplementary Note 5.
The value of the Skyrme number of the theoretical field, with the
same boundary, is 0.997, consistent with the experimental error.

Discussion
We have demonstrated the experimental construction of a 3D
skyrmionic hopfion in the polarisation and phase pattern of a
propagating light beam. The Hopf fibration is realised in the
natural polarisation parameters from Eq. (2), a mapping from 3D
real space to the 3D optical hypersphere, generalising the Poin-
caré sphere naturally by including phase.

Our experiment and analysis manifest several topological ideas
not commonly emphasised in optics. Firstly, optical polarisation
fields in 3D can have topological textures, analogous to textures in
condensed matter, high-energy physics, etc. This might lead to
further insights and possibilities for topologically structured light
and its applications. Secondly, as a parameter space for the full
vectorial light field, the optical hypersphere goes beyond the
standard Poincaré sphere. The usual approach requires a Pan-
charatnam−Berry phase35,36 to be included later, ignoring the
fact that the optical field parameters define a manifold as natural
as the 3-sphere. It is intriguing to speculate whether the
machinery of the Poincaré sphere analysis of polarisation and
Jones calculus may be cast in the optical hypersphere.

The 3D polarisation Skyrme density Σ in Eqs. (3) and (4) can
be used as a tool to analyse optical vectorial full fields. Σ is the
continuous topological charge density representing the abstract
optical hypersphere volume covered by each real space point.
Σ= 0 when the gradients of ellipticity, phase, and azimuth are
linearly dependent, typically occurring along surfaces in 3D. The
relation between Σ and the optical orbital current suggests a
subtle interplay between the Poynting vector29 and energy
−momentum fluxes with optical hypersphere topology (explored
further in Supplementary Notes 1 and 4).

A smooth polarisation texture is disrupted at point singularities
in the polarisation field, such as saddle points in the parameters
α; β; γ. As previously observed24 in the reconstruction of Seifert
surfaces spanning knotted optical singularities, these points are
experimentally hard to control and limit the effective recon-
struction of textures of polarisation lines. They do not affect the
Skyrme number, and such points will lie on the surfaces Σ= 0.

Our experiments and theory demonstrate some higher-
dimensional topological invariances possible in structured light.
This formulation and measurement of an optical Π3 invariant will
lead to robust topological design principles for 3D optical fields for
free-space optics and nanophotonics. These skyrmionic structures
generalise to fields with higher degree Skyrme numbers, involving
more complex superposed beams including knots and links,
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Fig. 2 Sketch of experimental setup. Beams ER and EL are generated on a spatial light modulator (SLM) and superimposed on-axis by a polarising beam
splitter (PBS). A quarter-wave plate (QWP) transforms EL into left circular (black) and ER into right circular (white) polarisation. Around the focal spot of
the lens, the skyrmionic hopfion appears in a cuboid of size 198:8 μm ´ 198:8 μm ´ 53:2mm. The inset shows the polarisation texture in the focal plane
(colour coded as the Poincaré sphere in Fig. 1b), consistent with the theory in Fig. 1c. Measurements of amplitude, phase and polarisation are enabled by
volumetric full-field reconstruction (VFFR, see “Methods”).
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Fig. 3 Visualising the topology of the focal volume. The optical texture is reconstructed from the polarisation and phase measurements via the VFFR of
the optical beam. The measured volume is coloured following the Poincaré sphere and reveals the topological structure of the Hopf fibration (a). Two C
lines, the black loop and the threading straight white line, organise the texture into nested tori. Each toroidal surface represents points characterised by the
same ellipticity. The colours wind nontrivially around each torus, and a few polarisation filaments making up these tori are shown in the insets: in (b), the
lighter surface (S3 ¼ 0:398) is made of lines characterised by RH elliptic polarisation; in (c), the L surface (S3 ¼ 0) is made of lines along which the
polarisation state is linear23,26; in (d), the darker surface (S3 ¼ �0:775) is made of lines characterised by LH elliptic polarisation. In each inset, the cyan
and red filaments, corresponding to β ¼ 0; π are shown to form a Hopf link. Every pair of filaments in the texture link in this way, consistent with the Hopf
fibration. The 3D rendering of this experimental skyrmionic hopfion is in the Supplementary Video.
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Fig. 4 Measured Skyrme density and optical hypersphere. The experimental polarisation hopfion is shown (a), with measured phases (b) around the two
filaments shown (α ¼ 0; π, S3 ¼ 0:398, as in Fig. 3b). The hopfion in real space closely resembles the structure of the optical hypersphere parameter space in (c),
shown in volume-preserving projection from the RH circular polarisation state at the focal point of real space. Several features make the nature of the topological
mapping clear. The real-space filaments of constant polarisation are mapped to the smooth Hopf circles of fixed polarisation in the optical hypersphere. The
images of two typical real space transverse planes (grey grids) are distorted in the parameter space. The cube in real space intersecting the LH C line (black loop)
maps to a larger distorted cuboid, indicating a greater Skyrme density Σ near this point. The cube away from the loop maps to a smaller cuboid, indicating a
smaller Σ. In (d), the bounding cube represents the investigated focal volume in real space. The positive Skyrme density Σ of our structured skyrmionic hopfion is
concentrated around the LH C line with some positive and negative fluctuations visible around it. The upper inset shows the on-axis view (from z ¼ þ1) of the
toroidal conformation. The measured Skyrme number, given by the sum of the cubes volume, is 0.942 (described in “Methods”). Theoretical predictions of the
Skyrme density for the model field are shown in the lower inset, giving a Skyrme number of 0.997 (calculations in Supplementary Note 4).
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offering a broader gamut of topological structures and integers that
can be encoded in structured optical beams. This approach to
topological beam shaping will offer further analogies with cold
atoms, condensed matter and high-energy physics, offering the
possibility of emulating, optically, exotic particle-like topologies
from field theories not accessible otherwise in the laboratory.

Methods
Topological design of the optical skyrmionic hopfion. The optical skyrmionic
hopfion consists of the two scalar fields ER and EL representing the right- and left-
handed field components respectively. These scalar components are appropriately
structured to give the 3D topological texture described in the main text, effectively
realising the topological mapping from 3D real space to the optical hypersphere. In
these methods, we will refer to unnormalised field amplitudes ψR and ψL rather

than their normalised counterparts: the beam intensity is I ¼ ψR

�� ��2 þ ψL

�� ��2, and
Ej ¼ ψj=

ffiffi
I

p
, j ¼ R; L.

The optical skyrmionic hopfion can be understood intuitively quite simply: the
component ψR should have a circular optical vortex line in the focal plane,
concentric to the beam axis, and the component ψL should have an optical vortex
line along the beam axis. This realises all phases and polarisations (i.e., all points of
the optical hypersphere), concentrated in a small propagation volume. These
conditions can be realised by superpositions of Laguerre−Gauss (LG) modes23,30.
The standard definition of these modes (given in Supplementary Note 2) defines
LGl;p R; ϕ; z;w

� �
, depending on cylindrical coordinates in real space, ðR; ϕ; zÞ, with

l the azimuthal mode number, p the radial mode number, and w the waist width.
As discussed in Supplementary Note 4, the axial optical vortex line should have

a negative sign, so we choose ψL ¼ 2cLG�1;0ðR;ϕ; z;wÞ, the simplest LG mode with
an axial vortex of the correct sign, with c a constant to be found and 2 included for
calculational convenience. The vortex ring can be realised by the sum of two LG
modes with ‘¼0, ψR ¼ �aþ bð ÞLG0;0 R;ϕ; z;w

� �� bLG0;1 R; ϕ; z;w
� �

, where a
and b are parameters to be found. This guarantees the vortex ring to be
in the focal plane z ¼ 0, with a radius of

ffiffiffiffiffiffiffiffi
a=b

p
w, provided a; b > 0. The

coefficients a and b determine the intensity pattern around the vortex ring as well
as its radius.

For fixed value of w the optical skyrmionic hopfion is therefore realised for a
range of values of a; b and c. The different values of the parameters give very
different shapes of the structure (residing in the polarisation parameters) and
distribution of the overall intensity I. A preliminary exploration of these is given in
Supplementary Note 4. The spreading nature of the gaussian beams means that it is
not possible to cover the 3-sphere completely with polarisation states realised in
3-space. We therefore choose a superposition which maximises the volume of
optical states in the optical hypersphere within the measured 3D volume in
real space.

To be effectively generated and measured in the experiment, the values of the
parameters are chosen to optimise the field configuration. To aid this optimisation,
we introduce an extra scale size parameter K, with b ¼ b0K

2 and c ¼ c0K. The
3D size of the skyrmionic hopfion scales according to K, where now the vortex
ring radius is R0 ¼

ffiffiffiffiffiffiffiffi
a=b

p
ðw=KÞ. The remaining parameters a; b0; c0, determine

the particle-like field distribution’s shape. The parameters a; b0; c0 and K were
chosen to ensure the experimental skyrmionic hopfion to be localised within the
measured volume, in practice a cartesian cuboid centred around the focal point.
We optimised against the criteria in the following list. (i) Vortex ring radius R0 not
larger than beam waist w (this principle is also used in the design of optical vortex
knots37,38). (ii) Concentrate intensity inside the measured volume, with I � 0
outside the measured volume. It was especially important to localise the intensity
within the transverse cross-section, so as not to lose critical polarisation
information. (iii) Distribute the intensity as evenly as possible within the measured
volume. To maximise the quality of the measured polarisations we avoided regions
of low intensity as much as possible where the polarisation state changes rapidly.
(iv) Concentrate the Skyrme density (continuous topological charge density) within
the measured volume, i.e. Σ= 0 outside the measured volume. The density Σ is
given in main text (Eqs. 3, 4), and described in detail in Supplementary Note 4.
This enables a measured value of the Skyrme number very close to 1, as described
in the remainder of the “Methods”.

We proceeded by making an estimate of the parameters based on the
topological 3D plots of the numerical models, and then improved these based on
the quality of the experimental measurements.

The experimental setup, as described below, requires the Fourier transform of
the beam superposition to be realised on the SLM, and the desired field is
mathematically back-propagated through the paraxial lens system using Fourier
optics39. The LG distributions when z ¼ 0 are eigenfunctions of the Fourier
transform operation. Thus, the real space LG mode LGl;p R;ϕ; z;w

� �
corresponds,

in Fourier space, to the 2D amplitude i2p� lj jLG2D
l;p q?;wF

� �
, where wF is the

corresponding waist in the Fourier plane with transverse position q? . The
holograms correspond to �2ic0KLG2D

�1;0 q?;wF

� �
for ψL and

�aþ b0K
2

� �
LG2D

0;0 q?;wF

� �þ b0K
2LG2D

0;1 q?;wF

� �
for ψR. The coefficients do

not depend on the Fourier waist wF , so the overall beam in real space scales
linearly in radius R and quadratically in propagation distance z as wF is varied.
This quantity is chosen so that the skyrmionic hopfion has the desired size in real
space whilst fully utilising the SLM.

In our optical system, λ ¼ 532nm, the waist of the beam on the SLM is
wF ¼ 6:252 ´ 10�4m, and the imaging system given by lenses L1 and L2
(Supplementary Fig. 4b) halves the size of the beam. The resulting waist width is
w ¼ 54:2 μm (giving a Rayleigh range zR ¼ 34:7mm). The measured volume is a
cuboid, xj j≤ xmax, y

�� ��≤ ymax, zj j ≤ zmax, with xmax ¼ 3:13w ¼ 170 μm;
ymax ¼ 3:91w ¼ 212 μm; zmax ¼ 0:768zR ¼ 26:6mm. The values for the beam
parameters were optimised in this range to be a ¼ 3, b0 ¼ 1:5, c0 ¼ 0:16,K ¼ 2:5.
In terms of the original parameters, this gives the values a ¼ 3, b ¼ 9:4, c ¼ 0:4.
With these choices, the LH C line ring is at R0 ¼ 0:57w ¼ 30:6μm. The field
configuration of this model field near the C line ring is shown in Supplementary
Fig. 2b, resembling the corresponding Hopf fibration configuration (e.g.,
Supplementary Fig. 2a) closely.

Optical system design. The experimental skyrmionic hopfion field is the
superposition of two structured beams of orthogonal circular polarisation, ψR
and ψL. Experimentally, these two scalar components are shaped by the ampli-
tude and phase modulation of a collimated laser beam (horizontal linear
polarisation, expanded) performed by a reflective phase-only SLM (Holoeye
Pluto phase-only, 1920 × 1080 px HD display), shown in Supplementary Fig. 4b.
The SLM is used in split-screen mode40–42, with each half embedding the
amplitude and phase information of ψR and ψL respectively. To optimise the
beam quality, the Fourier hologram for each polarisation component is a
600 × 600 pixels square. This resolution was proven to produce all details of the
transverse beam structure in the focal volume. The two holograms are placed so
each receives approximately homogeneous illumination of the expanded input
laser beam without losing too much intensity. The phase-only hologram is shown
in Supplementary Fig. 4a.

To allow for amplitude modulation by a pure phase hologram, a weighted
blazed grating is applied43. The desired scalar modes appear in the first diffraction
order, which is spatially filtered by an aperture A in the conjugate plane of the
SLM, generated by lens L1 (shown in Supplementary Fig. 4b). Fourier holograms
are applied on the SLM, so that the desired beams are sculpted in the focus of the
Fourier lens (L1), i.e. in the conjugate plane of the SLM. The hologram for each
beam is normalised separately, taking advantage of the full modulation depth of the
SLM for each beam individually.

The two beams are subsequently combined on-axis by an interferometric
system. Before they are combined, the two beams are given orthogonal linear
polarisations by a combination of a half wave plate (HWP) and a polarising beam
splitter (PBS), allowing also for the adjustment of the beams’ intensity ratio. This is
a critical step to realise the complex polarisation structure: the HWP angle directly
affects the relative strength of the two components and hence the coefficient c in
the field design described above.

After the beams are combined, a quarter-wave plate (QWP) transforms the
orthogonal linear polarisation states into orthogonal circular polarisations. The
imaging system given by lens L1 and L2 (Supplementary Fig. 4b) halves the size of
the beam and L3 performs the final Fourier transform that gives the skyrmionic
hopfion in its focal volume. The focal structure is magnified by lens L4 (×16) onto a
CMOS camera (Cam; uEye SE (UI-1240SE), 1280 × 1024 px).

Volumetric full-field reconstruction. We retrieve the full-field information
(transverse components of the paraxial beam) by reconstructing the polarisation
and phase in the focal volume. Supplementary Fig. 5 shows five transverse planes
at different positions in the propagation direction for the normalised Stokes
parameters S1; S2; S3 and the phases χR and χL of the RH and LH field compo-
nents. The measurements in multiple transverse planes are performed via digital
propagation32 (see Supplementary Note 3). A detailed description of
polarimetry44 (Supplementary Fig. 4c) and transverse phase interferometry45

(Supplementary Fig. 4d) can be found in Supplementary Note 3. The polarisation
measurements across different planes are unaffected by the harmonic time
dependence of the optical field and are directly stored into 3D arrays. However,
when stacking volumetric phase measurements, the relative phase between
neighbouring planes must be retrieved. First, we describe our procedure for
connecting the transverse phase measurements to their neighbouring planes, and
then we present our routine to minimise the experimental error in retrieving the
field components.

The measured transverse phase structure per plane is constituted of the light

field’s propagation term, eikz times the superposed LG structure described in the
subsection “Topological design of the optical skyrmionic hopfion” of the

“Methods” section above. This includes a Gouy phase factor e�itχ
G
, where

χGðz=zRÞ is the z-dependent Gouy Phase, and a phase term varying radially and
longitudinally (full Laguerre−Gauss modes equation is given in Supplementary
Note 2), and a time-dependent phase offset due to the time varying phase relation
between the measured and reference beams. In order to concentrate on the

transverse variation, we circumvent the effect of eikz within the measurements per
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z-plane, thereby avoiding the effects of undersampling the electric field oscillation,
by setting the distance between two transverse planes to a multiple of the

wavelength (100λ), so the propagation factor eikz is negligible. Next, we choose a
transverse reference point (r?ref ; z) close to the optical axis (R � 0), so that the
phase at this point is only affected by the z-dependent Gouy phase term of the LG
beams and is unaffected by the other spatially varying phase factors. For each plane,
the phase of the reference point is set to the same value, so the Gouy phase and the
time-dependent phase offset are subtracted. In order to finalise the missing relation

between different z-planes, the theoretical Gouy phase term χG is added. Note that
the Gouy phase represents an offset value per plane, only depending on the
z-position but without any dependence on the transverse coordinates. Thus, the
measurements themselves are not affected by this approach and, as a result, we
correct for the errors in z caused by the time-dependent variations in the
measurement system. Supplementary Fig. 6 shows the x ¼ 0 plane (longitudinal
cut) of the theoretically expected (left) and the reconstructed (right) 3D phase
structures of χR and χL. This figure demonstrates that the reconstructed 3D phase
distributions are consistent with the theoretical predictions.

Due to experimental errors (see Supplementary Note 3), the singularities of the
differences of the phase of the two field components χL � χR (wrapped between �π
and π) do not coincide with those of the polarimetrically-determined arctan S1; S2

� �

as the polarisation and phase measurement are independent. Observations of the
3D structure of the C lines from the polarisation measurements and the phase
singularities from the phase measurements allow the systematic error to be
minimised by shifting the polarisation measurements until the C line loop
coincides with the singular loop of χR. Moreover, the overall error is reduced by

redefining the Stokes parameters S1 and S2 as follows: S1 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � s23

p
cosðχL �

χRÞ=s0 and S2 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � s23

p
sinðχL � χRÞ=s0. To finalise the volumetric full-field

reconstruction we calculate the real and imaginary parts of the beam components

from ER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 þ s3Þ=2

p
eiχR , and EL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs0 � s3Þ=2

p
eiχL : The full field is

used to calculate the Skyrme density of the optical field as described in the next
subsection.

Numerical calculation of experimental Skyrme number. We measure the Sky-
rme number of the optical skyrmionic hopfion directly from the discretely sampled,
measured data by taking advantage of the robustness of topology. This optimises
the computational speed necessary to evaluate the Skyrme number from experi-
mental measurements. The measured polarisation and phase at each point in real
3D space correspond to a point in the optical hypersphere. The 3D cubic lattice of
measured voxels is mapped into a topology-preserving but distorted lattice in the
optical hypersphere. An example for the ideal skyrmionics hopfion field (see
Supplementary Note 4), is shown in Supplementary Fig. 9a, b. The measured
Skyrme number is therefore based on this piecewise-linear mapping generated
from the measured data points without interpolation. This approach can readily be
used for measurements of other physical Skyrme-like maps, including lower
dimensional ones (e.g. via triangular meshes).

The fully resolved experimental data in the focal volume give real space voxels
forming a cuboidal grid. We are interested in the Skyrme density of the real space
volume given by a cuboid with transverse size ±L? ¼ ±1:84w ¼ ±99:4 μm and
longitudinal size ±Lk ¼ ±0:768 zR ¼ ±26:6mm as defined in Supplementary
Note 4. Since the image of the cuboidal mesh covers the volume of the hypersphere,
reducing the resolution maintains this filling. The numerical routine is made more
time efficient by reducing the resolution to a cubic mesh of dimension
101 × 101 × 101 in physical space, centred at the focal point. The voxels are centred
at points labelled by ði; j; kÞ with 1≤ i; j; k≤ 100. Each such point corresponds to a
normalised 4D vector~n ¼ ðReER; ImER;ReEL; ImELÞ found via the VFFR method,
giving a distorted cubic 3D grid in the optical hypersphere whose vertices are the
points~nði; j; kÞ. The distortion of the experimentally measured field is significantly
greater than the example in Supplementary Fig. 9a, b, as can be seen in the images
of the two real space planes in the optical hypersphere in main text (Fig. 4). Each
elementary cube C ¼ Ci;j;k is labelled by i; j; k, with vertices ~nði; j; kÞ, ~nðiþ 1; j; kÞ,
~nði; jþ 1; kÞ,… denoted by c1, …, c8 as indicated in Supplementary Fig. 9c, d. The
cube C occupies a volume VolðCÞ within the optical hypersphere. We numerically
determine Vol Cð Þ as follows.

An elementary topological cell in 3D is a tetrahedron (i.e. a 3-simplex46, in the
language of simplicial topology). We convert our cubic i; j; k lattice into a 3D
simplicial complex by decomposing each cube into five irregular tetrahedra. The
resulting mesh of tetrahedra, where neighbours share triangular faces, edges and
vertices, make up a 3D cell complex46. The tetrahedra can share the cube’s vertices
in two distinct ways, which are given by the following ordered sets of four vertices
(see Supplementary Fig. 9c, d): (A), (c1, c2, c4, c5), (c4, c5, c7, c8), (c5, c2, c7, c6),
(c2, c7, c3, c4), (c5, c7, c2, c4) and (B), (c1, c2, c3, c6), (c3, c4, c1, c8), (c5, c6, c1, c8),
(c7, c8, c3, c6), (c8, c1, c3, c6). For any cubic lattice, cubes can be decomposed into
two choices of tetrahedral mesh: cubes of type A at positions where the quantity
iþ jþ k is even (odd) and cubes of type B where iþ jþ k is odd (even). We
compute both types of 3D cell complex as a check of numerical accuracy. As a
result, the measurement points in real space and measured values in the
hypersphere define a piecewise-linear map representing the physical field.

In the hypersphere, the tetrahedra are constructed so the edges joining the vertices
are geodesics. Each tetrahedron’s four faces are spherical triangles, and along edges,
pairs of faces meet at the dihedral angles 0< φj<π, for j ¼ 1; 2; ¼ ; 6. The formula
for the 3D volume VolðTÞ of an irregular spherical tetrahedron T constructed in this
way can be written explicitly in terms of dihedral angles by means of Murakami’s
formula47 (see Supplementary Note 5). The contribution to the Skyrme number
comes from the signed volumes sign det ~na;~nb;~nc;~nd

� �� �
VolðTÞ, where ~nl with

l¼ a; b; c; df g are 4D unit vectors pointing to the four vertices of a spherical
tetrahedron T . Only tetrahedral cells included within a 3-dimensional hemisphere,
whose volume is less than π2, are considered. The sign of the volume comes from the
ordering of the vertices with respect to the right-hand rule, where the triangular base
a; b; c follows the fingers and the vertex d follows the thumb. When the volume is
negative, the order of the vertices in real space and that of the vertices of the
tetrahedron in the optical hypersphere are inverted. This follows the standard
orientation rules of a 3-simplex.

At higher resolutions of the cubic lattice, the spherical tetrahedra are smaller,
and the curved edges tend to become linear, and the spherical distortion can be
neglected: the tetrahedron volume are better approximated by its flat-space
analogue. The 101 × 101 × 101 mesh defined above is consistent with the volume of
the tetrahedra being within the range allowed by numerical precision.

The hyperspherical volume of the cube C corresponds to the union of the
volumes of the associated, neighbouring tetrahedra comprising C, and its volume
VolðCÞ is the sum of the signed spherical tetrahedra volumes VolðTÞ. The results for
each such VolðCi;j;kÞ are stored in two 3D arrays, one for each type of 3D cell
complex. The experimental Skyrme number is found by adding together the volumes
of all the hypersphere cubes with appropriate sign, normalised by the 3-sphere
volume: ∑i;j;kVol

�
Ci;j;k

�
=ð2π2Þ (see Supplementary Note 5). The measured 3D

Skyrme number corresponds to the fraction of the hypersphere volume by the image
of the measured volume of real space. The sums over all the elements in the arrays
give Skyrme numbers 0.94521 and 0.94528 for the two kinds of mesh. We take the
experimental Skyrme number to be the mean of these two numbers, 0.94524. It is
straightforward to implement the vector calculation described here in a numerical
algorithm in MATLAB or Python. The volumes of the cubes in the meshes can be
calculated in parallel via high performance computers.

Data availability
The experimental data are available from the corresponding author upon reasonable
request.

Code availability
The code for the Skyrme number calculation is available from the corresponding author
upon reasonable request.
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