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Quantifying the nonclassicality of pure dephasing
Hong-Bin Chen 1,2,3, Ping-Yuan Lo 4, Clemens Gneiting5, Joonwoo Bae 6, Yueh-Nan Chen 1,2 &

Franco Nori 5,7

One of the central problems in quantum theory is to characterize, detect, and quantify

quantumness in terms of classical strategies. Dephasing processes, caused by non-dissipative

information exchange between quantum systems and environments, provides a natural

platform for this purpose, as they control the quantum-to-classical transition. Recently, it has

been shown that dephasing dynamics itself can exhibit (non)classical traits, depending on

the nature of the system-environment correlations and the related (im)possibility to simulate

these dynamics with Hamiltonian ensembles–the classical strategy. Here we establish the

framework of detecting and quantifying the nonclassicality for pure dephasing dynamics.

The uniqueness of the canonical representation of Hamiltonian ensembles is shown, and a

constructive method to determine the latter is presented. We illustrate our method for qubit,

qutrit, and qubit-pair pure dephasing and describe how to implement our approach with

quantum process tomography experiments. Our work is readily applicable to present-day

quantum experiments.
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The boundary between the quantum and the classical world
has always been a fundamental issue in quantum
mechanics1–4. An operationally viable way to demonstrate

the genuine quantum nature of an experiment relies on the
impossibility to mimic certain statistical properties of interest by
using a “classical strategy”. According to this logic, the quantum
nature of an experiment is only convincingly demonstrated if the
experimental statistics cannot be mimicked by the classical
strategy; thus excluding any loophole to explain the statistics with
a classical model.

For example, under the assumptions of realism and locality,
Bell5 derived an inequality for correlations between the statistics of
measurements on a bipartite system. Whenever the inequality is
violated, one cannot reproduce the correlations by using a local
hidden variable model, the latter serving as the classical strategy
for mimicking the measurement statistics. Another important
paradigm is the quantumness of a boson field, which is formulated
in terms of the Wigner function or the Glauber–Sudarshan P
representation6–8. Whenever these functions exhibit negative
values, the classical explanation in terms of a probability dis-
tribution over phase space fails to represent the boson field.

Following this spirit, one may ask for a classical strategy to
frame the “quantumness” of open system dynamics. This ques-
tion has been addressed in different ways. In these approaches,
specific properties of system states, e.g., Wigner functions with
negativities, violation of Leggett–Garg inequality, non-
stochasticity of dynamical processes, or detection of quantum
coherence, are identified as indicators of nonclassicality and
monitored during the temporal evolution9–16.

Alternatively, we propose to take the presence or absence of
quantum correlations between system and environment as a
signature for the quantum nature of the open system dynamics.
As was shown recently17, such presence or absence of non-
classical system–environment correlations is intimately linked to
the (im)possibility to simulate the open system dynamics with a
Hamiltonian ensemble (HE), which may thus serve as the clas-
sical strategy to witness the nonclassicality of the open system
dynamics. HEs, which are also used to describe disordered
quantum systems, attribute to each member of a collection of
(time-independent) Hamiltonians a probability of occurrence,
giving rise to an effective average dynamics.

Finding a simulating HE certifies that the open dynamics is
classical. The nonexistence of a simulating HE, on the other hand,
can be proven by the necessity to resort to a HE accompanied by
negative quasi-distributions. Although being conceptually clear,
as was shown in ref. 17 for the example of an extended spin-boson
model, this is technically highly nontrival in general; especially for
high dimensions. For example, the closely related problem of
random-unitary decomposition can in general merely be
numerically implemented18. An efficient approach appears
desirable.

On the other hand, analyzing dephasing is essential for the
improvements of quantum information science and quantum
technologies. Besides its fundamental relevance for the quantum-
to-classical transition19–21, classicality of the dynamics, reflected
by the existence of a simulating HE, can then be related to the in-
principle possibility to correct errors caused by the HE22. Fur-
thermore, it also constitutes one of the main obstacles in the
fabrication and manipulation of quantum information devices23–28.
Different implementations for the simulation of controlled pure
dephasing29–31 and its mitigation32–36 exist. Other experiments
highlight the potential of decoherence or pure dephasing to
contribute positively to certain quantum information tasks, such
as entanglement stabilization37 or entanglement swap38.

Here, we introduce a measure of nonclassicality for pure
dephasing dynamics, i.e., we focus on situations where dephasing

constitutes the sole dynamical agent. We begin with recasting any
HE into a canonical form; within this framework, each HE is
composed of the same canonical set of Hamiltonians, such that
the accompanying (quasi-)distribution fully characterizes the HE.
Let us remark that one can interpret the resulting representation
as a random rotation model, since it is a (quasi-)distribution of
rotations induced by the Hamiltonians. We also prove its exis-
tence and uniqueness. This promotes it to a faithful representa-
tion of the pure dephasing dynamics and allows us to
unambiguously quantify the nonclassicality. Additionally, we
outline a systematic procedure to retrieve (quasi-)distributions for
pure dephasing and elaborate our ideas for qubit, qutrit, and
qubit-pair examples. Finally, we also discuss the implementation
of our approach with the quantum process tomography experi-
ments to show the ready applicability to present-day quantum
experiments.

Results
Averaged dynamics of Hamiltonian ensembles. A HE
fðpλ;cH λÞgλ is a collection of Hermitian operators cH λ acting on
the same system17,39, where each member Hamiltonian is drawn
according to the probability distribution pλ ≥ 0. A system ρ0,
isolated from any environment, is sent into a unitarily-evolving

channel ρλ tð Þ ¼ bUλρ0 bUy
λ , with bUλ ¼ exp �icH λt=�h

h i
for a chosencH λ according to pλ. Then, the dynamics of the averaged state ρ tð Þ

is given by the unital map

ρ tð Þ ¼ Et ρ0
� � ¼

Z
pλ bUλρ0bUy

λdλ: ð1Þ

Even though each single realization ρλ(t) evolves unitarily, the
averaged state ρ tð Þ exhibits incoherent behavior39–42. A seminal
and intriguing example is a single qubit subject to spectral
disorder with HE given by p ωð Þ; �hωσ̂z=2ð Þf gω, then the averaged
dynamics describes pure dephasing:

�ρ tð Þ ¼ ρ"" ρ"#ϕ tð Þ
ρ#"ϕ

� tð Þ ρ##

" #
; ð2Þ

with the dephasing factor ϕ tð Þ ¼ R
p ωð Þe�iωtdω being the Fourier

transform of the probability distribution p(ω).
The pure dephasing in Eq. (2) is a consequence of the

commuting member Hamiltonian �hωσ̂z=2 in the ensemble. Each
Hamiltonian induces a unitary rotation about the z-axis of the
Bloch sphere at angular velocity ω. This gives rise to an intuitive
interpretation of pure dephasing in terms of random phases: each
component rotates at different angular velocity ω and hence
possesses its own time-evolving phase. Consequently, the phase of
the averaged system gradually blurs out.

Note that p(ω) is the probability distribution of the angular
velocity and qualitatively characterizes the “randomness” of the
random rotation. Whenever p(ω) is specified, the dynamics is
uniquely determined via the Fourier transform in Eq. (2). This is
also in line with our classification of such pure dephasing as
classical17 since it is a statistical mixture of rotations at different
angular velocities. Meanwhile, the experimental simulation of
pure dephasing is implemented in a similar spirit29–31.

Canonical Hamiltonian-ensemble representation. Although
p(ω) is particularly representative for characterizing qubit pure
dephasing, it is obvious that, in general cases with non-commuting
or higher dimensional member Hamiltonians cH λ, the Fourier
transform in Eq. (2) is not applicable. We are, therefore, spurred
to explore the canonical Hamiltonian-ensemble representation
(CHER) as a generalized representation of an averaged dynamics.
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To fully understand the CHER, we first observe that, since bothcH λ and density matrices ρ are Hermitian, they are elements in
the Lie algebra uðnÞ ¼ uð1Þ � suðnÞ, which are spanned by the
identity fÎg and fbLmgm of n2− 1 traceless Hermitian generators,
respectively. Then cH λ 2 u nð Þ is a linear combinationcH λ ¼ λ0 Î þ

Pn2�1
m¼1 λmbLm ¼ λ0Î þ λ � bL, where λ0 2 R and

λ ¼ λmf gm2 R
n2�1.

Since the dynamics is a linear map acting on ρ, invoking to the
adjoint representation (see Methods and Supplementary Note 1),
we can assign each generator bLm a linear mapbLm 7!eLm 2 gl u nð Þð Þ, with its action eLm �ð Þ ¼ ½bLm; �� defined in
terms of the commutator.

With the above mathematical setup, given a HE fðpλ;cH λÞgλ,
one can consider the probability distribution pλ as a CHER of an
averaged dynamics Et , in the sense that Eq. (1) can always be
recast into a Fourier transform from pλ, on a locally compact
group G characterized by the parameter space λ= {λ0, λ}, to the

dynamical linear map E eL� �
t :

E eL� �
t ¼

Z
G
pλe

�iλeLtdλ� ð3Þ

Note that we have set ℏ= 1 for symbolic abbreviation.
Similarly, we can also express ρ ¼ n�1Î þ ρ � bL in terms of a
column vector ρ ¼ n�1; ρf g, the action of Et on ρ is then the

usual matrix multiplication Et ρf g ¼ E eL� �
t � ρ [see Supplementary

Note 2 for the proof of Eq. (3)].
We emphasize that, compared with Eq. (1), the Fourier

transform formalism (3) is a powerful tool in the following proof
of uniqueness and establishment of our procedure. It also
highlights our exclusive focus on the dynamics alone, regardless
of the system state. Additionally, it provides further insights into
the nature of CHER and the connection to the process
nonclassicality, in terms of a random rotation model. In such
interpretation, different components rotate about different axes,

defined by the generators bLmn o
m
. Moreover, pλ is the distribution

function of the random rotations over the n2-dimensional
Euclidean space. This interpretation is consistent with the
random phase model in the case of qubit pure dephasing (2).

HE simulation and process nonclassicality. So far we have
discussed the averaged dynamics of an isolated system, in the
absence of any environment, governed by a HE. Conversely, to
discuss the nonclassicality of an open system dynamics reduced
from a system–environment arrangement, we should construct a
simulating fð}λ;cH λÞgλ for a given unital dynamics.

An autonomous system–environment arrangement is char-
acterized by a time-independent total Hamiltonian cH T and
evolves unitarily with bUT ¼ exp½�icH Tt�. We have shown that17,
if the total system ρT tð Þ ¼ bUTρT 0ð ÞbUy

T remains at all times
classically correlated between the system and its environment,
displaying neither quantum discord43,44 nor entanglement, then
the reduced system dynamics ρS tð Þ ¼ EtfρS 0ð Þg ¼ TrE½ρT tð Þ� can
be described by a time-independent HE equipped with a
legitimate (i.e., non-negative and normalized to unity) probability
distribution. Moreover, such ensemble description under classical
environments in the absence of back-action has also been
discussed in the literature45–47.

However, given exclusively the knowledge on the reduced
system dynamics Et , it is impossible to fully verify the correlations
between the system and its environment. Counter-intuitively,

even if we have limited access to the system alone, the emergence
of nonclassical correlations can be witnessed, whenever one has
no way to simulate the dynamics with any HEs equipped with a
legitimate probability distribution. Such impossibility to simulate
arises from the buildup of nonclassical correlations. On the other
hand, if such simulation is possible, one can explain Et as a
classical random rotation model. We, therefore, define the
negative values of the quasi-distribution }λ within the simulating
HE as an indicator of process nonclassicality17.

Existence and uniqueness of the CHER for pure dephasing.
Here we promote the }λ within the simulating HE as a CHER for
a reduced system dynamics. In particular, by further investigating
the underlying algebraic structures, we can show that such CHER
for pure dephasing is even faithful, provided diagonal member
Hamiltonians. More precisely, for any pure dephasing dynamics,
there always exists a unique simulating HE of diagonal member
Hamiltonians, equipped with either a legitimate or quasi-
distribution.

The proof will become intelligible only after introducing our
procedure to find the CHER below. We postpone it to
Supplementary Note 8.

Since }λ is a distribution function over the parameter space
of diagonal member Hamiltonians, along with the Fourier
transform on the group G in Eq. (3), this endows the CHER
with a geometric interpretation of pure dephasing in terms of
random rotation model. Consequently, the CHER is particularly
competent in characterization of the nonclassicality of pure
dephasing.

The nonclassicality measure for pure dephasing dynamics.
Having characterized the HE simulation of pure dephasing and
its representation, we are now ready to propose the measure of
nonclassicality of dynamics. The measure aims to provide an
operational quantification on the nonclassicality of a pure
dephasing dynamics. Due to the existence and uniqueness,
every pure dephasing Et can be assigned a unique (quasi-)dis-
tribution }λ. We emphasize that it is the distribution }λ which
gives the characterization of the nonclassicality: unless they
correspond to legitimate probabilities, no HE exists for the
exact simulation.

The nonclassicality measure for a dynamics Et assigned with a
unique (quasi-)distribution }λ is as follows,

N Etf g ¼ inf
pλ

D }λ; pλð Þ;withD pλ; pλ′ð Þ
¼ R

G
1
2 jpλ � pλ′jdλ;

ð4Þ

where the infimum runs overall classical probability distributions
pλ over the parameter space G of the diagonal member
Hamiltonians. The variational distance D pλ; pλ′ð Þ has an opera-
tional meaning as the single-shot distinguishability: it quantifies
the highest success probability of distinguishing two probabilistic
systems pλ and pλ′, such that psuccess ¼ 1þ D pλ; pλ′ð Þ½ �=2.

The measure proposed in Eq. (4) contains advantages and
useful properties for the quantification. First, the measure has a
clear operational meaning. It tells how well a dynamics Et can be
simulated by a HE. The possibility of making success or failure in
the simulation with a HE can be found. Second, the measure is
monotonic that the larger it is, the harder a classical simulation is.
This follows from the fact that the classical dynamics of pure
dephasing forms a convex set, i.e., their probabilistic mixture is
also classical. The proof is presented in Supplementary Note 3. It
is noteworthy that the convexity can be constructed by
considering (quasi-)probabilities of dynamics, but not dynamics
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per se. Finally, we also note that the measure shares some
similarities with the quantification of non-Markovianity48.

In what follows, we consider the nonclassicality of pure
dephasing dynamics on a single qubit reduced from the extended
spin-boson model17 with a relative phase between the coupling

constants, i.e., g2;k ¼ g1;ke
iφ. The quasi-distribution }

Xð Þ
o1 ωð Þ

represents the single qubit pure dephasing and, consequently,
its nonclassicality varies with φ. The results are shown in Fig. 1.

Retrieval of the (quasi-)distribution. Given a HE, it is, in
principle, straightforward to calculate the averaged dynamics of
an isolated system, according to Eq. (1) [or, equivalently, to Eq.
(3)]. Nevertheless, to find the solution to the inverse transform of
Eq. (3), i.e., retrieval of the (quasi-)distribution within the
simulating HE for a given reduced dynamics, is formidable in
general, in contrast to the conventional inverse Fourier transform.
Consequently, to establish a systematic procedure to find the
CHER of pure dephasing dynamics is very desirable.

In view of the qubit pure dephasing in Eq. (2), to simulate any
higher dimensional pure dephasing dynamics, we focus on the
traceless and diagonal member Hamiltonian such that cH λ ¼ λbL
belongs to the Cartan subalgebra (CSA) H of su nð Þ (see
Methods). The tracelessness is due to the fact that the trace
plays no role in describing the dynamics. Additionally,
since the adjoint representation preserves the structure of
commutator, the adjoint representation of H is also a CSA of
sl u nð Þð Þ. We, therefore, have the following commutativity
½λbL; λ′bL� ¼ 0 , ½λeL; λ′eL� ¼ 0.

It should be noted that, even if λbL 2 H can be chosen to be
diagonal, λeL itself may not necessarily be diagonal as well since
the generators of uðnÞ are not the suitable bases for diagonalizing
it. As we will see below, the diagonalization of the adjoint
representation is a critical step to the retrieval of the (quasi-)
distribution for pure dephasing.

Furthermore, the conventional inverse Fourier transform does
not work because we are now dealing with linear maps in the
sl u nð Þð Þ space. To efficiently establish a set of equations
governing the CHER of pure dephasing, we inevitably encounter
increasingly many mathematical terminologies, especially those
specifying the intrinsic algebraic structures within the CHER. To
make our procedure transparent, we instead demonstrate several

examples, each of which reveals the central concepts of our
procedure, rather than elaborate the mathematical tutorial. Our
approach can be easily generalized to higher dimensional pure
dephasing.

Procedure towards the CHER of pure dephasing. We begin with
the case of qubit pure dephasing. Although this problem has been
discussed17, it relies on the conventional Fourier transform and
Bochner’s theorem49 and cannot be generalized to higher
dimensional systems. Here we recast it into Eq. (3). This helps us
to establish a systematic procedure for higher dimensional
problems.

Within a properly chosen basis, a qubit pure dephasing,
reduced from a system–environment arrangement, can
be expressed in the same form as Eq. (2). Unlike the one
resulting from ensemble average, the dephasing factor ϕ(t)= exp
[−iθ(t)−Φ(t)] is determined by the system–environment inter-
action, where θ(t) (Φ(t)) is a real odd (even) function on time t,
respectively, such that ϕ(0)= 1, |ϕ(t)| ≤ 1, and ϕ(−t)= ϕ*(t). The

dynamical linear map E ~σð Þ
t can be constructed by applying

Et σ̂mf g ¼ P3
l¼0σ̂l½E ~σð Þ

t �lm on each generator, where σ̂0 ¼ Î is the
identity and σ̂1;2;3 denotes the three Pauli matrices.

To find the CHER, we mean to find a (quasi-)distribution } ωð Þ
encapsulated within the simulating HE fð}ðωÞ;cH ω ¼ ωσ̂z=2Þgω
satisfying

E ~σð Þ
t ¼

Z
R

} ωð Þe�i ω~σz=2ð Þtdω: ð5Þ

The same conclusion exp �iθ tð Þ �Φ tð Þ½ � ¼ R
R
} ωð Þe�iωtdω is

easily seen after diagonalizing Eq. (5) (see Supplementary Note 4
for more details). Finally, performing the conventional inverse
Fourier transform leads to the desired result } ωð Þ.

To understand the deeper insight behind the diagonalization,
we observe that the diagonalization changes the basis from the
three pauli matrices into raising and lowering operators and
leaves σ̂z invariant; namely, σ̂þ; σ̂�; σ̂z

� �
, which are the

generators of sl 2ð Þ. In other words, they are the common
“eigenvectors” of cH ω with “eigenvalues” ±1 in the sense of the
adjoint representation, eHω σ̂±ð Þ ¼ ωσ̂z=2; σ̂±½ � ¼ ±1 � ωσ̂± (see
Supplementary Note 5 for more details). The eigenvalues ±1 are
referred to as the roots (denoted by α1,2) associated to the root
spaces span σ̂±f g, spanned by the operators σ̂± , respectively.
However, for higher dimensional systems, the roots are no longer
real scalars but vectors in an Euclidean space. This can be better
seen as follow.

A qutrit pure dephasing can be written as

ρ tð Þ ¼ Et ρ0
� � ¼

ρ11 ρ12ϕ1 tð Þ ρ13ϕ4 tð Þ
ρ21ϕ2 tð Þ ρ22 ρ23ϕ6 tð Þ
ρ31ϕ5 tð Þ ρ32ϕ7 tð Þ ρ33

2
64

3
75; ð6Þ

To guarantee the Hermicity of ρ(t), the dephasing factors must
further satisfy ϕ1 tð Þ ¼ ϕ�2 tð Þ, and so on.

To expand ρ as a nine-dimensional column vector, it is natural
to use the Gell-Mann matrices (denoted by σ̂m, m= 1, …, 8) as
the generators of su 3ð Þ. However, after the diagonalization,
the basis is changed into that of gl 3ð Þ (e.g., cK 0 ¼ Î,cK 1 ¼ cK y

2 ¼ σ̂1 þ iσ̂2ð Þ=2, and cK 3 ¼ bL3 ¼ σ̂3). Within this

basis, the dynamical linear map E eL� �
t is diagonalized, i.e.,

EtfcK mg ¼ cK mϕm tð Þ.
In this case, we consider the member Hamiltonian cH λ ¼

ðλ3bL3 þ λ8bL8Þ=2 2 H and λ ¼ λ3; λ8ð Þ 2 R
2. After estimating all

the commutators ½cH λ;cK m� ¼ αm � λð ÞcK m, we obtain its adjoint

0 1
2

1 3
2

2
0
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0.02
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� (π)

N
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Fig. 1 The nonclassicality of the qubit pure dephasing. We consider the
qubit pure dephasing reduced from the extended spin-boson model,
wherein φ (in unit of π) is the relative phase between the coupling
constants of the qubit-pair to the common boson environment. The
nonclassicality N is quantified according to Eq. (4). In this example, the
Ohmic spectral density J ðωÞ ¼ ωexpð�ω=ωcÞ with cut-off ωc= 1 and the
zero-temperature limit are considered
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representation eHλ ¼ λ3eL3 þ λ8eL8� �
=2, which is diagonal in the

gl 3ð Þ basis.
Finally, according to Eq. (3) E eL� �

t ¼ R
R

2} λ3; λ8ð Þe�ieHλtdλ3dλ8,
we conclude that the (quasi-)distribution } λ3; λ8ð Þ is governed by
the following simultaneous Fourier transforms:

ϕ1 tð Þ ¼
Z

R
2
} λ3; λ8ð Þe�i α1�λð Þtdλ3dλ8; ð7Þ

ϕ4 tð Þ ¼
Z

R
2
} λ3; λ8ð Þe�i α4�λð Þtdλ3dλ8; ð8Þ

ϕ6 tð Þ ¼
Z

R
2
} λ3; λ8ð Þe�i α6�λð Þtdλ3dλ8: ð9Þ

We can collect the six non-zero root vectors αm. They are two-
dimensional vectors of equal length in the λ3-λ8 plane forming the
root system R of su 3ð Þ. We plot them in Fig. 2. Further details are
given in Supplementary Note 6.

Similarly, for n-dimensional pure dephasing, each member
Hamiltonian cH λ, taken from the H of su nð Þ, possesses n− 1 free
parameters λ ¼ λk2�1f gk¼2;3;¼;n; meanwhile, the (quasi-)distribu-
tion } λð Þ is defined on the (n−1)-dimensional Euclidean space.
Moreover, the action of cH λ on the n2− n root spaces spanfcK mg
is described by the root system R= {αm}m, consisting of n2− n
real vectors of (n− 1)-dimension. Further properties of R reduce
the complexity of our procedure (see Methods).

Consequently, combining the techniques, i.e., the adjoint
representation, the Fourier transform on groups, and the root
space decomposition, we can concisely formulate our procedure
to find the CHER } λð Þ for the n-dimensional pure dephasing. We
restrict ourselves to the diagonal member Hamiltonians (in H)
and establish its root system R. The (quasi-)distribution } λð Þ is
characterized by the (n2− n)/2 Fourier transforms with respect to
positive roots and its corresponding dephasing factor ϕm(t)
associated to the root space spanfcK mg:

ϕm tð Þ ¼
Z

R
n�1
} λð Þe�i αm�λð Þtdn�1λ; for positive roots αm: ð10Þ

Furthermore, the simple roots define a new set of random
variables xm= αm⋅λ, for simple roots αm, and their corresponding
equations define the marginals of } λð Þ along xm. The other
equations describe the correlations among xm.

Example: qubit pair pure dephasing. As an instructive paradigm
demonstrating our procedure to find the CHER of pure
dephasing, we consider the extended spin-boson model consisting
of a non-interacting qubit pair coupled to a common boson bath
(Fig. 3a) with total Hamiltonian cH T ¼ P

j¼1;2 ωjσ̂z;j=2þP
k ωk b̂

y
k b̂k þ

P
j;k σ̂z;j � gj;k b̂

y
k þ g�j;k b̂k

� �
. We now focus on the

pure dephasing of the qubit pair as a 4 × 4 system. The full
dynamics has been given in ref. 17.

To simulate the qubit pair pure dephasing, the diagonal

member Hamiltonian is taken from the H of su 4ð Þ cH λ ¼
λ3bL3 þ λ8bL8 þ λ15bL15� �

=2 and }ðλÞ is a (quasi-)distribution over

R
3 space with λ3, λ8, and λ15 being its axes. Note that the su 4ð Þ

has six positive root vectors and three among them are simple,
and all positive root vectors can be obtained by combining simple
ones (Fig. 3b). We perform the change of variables xm= αm⋅λ,
m= 1, 6, 13. Then, the (quasi-)distribution changes as
} λð Þ7!}′ x1; x6; x13ð Þ. The three axes of }′ xð Þ are defined by the
three simple root vectors.

Additionally, since ϕ6(t)= 1, by observing the special corre-
spondences between root vectors and dephasing factors, we can
assume that

}′ xð Þ ¼ }6 x6ð Þ}1;13 x1; x13ð Þ ð11Þ
is separable into two parties. The Fourier equation for ϕ6(t) leads
to the result that }6 x6ð Þ ¼ δ x6ð Þ and those for ϕ1(t) and ϕ13(t)
specify the marginals of }1;13 x1; x13ð Þ along the direction α1 and
α13, respectively; meanwhile the one for ϕ9(t)

ϕ9 tð Þ ¼
Z

R
2
}1;13 x1; x13ð Þe�ix1te�ix13tdx1dx13 ð12Þ

describes the correlation between x1 and x13.
For the case of Ohmic spectral density J ωð Þ ¼ ωexp �ω=ωcð Þ

in the zero-temperature limit, Eq. (12) can be recast into a
conventional two-dimensional Fourier transform by a simple
ansatz. Then, }1;13 x1; x13ð Þ can be easily obtained by conventional
inverse transform and the numerical result is shown in Fig. 3c. It
exhibits manifest negative regions and illustrates the nonclassical
nature of the qubit pair pure dephasing. Detailed calculations are
given in Supplementary Note 7.

Finally, having introducing our procedure to find the CHER,
we combine it with the investigation on the intrinsic algebraic
structure. Then the uniqueness of the CHER for pure dephasing
is intelligible and the detailed proof is given in Supplementary
Note 8.

It is worthwhile to recall that similar models, in which several
qubits were coupled identically to a common bath, had been
considered50–52, wherein the suppression of decoherence within
certain Hilbert subspace had been discovered. These studies
spurred the development of the theory of decoherence-free-
subspace53,54, which is conceived as a promising solution to
circumvent the obstacle of decohernece in quantum information
science. The phenomenon of coherence-preserving can be
observed in our paradigm as well and is related to the delta
component }6 x6ð Þ ¼ δ x6ð Þ on x6. Consequently, our procedure
provides a potential application in the detection of decoherence-
free-subspace in terms of delta components in the (quasi-)
distribution.

Proposed experimental realization. Finally, to underpin the
practical feasibility of our approach, here we explain how to

recover the dynamical linear map E eL� �
t from the measurable χ

matrix, which is a typical way to characterize arbitrary dynamics.

�8

�3

�4

�1

�6

�7�5

�2

Fig. 2 The root system R of su 3ð Þ. It consists of six non-zero root vectors on
the λ3−λ8 plane. Among them, α1 (blue), α4 (green), and α6 (blue) are
positive and the other three (red) are negative since roots are always come
in pair with opposite directions. Also, α1 and α6 are simple because α4=
α1+ α6 is a combination of simple roots
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The matrix elements χl,m(t) are measured following the quantum
process tomography technique, which has been applied in
various architectures, e.g., optics55–57, trapped ions58,59, and
superconductors60,61.

Note that E eL� �
t on the left-hand side of Eq. (3) describes the

complete time evolution of the system, i.e., we need to generate
raw data of χl,m(t) as a time sequence. While this implies
repeating the experiment for different time intervals, it does in

principle not impose additional technical difficulty. Finally, E eL� �
t

can be reconstructed by combining the measured χl,m(t) (see
Methods).

Here, we also demonstrate a numerical simulation of the
quantum state tomography experiment in the S-T0 qubit24,25. With
spin relaxation on the order of milliseconds62, the qubit dynamics is
well approximated as pure dephasing on the time scale of tens of
nanoseconds. The qubit state is detected by measuring the return
probabilities, i.e., projective measurements onto each axis of the
Bloch sphere, after a free induction decay time τs, as shown in
Fig. 4a (see Methods).With the measured return probabilities, we
can depict the trajectories in the Bloch sphere (Fig. 4b). This allows

us to fully reconstruct the dynamics εt of the qubit. Then applying
our procedure outlined above, we can obtain the resulting } ωð Þ
shown in Fig. 4c. They reflect the fact that the |S〉 possesses a lower
eigenenergy than |T0〉, and the physical intuition that the shorter
the coherence time, the broader the } ωð Þ. Having recovered } ωð Þ,
the nonclassicality values can be estimated according to Eq. (4). To
achieve realistic experimental conditions, we dress the theoretical
model with statistical fluctuations (Fig. 4d). This confirms the
robustness of the nonclassicality detection against experimental
errors (see Supplementary Note 9).

Discussion
The studies on unveiling genuine quantum properties are very
important since these discover the fundamental principle of
nature and spur the growth of different branches in physics and
technologies. Particularly, in the field of quantum information
science, highly quantum-correlated systems are critical resources
for prominent quantum information tasks which can hardly be
accomplished efficiently by classical computers.

By genuine quantum properties, we refer to those that can
never be resembled by classical strategies. For example, Bell’s
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inequality is derived based on the assumption of realism and
locality, while the Wigner function explain a boson field in terms
of classical phase space. Inspired by these works, our character-
ization of process nonclassicality stems from the correspondence
between the averaged dynamics of a HE and the dynamics
reduced from a system–environment arrangement17.

By introducing the CHER, the role of classical strategy played
by the simulating HE for a dynamics is even more apparent. The
(quasi-)distribution is endowed with an explanation in terms of a
random rotation model. This also implies that the nonclassical
properties of a dynamics can be well-characterized by a (quasi-)
distribution.

Our main achievement here lies in the establishment of a
constructive procedure to retrieve the (quasi-)distributions for
pure dephasing of any dimension. Additionally, along with the
analysis of the underlying algebraic structure, we also achieve to
prove its existence and uniqueness provided commuting member
Hamiltonians. Therefore, the CHER of pure dephasing is faithful.
Accordingly, based on our studies, we propose a measure of
nonclassicality of pure dephasing by comparing the (quasi-)dis-
tributions in terms of variational distance. We also show that our
measure is reasonable due to its convexity.

In order to make our procedure viable, we discuss how to
implement our approach with the raw data measured by quantum
process tomography. Furthermore, we also demonstrate a
numerical simulation of the S-T0 qubit quantum state tomo-
graphy, with which we implement our approach step by step.

Finally, let us remark that the generalization to the cases
beyond pure dephasing or even nonunital dynamics invokes
nonabelian algebraic structures. The Baker–Campbell–Hausdorff
formula is then required and therefore complicates the formula-
tion here. On the other hand, our approach highlights an inherent
difference between dephasing and dissipative dynamics in terms
of their underlying algebras. This may provide a new route
toward the theory of open systems. Additionally, we also find that
it would be interesting to investigate how the notion of dynamical
process nonclassicality is related to other quasi-distributions63.

Methods
Adjoint representation. The adjoint representation is a particularly important tool
in the theory of Lie algebra. It assigns each element in a Lie algebra L an endo-
morphism in gl Lð Þ (i.e., a homomorphism from L to itself) in terms of Lie bracket.
Therefore, gl Lð Þ is a Lie algebra consisting of linear maps acting on L, wherein L
plays the role of a vector space with the generators being its basis. The adjoint
representation of each generator is constructed in terms of structure constants cklm.
See Supplementary Note 1 for more details.

Cartan subalgebra. The structure of a Lie algebra L is largely determined by its Lie
bracket, i.e., the commutator acting on L. A Lie algebra is said to be abelian if all its
elements are mutually commutative. Let H be a Lie subalgebra of L. H is said to be
the CSA of L if H is the maximal abelian (and semisimple) subalgebra. A very
important property is that, for a Lie algebra consists of matrices, the elements in its
CSA are all simultaneously diagonalizable for a suitably chosen basis.

In our case, to simulate pure dephasing dynamics, we deal with traceless and
diagonal member Hamiltonians, taken from H of suðnÞ. To be noted, since the
adjoint representation preserves the Lie bracket, the adjoint representation of H is
also a CSA of slðuðnÞÞ. However, even if H is diagonal, its adjoint representation
may not necessarily be diagonal as well since the generators of uðnÞ are not the
suitable basis for diagonalizing it.

Root system. For n-dimensional systems, there are (n− 1) generators in the H of
suðnÞ. Therefore, each member Hamiltonian possesses (n− 1) parameterscH λ ¼

Pn
k¼2 λk2�1

bLk2�1=2, with fbLk2�1gk¼2;3;¼;n being the generators of H.

Additionally, the (n2− n) roots αm, associated to each root space spanfcK mg, are
(n−1)-dimensional vectors, forming the root system R= {αm}m of suðnÞ. Besides,
according to the theory of root space decomposition, the root system possesses the
following critical properties: (1) the roots come in pairs in the sense that, if αm is a
root, then −αm is a root as well. This reduces the number of equations half since we
are sufficient to consider the positive roots alone. (2) Among the (n2− n)/2
positive roots, (n− 1) simple roots provide the marginal of } along different

directions and the others provide the information on the correlations between
them. (3) For suðnÞ, the angle between any two non-pairing roots must be either π/
3, π/2, or 2π/3. Furthermore, with the Fourier transform on groups, an n-
dimensional pure dephasing is characterized by (n2− n)/2 complex functions
ϕm(t), which are the dephasing factors associated to each root space spanfcK mg.

Reconstructing E eL� �
t from the χ matrix. In our approach, the reduced system

dynamics is fully characterized by the dynamical linear map E eL� �
t , which is an n2 ×

n2 matrix acting on a state column vector ρ ¼ n�1; ρf g 2 R
n2 . On the other hand,

in a quantum process tomography experiment, the dynamics is characterized by
the measurable χ matrix representation, with the matrix elements defined
according to

Et ρ0
� � ¼

Xn2�1

l;m¼0

χl;m tð ÞbLlρ0bLm: ð13Þ

Note that we have used the Hermiticity bLym ¼ bLm in the above expression.

Now we demonstrate how to reconstruct E eL� �
t from the measured χl,m(t). For a

given dynamics εt, the matrix elements E eL� �
t

� 	
jk

are defined by applying

Et
bLkn o

¼
Xn2�1

j¼0

bLj E eL� �
t

� 	
jk

ð14Þ

on each generator bLk . On the other hand, according to the measured χl,m(t) in Eq.
(13), we have

Et
bLkn o

¼
Xn2�1

l;m¼0

χl;m tð ÞbLlbLkbLm: ð15Þ

From the above two equations, we can deduce that

E eL� �
t

� 	
jk

¼ 1
2

Xn2�1

l;m¼0

χl;m tð ÞTrbLjbLlbLkbLm; j; k ≠ 0; ð16Þ

E eL� �
t

� 	
j0

¼ 1
2

Xn2�1

l;m¼0

χl;m tð ÞTrbLjbLlbLm; j ≠ 0; ð17Þ

E eL� �
t

� 	
0k

¼ 1
n

Xn2�1

l;m¼0

χl;m tð ÞTrbLlbLkbLm; k ≠ 0; ð18Þ

and

E eL� �
t

� 	
00

¼ χ0;0 tð Þ þ 2
n

Xn2�1

l¼1

χl;l tð Þ: ð19Þ

In the above equations, we have used the facts that bL0 ¼ Î and TrbL2j ¼ 2 for j ≠ 0.

Recovering the S-T0 trajectory from measured data. For a double-quantum-dot
S-T0 qubit, the three axes of the Bloch sphere are conventionally defined as
jXi ¼ jSi þ jT0ið Þ= ffiffiffi

2
p ¼ j "#i, jYi ¼ jSi � ijT0ið Þ= ffiffiffi

2
p

, and jZi ¼ jSi ¼
j "#i � j #"ið Þ= ffiffiffi

2
p

being the singlet state, as shown in Fig. 4b. The free Hamil-
tonian in the S-T0 basis is

cH ST0
¼ �J gμBΔB

z
nuc

gμBΔB
z
nuc 0

� 	
; ð20Þ

where J= 0.37 μeV (red) and 1.5 μeV (blue) is the exchange energy between two
dots, ΔBz

nuc ¼ 10:5 mT is the hyperfine field gradient, g=−0.44 is the g-factor for
GaAs, and μB= 57.8 μeVT−1 is Bohr’s magneton. Various kinds of initial states can
be prepared with carefully designed pulse by controlling the voltage detuning
between the quantum dots. After the initialization, the qubit undergoes a free
induction decay for a time period τs. Finally, projective measurements onto each
axis are performed.

We numerically simulate the return probabilities Pj"#i τsð Þ, PjYi τsð Þ, and PjSi τsð Þ
to each axis (Fig. 4a). Then the density matrix ρ τsð Þ ¼ Î þP

j¼X;Y;Z rj τsð Þσ̂j
h i

=2

can be determined by

rj τsð Þ ¼ 2Pjji τsð Þ � 1; j ¼ X;Y;Z: ð21Þ
And one can depict the trajectory r(τs)= {rX(τs), rY(τs), rZ(τs)} in the Bloch

sphere (Fig. 4b). This helps us to identify the axis of rotation with bare rotation

frequencies ω ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ 2gμBΔB

z
nuc

� �2q
=�h and the angle Ω between the |S〉-axis.
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Finally, a unitary rotation bRΩρ τsð ÞbRy
Ω with bRΩ ¼ exp iΩσ̂Y=2½ � recover the

standard form in Eq. (2). Our procedure is then applicable and leads to

ð22Þ

The numerical solutions are shown in Fig. 4c.
Further schematic illustration of the simulation and detailed analysis of the

effects of noise are given in Supplementary Note 9.

Data availability
The data analyzed during the current study are available from the corresponding authors
on reasonable request.
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