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Supplementary Note 1: Reaction coordinate (RC)
mapping

The reaction coordinate (RC) mapping is described in
detail in Refs. [1–4], and we will only discuss it briefly.
After the mapping, one can derive an appropriate mas-
ter equation description of the residual bath. For the full
RC-model to which we compare the hierarchical equa-
tions of motion (HEOM) results in the main paper we use
a Born-Markov-secular master equation description of
the residual bath [described by the dk modes in Eq. (16)
in the main text], which has the form

ρ̇ = −i[HRC, ρ] +D(1)[ρ] , (1)

where

HRC =
ωq

2
σz +

∆

2
σx + σz

λ√
2ω0

(a+ a†) + ω0a
†a ,

(2)

and

D(1)[ρ] =
∑
i,j>i

Di,j [ρ] (3)

D
(1)
i,j [ρ] = Jres(∆i,j)X̄i,j [2|ψi〉〈ψj |ρ|ψj〉〈ψi|

− |ψj〉〈ψj |ρ− ρ|ψj〉〈ψj |] .

Here ∆i,j is the energy difference between the eigen-
states ψi and ψj of HRC. In addition, X̄i,j =

|〈ψj |X̂|ψi〉|2, and X̂ = (a+ a†)/
√

2ω0.
This master equation, Supplementary Eq. (1), is used

to produce the purple dashed curves in Figures 3 and 4
in the main text. For small values of γ (narrow spectral
densities) this qualitatively approximates the HEOM re-
sult. The master equation predicts an energy dissipation
into the environment in the following form

J(t) =
∑
i,j>i

∆i,jJres(∆i,j)X̄i,jTr (|ψj〉〈ψj |ρ(t)) . (4)

RC with RWA and flat-bath spectral density

We wish to see the effect of removing the Matsubara
terms from the RC method. In the HEOM method, it
is as straightforward as ignoring them in the correlation
function. In the main text we saw that, via a comparison
to the pseudomode result, it was clear that for the RC
model neglecting the Matsubara frequencies was equiva-
lent to making a series of approximations on the residual
environment.

It is also useful to arrive at that same conclusion with
a different argument, following the discussion by Ingold5.
To start, we rewrite the spectral density in Eq. (3) in the
main text as a sum of two Lorentzians

J(ω) =
γλ2

4Ω

[
1

(ω − Ω)2 + Γ2
− 1

(ω + Ω)2 + Γ2

]
. (5)

We now consider the effects of rotating-wave and Markov
approximations in computing the correlations in Eq. (2)
in the main text from this spectral density.

Intuitively, the rotating wave-approximation neglects
terms in which the system decays to a lower state by ab-
sorbing energy from the bath (or vice versa) while the
Markov approximation (for the interaction between the
RC and the residual bath) replaces weak frequency de-
pendencies with their value at resonance. Furthermore,
we need to consider that, from the analysis of Eq. (15) in
the main text, the residual bath should have both posi-
tive and negative frequencies.

In order to impose the rotating-wave approximation5,6

at positive (negative) frequencies, we neglect the peak
at negative (positive) frequencies in the spectral density,
i.e., the second (first) term in Supplementary Eq. (5).
With this in mind, by inserting Supplementary Eq. (5)
into Eq. (2) from the main text, we obtain

C(t) ' λ2γ

8πΩ

∫ ∞
−∞

dω
coth[βΩ/2] cosωt− i sinωt

(ω − Ω)2 + Γ2

− λ
2γ

8πΩ

∫ ∞
−∞

dω
coth[−βΩ/2] cosωt− i sinωt

(ω + Ω)2 + Γ2

=
λ2

2Ω
e−Γte−iΩt ,

(6)
where, in the first step, we both approximated the
value of the hyperbolic cotangent at the resonant val-
ues ±Ω, enforcing the Markov approximation5, and set
β →∞. This correlation function is the same as the non-
Matsubara part in Eq. (4) in the main text for β →∞.

In summary, first, the interaction in Eq. (16) (in the
main text) between the RC mode and the residual bath
is forced to obey a rotating-wave approximation (even
though such an approximation is not justified). Second,
the residual bath spectral density is set as frequency in-
dependent such that Jflat(ω) = γΩ. Applying both ap-
proximations, in addition to the standard Born-Markov-
secular approximations, leads to the following master
equation,

ρ̇ = −i[HRC, ρ] +D(2)[ρ] , (7)

where as before

HRC =
ωq

2
σz +

∆

2
σx + σz

λ√
2ω0

(a+ a†) + ω0a
†a ,

(8)

and now

D(2)[ρ] =
γ

2
[2aρa† − a†aρ− ρa†a]. (9)

Note that in the two master equations,
Supplementary Eqs. (1) and (7), the frequency of
the RC is ω0. However, the frequency of the pri-
mary oscillating-mode correlation function, and the
corresponding pseudomode, is

Ω = [ω2
0 − (γ/2)2]1/2. (10)
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Supplementary Figure 1. Dynamics of qubit excitation probability. Probability for the qubit to be in its excited state
ρ11 = 〈1|ρ|1〉, as given by different methods. The left panels use the parameters λ = 0.2ω0, γ = 0.05ω0, ωq = 0, ∆ = ω0, T = 0,
as in Fig. 3 in the main text. The right panels use λ = ω0, γ = ω0, as in Fig. 4 in the main text. The curves follow the same
labeling scheme as Fig. 3 and Fig. 4.

The difference arises because that renormalized fre-
quency is exact to all orders, while the frequency for the
RC mode master equation in contact with the residual
bath is only approximate.

Now we can see that the results produced by this
“incorrect” derivation of the master equation are, for
small γ, exactly the same as the one by the HEOM
method where the Matsubara frequencies are ignored, see
Supplementary Fig. 1.

Supplementary Note 2: Virtual excitations from
auxiliary density operators

Several works7,8 have explicitly shown how to ex-
tract moments of the bath coupling operator X =∑
k gk/

√
2ωk

(
bk + b†k

)
and the equivalent sum of mass

weighted momenta, P = i
∑
k gk

√
ωk/2

(
b†k − bk

)
from

the ADOs of the HEOM. In the limit of a single (and
undamped) mode in the environment, Schinabeck et al.
9 showed that the occupation of the (essentially single)
bath mode can be extracted from certain second-level
ADOs in the hierarchy.

In the general case, we can make progress by mak-
ing a similar comparison between the HEOM and the
equations of motion for the coupling operators for
each pseudomode in Eq. (11) in the main text. In
the interaction picture, each mode operator rotates as
ai(t) = ai exp (−iωit). The equation of motion for

TrE[λiai(t)ρ(t)], derived from the Lindbladian master
equation given in Eq. (11) and Eq. (12) in the main text,
and where TrE[·] denotes partial trace over the environ-
ment modes, follows as,

d

dt
TrE[λiai(t)ρ(t)] (11)

= (−iL − iΩ− Γ)TrE[λiai(t)ρ(t)]

− i

{
σz TrE

[
λiai(t)

(∑
k

λk{ak(t) + a†k(t)}

)
ρ(t)

]

− TrE

[(∑
k

λk{ak(t) + a†k(t)}

)
λiai(t)ρ(t)

]
σz

}
.

Here, Lρ = −i[Hs, ρ], where Hs is the system part of the
Hamiltonian. We can compare this to the equation of
motion of ρ0,0,0,1 in the HEOM as per Eq. (10) in the
main text,

d

dt
ρ0,0,0,1 = (−iL − iΩ− Γ)ρ0,0,0,1 (12)

− i
(
cR4 [σz, ρ] + cI4 {σz, ρ}

)
− i

[
σz
∑
k

P k+ρ
0,0,0,1 − P k+ρ0,0,0,1σz

]
,

where the operator P k+ρ
n = ρnk+1 raises the kth ele-

ment of n by one. Similar equations can be derived
for the other first-tier ADOs and we can immediately
make a correspondence between the two equations, such

that
〈
a†1a1

〉
= ρ0,0,1,1/λ

2
1. Note that the non-Matsubara
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Supplementary Figure 2. Error analysis using the pure dephasing solution. Error in the dynamics given by the
coherence ρ01 term of the density matrix in the σz basis by considering a pure dephasing model. We compare the error
according to Ref. [10] against the error due to our Matsubara fitting approach. The error due to the fitting is computed by
simulating the dynamics exactly by taking the full infinite Matsubara integral and then by considering only two terms from
the fitting and finding the difference in the dynamics. In the left figure (a), λ = 0.2ω0, γ = 0.05ω0, ωq = 0, ∆ = 0, T = 0. In
the center figure (b) λ = 0.4ω0, γ = 0.4ω0. In the right figure (c) λ = ω0, γ = ω0. We see that in all cases, at long times, the
dynamics is very sensitive to the error. In the very broad-bath case (c) the performance in comparing to the pure dephasing
results is misleading since the suppression of the error is just due to the very fast decay of the coherences.

pseudomode is associated with the last two indices, cor-

responding to a1(t) and a†1(t), while the two Matsubara
modes, being zero frequency modes, are just associated
with a single index each.

Supplementary Note 3: Error bounds from fitting

The error due to the numerical fitting of the infinite
Matsubara sum with the biexponential in Eq. (9) of the
main text will inevitably lead to an error in the dynamics
of the system. This has been discussed extensively in

Mascherpa et al.10 where it was argued that an error in
the correlation function, ∆C(t), leads to a corresponding
error in the expectation of any operator which is bound
by the inequality,

|∆〈Ô(t)〉 | ≤ || Ô ||
(
e
∫ t
0
dt′

∫ t′
0
dt′′|∆C(t′−t′′)| − 1

)
(13)

where || Ô || denotes the operator norm. In this sec-
tion we consider whether this result is useful to char-
acterize the error in the dynamics of our model in the
main text. Before showing that result, we first discuss
another comparison we will make: the exactly solvable
pure-dephasing model.

Pure dephasing model

The pure dephasing case is given by the condition ∆ =
0 in the Hamiltonian in Eq. (1) of the main text. Since
the pure dephasing case has an analytical solution, we
can in principle also use it as a benchmark for comparing
errors. The evolution of the density matrix is given, in
the σz basis, by11,

ρ =

[
ρ00(0) ρ01(0)e−F (t)

ρ10(0)e−F̄ (t) ρ11(0)

]
,

with F (t) = iωqt+
∫ t

0
dτD(τ), and D(τ) is defined as,

D(τ) = 2

∫ τ

0

ds
[
C(τ − s) + C̄(τ − s)

]
, (14)

where C(t) is the correlation function.
Let us write C(t) =

∑
k ck exp(µkt), where ck and µk

can be real or imaginary (note here that ck and µk refer
to a generic decomposition of the correlation functions,

not the one we define in the main text). This allows us
now to write D(τ) as a sum of exponentials as well. After
integrating, we again obtain a sum of exponentials∫ τ

0

dsC(τ − s) =

∫ τ

0

ds
∑
k

cke
µk(τ−s)

=
∑
k

ck

[
eµkτ − 1

µk

]
. (15)

Using this expression in Supplementary Eq. (14), we can
write

D(τ) = 2
∑
k

ck
µk

(eµkτ − 1) + H.c. , (16)

which gives∫ t

0

dτD(τ) = 2
∑
k

[
ck
µ2
k

(eµkt − 1)− ck
µk
t

]
+ H.c. . (17)

Now, for any correlation function which is a sum of ex-
ponentials we can easily write down the evolution as two
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parts: the sum of exponents from the non-Matsubara
part and an integral taking into account the full Mat-

subara contribution,
∫ t

0
D(τ) =

∫ t
0
D0(τ) +

∫ t
0
Dm(τ). In

our case, the Matsubara terms are already given as an
infinite sum of exponentials and in the zero temperature
limit this can be written as,

∫ t

0

dtDm(τ) = 4

∫ t

0

dτ

∫ τ

0

ds

[
−4λ2γ

π

(
π

β

)2 ∞∑
n=1

n exp(−2nπs/β)

[(Ω + iΓ)2 + (2nπ/β)2][(Ω− iΓ)2 + (2nπ/β)2]

]

= −4λ2γ

π

∫ t

0

dτ

∫ τ

0

ds

∫ ∞
0

dx
x exp(−xs)

[(Ω + iΓ)2 + x2][(Ω− iΓ)2 + x2]

= −4λ2γ

π

∫ ∞
0

dx
1

[(Ω + iΓ)2 + x2][(Ω− iΓ)2 + x2]

(
t+

exp(−xt)− 1

x

)
,

where we took 2nπ/β → x. We use this expression to
compare the dynamics of the pure dephasing model for
the full Matsubara contribution against our approxima-
tion using just two exponents. In Supplementary Fig. 2
we show the comparison for different parameter regimes,
and the bound in the same system quantities given by
the inequality in Supplementary Eq. (13).

Unfortunately, it becomes apparent from the figure
that both the bound proposed in Ref. [10], and the pure
dephasing result, are exponentially sensitive to errors in
the fit at long times (when the error is comparable to
the evolution time), which in the main text is one of
the regimes we are interested in. However, it turns out
that in terms of the influence of an error in the correla-
tion functions on the system dynamics, the pure dephas-
ing case is the worst case, as discussed in Mascherpa et
al.10, and hence, unfortunately, these results do not give
us much information about the potential error in results
away from the regime ∆ = 0. A potential alternative
method to characterize stability and error of results is
discussed in the next section.

Supplementary Note 4: Sensitivity of the dynamics
to perturbations

In order to further evaluate the sensitivity of the dy-
namics and steady-state to the quality of the fitting of
the Matsubara terms for ∆ 6= 0, we numerically compute
the evolution with small random perturbations added to
the fit parameters. We use the standardized measure of
dispersion of a distribution, the coefficient of variation,
to quantify how much the steady-state population varies
as we inject random perturbations to the parameters of
our fitting.

The coefficient of variation is defined as the ratio be-
tween the standard deviation and mean (σ/µ) of observa-
tions. In this case, the observations are the steady-state
populations of the system density matrix. The parame-
ters that we will perturb are the amplitudes of the biex-
ponentials (c1, c2) and the frequencies (µ1, µ2) in Eq. (9)

of the main text. We inject perturbations as follows,

ci → ci(1 + δ)

µi → µi(1 + δ),

where δ ∈ [−δmax, δmax] is the perturbation in the
parameters with maximum absolute value δmax. In
Supplementary Fig. 3, we plot (σ/µ) against randomly
picked values of δ from a uniform distribution and then
compute the statistics after 200 runs.

The intuition here is that these results show that addi-
tional small perturbations (errors) in the fitting parame-
ters do not give a large variance in the results. Given that
we also know the error in the fit without these additional
perturbations, these results give us an intuition about
how that error influences the steady-state of the system
(see the next section for an example). Primarily how-
ever, these results show that as the perturbations/errors
are decreased, the coefficient of variation for the steady
state populations also decreases, suggesting that we can
place a qualitative error bound on the final results.

Supplementary Note 5: Steady-state as a function of
coupling strength

As discussed in the main text, as the coupling strength
increases, the HEOM and pseudomode predictions di-
verge from that of the RC model. We also note that,
as the coupling increases, the Matsubara terms become
more important. To clarify this, and give an example
for the error analysis performed in the previous section,
we compare the steady-state system excitation proba-
bility and the bath-mode photon population as a func-
tion of the coupling strength at zero temperature, see
Supplementary Fig. 4.

We will try to make a qualitative argument here re-
garding the difference in the RC, HEOM/pseudomode
predictions. Our sensitivity analysis in the previous sec-
tion suggests that potential perturbations, or errors, in
the fitting of the Matsubara terms can lead to errors
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Supplementary Figure 3. Error analysis based on uncer-
tainties in the fit. Here we show the coefficient of variation,
σ/µ, of the steady-state excited state population of the qubit
against injected perturbations in the parameters of the biex-
ponential fitting (±δmax). In the top panel (a) λ = 0.2ω0,
γ = 0.05ω0, ωq = 0, ∆ = ω0, and T = 0. In the center
panel (b) λ = 0.4ω0 and γ = 0.4ω0. In the bottom panel
(c) λ = ω0 and γ = ω0. These results are averaged over 200
random choices of perturbed parameters. In the insets we
show examples of the dynamics for perturbations up to 10%
in the parameters. As the perturbations decrease, we obtain
less deviation in the steady-state populations. Note that in
the inset in figure (c) we have removed examples which gen-
erate unphysical system behavior, which can occur for large
perturbations in the fitting parameters.
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Supplementary Figure 4. Steady-state properties as a
function of the coupling strength. In the upper figure
we plot the steady state population of the relevant effective
“bath mode” against the coupling strength λ, for ωq = 0,
∆ = ω0, T = 0, and γ = ω0. In the lower figure we plot the
qubit excited state probability for the same parameters.

in the steady-state population. From a direct com-
parison between the fit we use in this data, we esti-
mate the parameter error in the fit to be about 1%.
As we see from Supplementary Fig. 3 an additional in-
jected error of 1–2% introduces a variance in the re-
sults at most 2–4%, even in the USC regime. How-
ever, in Supplementary Fig. 4 we see that the differ-
ence in the RC versus HEOM/pseudomode results are
much larger than this potential error from the inaccu-
racy in the fit (especially in the broad-bath case, see
Supplementary Fig. 1).

Thus, it would be reasonable to believe that this dif-
ference is not just an artifact of a poor fitting of the
Matsubara terms but comes more from the RC approach
being fundamentally inadequate in capturing the full cor-
relations between the qubit and its environment for broad
baths and strong couplings. In addition, this reasoning
suggests the fitting procedure we employ here can give re-
liable predictions up to a potential error of 2–4% in the
populations in the long-time limit for the most difficult
parameter choices (broad baths and strong couplings).

One other interesting error-related point in
Supplementary Fig. 4 is the fact that the system
population does not go perfectly to zero as λ → 0
(the smallest value of λ actually used in this figure
is 1 × 10−5ω0). This is because, as we saw in Fig. 2
of the main text, at weak couplings we still need the
Matsubara terms to give a correct detailed balance. An
equivalent plot without the Matsubara terms results in
a residual excited state population of ρ11 ≈ 0.055, for
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λ = 1 × 10−5ω0, whereas with the Matsubara terms
included, that population extracted from the HEOM
solution is 0.001. In principle this small residual
“effective temperature” is another indication of the
quality of the fit, at least for small coupling strengths.

Supplementary Note 6: Generalized pseudomodes

In a seminal work12, Garraway introduced the idea of
modelling the dynamics of an open quantum system by
replacing the environment with a set of bosonic pseudo-
modes. This can simplify the original problem in two
ways. First, the infinite environmental degrees of free-
dom in the original system can be replaced by a finite
set of modes. Second, the time-evolution of the pseudo-
modes can be captured by a Lindblad master equation.
However, in his examples, Garraway restricted himself to
a rotating-wave-approximation form for the interaction
between system and environment, and single excitations.
Recently, his proof was formally extended by Tamascelli
et al.13,14 to allow for non-RWA interactions. However,
here we need to adapt their proof to deal with the prob-
lem we face in our main text; what happens if the corre-
lation functions are negative?

In this section, we adapt the results in Ref. [13] to ex-
plicitly write a pseudomodes-model valid when the cor-
relations of the original (Gaussian) bath can be written
as a weighted-sum of exponentials. We show that when
some of these weights are negative, the exact system dy-
namics corresponds to a pseudomode model involving a
modified quantum-mechanical equation of motion with
a non-Hermitian Hamiltonian. Since approximating the
Matsubara correlations in our main text with exponen-
tials requires negative weights, this result has particular
relevance in terms of restoring the correct non-Markovian
and equilibrium physics.

After modelling the correlation function of the original

spin-boson model as a sum of N exponentials, we pro-
ceed in three steps. First, we map the system dynamics
to the situation in which the spin interacts with N
independent harmonic baths. Importantly, these baths
follow a non-standard equation of motion when their
Hamiltonian is non-Hermitian. Second, we show that
each of these baths can be replaced by a non-Hermitian
open quantum system involving a single pseudomode.
The spectral density characterizing the interaction
between each pseudomode and its residual environment
is found to be constant for all positive and negative
frequencies. Third, we show that this open quantum
system is equivalent to imposing a pseudo-Schrödinger
master equation for each pseudomode.

We stress that the steps above extend the work done
in Ref. [13] and we restrict ourselves to zero-temperature.

From one bath to N baths

To set the notation, as in the main text we consider a
system S interacting with an environment B of bosonic
modes under the Hamiltonian

H = HS +HB + σzX̃ , (18)

where the interaction operator is X̃ =
∑
k X̃k, X̃k =

gk/
√

2ωk(bk + b†k), and bk is the annihilation operators
of the kth bath mode with energy ωk. The Hamil-
tonian of the system and bath can be chosen to be

HS = (ωq/2) σz + (∆/2) σx and HB =
∑
k ωkb

†
kbk,

respectively, as in Eq. (1) in the main text. Impor-
tantly, we assume the initial state to be factorized as
ρS(0)⊗ ρB(0), where ρS(0) is the initial state of the sys-
tem, and where ρB(0) is a Gaussian state of the bath

satisfying TrB [X̃ρB(0)] = 0. The reduced evolution of
the system ρS(t) = TrB [ρ(t)] can be written as

ρS(t) =

∞∑
n=0

(−i)n
∫ t

0

dt1 · · ·
∫ tn−1

0

dtn

∞∑
n′=0

(i)n
′
∫ t

0

dt′1 · · ·
∫ t′

n′−1

0

dt′n′

TrB

(
X̃(t1) · · · X̃(tn)ρB(0)X̃(t′n′) · · · X̃(t′1)

)
U0(t)σz(t1) · · ·σz(tn)ρS(0)σz(t

′
n′) · · ·σz(t′1)U†0 (t) ,

(19)

where X̃(t) = exp(iHBt)X̃ exp(−iHBt), and σz(t) =

U†0 (t)σzU0(t), with U0(t) = exp(−iHSt). Since
the initial state of the bath is Gaussian and
such that TrB [X̃ρB(0)] = 0, the correlations

TrB

(
X̃(t1) · · · X̃(tn)ρB(0)X̃(t′n′) · · · X̃(t′1)

)
appearing in

the equation above can, in principle, be retrieved from
the two-time correlation

C(t) = TrB [X̃(t)X̃(0)] . (20)

For this reason, the reduced Dyson equations in
Supplementary Eq. (19) is invariant under splitting of
the original bath B into N independent copies Bi [with
initial Gaussian state ρBi

(0)] described by the total
Hamiltonian

H ′ = HS +

N∑
i=1

H ′Bi
+ σz

N∑
i=1

X̃i , (21)
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and such that the two-time correlation functions are con-
strained by

TrB1 · · ·TrBN

( N∏
i=1

ρBi(0)

)
N∑
i=1

X̃i(t)

N∑
j=1

X̃j(0)

 = C(t),

(22)
where C(t) is the original correlation function in
Supplementary Eq. (20). In the equations above,

H ′Bi
and X̃i are the free-bath Hamiltonian and

coupling operator with support on the bath
Bi. Note that, as before, the time dependence
in Supplementary Eq. (22) follows the free-bath

Hamiltonian X̃i(t) = exp(iH ′Bi
)X̃i exp(−iH ′Bi

t).
Since the baths are independent, the constraint in
Supplementary Eq. (22) can be written as

C(t) =

N∑
i=1

Tr[ρBi
(0)X̃i(t)X̃i(0)]

+
∑
i 6=j

TrBi

[
ρBi

(0)X̃i(t)
]

TrBj

[
ρBi

(0)X̃j(0)
]
.

(23)
To satisfy the equation above it is sufficient to impose

N∑
i=1

TrBi
[ρBi

(0)X̃i(t)X̃i(0)] = C(t)

TrBi

(
ρBi

(0)X̃i(0)
)

= 0 ∀i = 1, · · · , N .

(24)
The simplicity of decomposing the original bath into N
independent ones as just described hides an important
point. In fact, since we are only interested in the dynam-
ics of the reduced system ρS(t), we can let the coupling

operators X̃i (and henceH ′) to be non-Hermitian, as long
as they satisfy the contraints in Supplementary Eq. (24)
and give rise to equations of motion in the same form as
in Supplementary Eq. (19) with the substitution X̃ 7→∑N
i=1 X̃i. To ensure the latter, we need to impose the

equation of motion

d

dt
ρ′(t) = −i[H ′, ρ′(t)] . (25)

We here explicitly stress that, for a non-Hermitian Hamil-
tonian H ′ the usual Shrödinger dynamics would imply
the right-hand side of the previous equation to take the

form −i[H ′ρ′(t) − ρ′(t)H ′†]. Here, however, in order to
ensure the invariance of the Dyson equation, we need
to impose Supplementary Eq. (25) instead. Under these
hypothesis

ρ′S(t) = ρS(t) , (26)

where ρ′S = TrB1
· · ·TrBN

[ρ′(t)].

From N baths to N pseudomodes

Following Ref. [13], we now can proceed a step further
to show that each of the baths Bi can be replaced by
a single pseudomode (associated to a Hilbert space Ri,
annihilation operator ai, and frequency Ωi) interacting
with a residual environment Ei (whose modes are associ-
ated with annihilation operators bi,α and have frequency
ωi,α) so that the full Hamiltonian now reads

H ′′ = HS +H ′′B + σz

N∑
i=1

X̃a
i , (27)

where X̃a
i = λi/

√
2Ωi(a

†
i + ai), with the parameters λi

setting the scale for the interaction between the pseu-
domodes and the system. We also defined the free-bath
Hamiltonian as

H ′′B =

N∑
i=1

H ′′Bi
, (28)

where

H ′′Bi
= Ωia

†
iai + i

∑
α

gi,α√
2ωi,α

(b†i,αai − a
†
i bi,α)

+
∑
α

ωi,αb
†
i,αbi,α .

(29)

The interaction of each pseudomode with its residual en-
vironment Ei is described by the parameters gi,α which,
in the continuum limit, are characterized by the spectral
densities

Ji(ω) = π
∑
α

g2
i,α

2ωi,α
δ(ω − ωi,α) . (30)

We now impose the pseudo-equation of motion [see
Supplementary Eq. (25)]

d

dt
ρ′′(t) = −i[H ′′, ρ′′(t)] , (31)

where we stress again that, since the Hamilto-
nian H ′′ can, in principle, be non-Hermitian, these
equations might be non-standard. Analogously to
Supplementary Eq. (24), we also impose the following
constraints on the correlations∑

i

TrRi
TrEi

[ρRi
(0)ρEi

(0)X̃a
i (t)X̃a

i (0)] = C(t)

TrRi
TrEi

(
ρRi

(0)ρEi
(0)X̃a

i (0)
)

= 0 ,
(32)

for an initial environmental state of the form∏
i[ρRi

(0)ρEi
(0)], where ρRi

(0) and ρEi
(0) are the ini-

tial Gaussian state of the ith pseudomode and its resid-
ual environment, respectively. Importantly, we as-
sume these states to be invariant under the time evo-
lution induced by the free Hamiltonian of the bath
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H ′′B . In the expression above, the time evolution fol-

lows X̃a
i (t) = exp(iH ′′Bi

t)X̃a
i exp(−iH ′′Bi

t). Following the
same considerations as above, on the equivalence between
two open quantum systems, Supplementary Eq. (31)
and Supplementary Eq. (32) are sufficient to induce
a Dyson equation equivalent to the original one in
Supplementary Eq. (19), provided the process is Gaus-
sian. In turn, the equivalence of the Dyson equations
also implies the reduced dynamics ρ′′S(t) = TrRTrE [ρ′′(t)]
(where R =

∏
iRi and E =

∏
iEi) to exactly match the

original one, i.e.,

ρ′′S(t) = ρ′S(t) = ρS(t) . (33)

Note that this result depends on the free Hamiltonian in
Supplementary Eq. (29) only implicitly through the def-
inition [which follows the pseudo-Schrödinger equation
in Supplementary Eq. (31)] of the interaction picture re-
quired in Supplementary Eq. (32). This could allow, in
principle, to consider different free dynamics to prove the
same equivalence as long as the whole process is Gaus-
sian.

From Supplementary Eq. (32), we see that the corre-
lation C(t) effectively induces constraints on the spectral
densities in Supplementary Eq. (30) and the couplings
λi. Specifically, choosing Ji(ω) to be constant for both
positive and negative frequencies, i.e.,

Ji(ω) =
γi
2

, (34)

and assuming all the pseudomodes and their residual en-
vironments to be initially in their vacuum state, the re-
duced dynamics of the system is the same as that of the
original spin-boson model with correlations

C(t) =

N∑
i=1

λ2
i

2Ωi
exp [−(iΩi + γi/2)t] . (35)

To show this, we solve the Heisenberg equation of
motion for the free bath and insert the result in
Supplementary Eq. (32). We start by noticing that

the equal-time commutation relations [bi,α(t), b†j,β(t)] =

δijδαβ , [ai(t), a
†
j(t)] = δij , and [bi,α(t), ai(t)] =

[bi,α(t), a†i (t)] = 0 are satisfied once we impose them as
an initial condition (the dynamics of the open quantum
system is unitary). We can now formally write the equa-
tions of motion for the residual environments Ei as

d

dt
bi,α = i[H ′′B , bi,α] = −iωi,αbi,α +

gi,α
2
√
ωi,α

ai , (36)

which leads to the following equations for the correspond-

ing Laplace transforms (denoted by an overhead bar)

b̄†i,α + b̄i,α =

(
b†i,α(0)

s− iωi,α
+

bi,α(0)

s+ iωi,α

)

+
gi,α

[
s(ā†i + āi) + iωi,α(ā†i − āi)

]
√

2ωi,α(s2 + ω2
i,α)

b̄†i,α − b̄i,α =

(
b†i,α(0)

s− iωi,α
− bi,α(0)

s+ iωi,α

)

+
gi,α

[
s(ā†i − āi) + iωi,α(ā†i + āi)

]
√

2ωi,α(s2 + ω2
i,α)

,

(37)
where s is the complex variable introduced by the Laplace
transformation. Similarly, we can write the Heisenberg
equations for the pseudomodes as

ȧi = i[H ′′B , ai] = −iΩiai −
∑
α

gi,α√
2ωi,α

bi,α , (38)

which, after a Laplace transform, become

sx̄i = xi(0) + Ωip̄i −
∑
α

gi,α√
2ωi,α

(b̄†i,α + b̄i,α)

sp̄i = pi(0)− Ωix̄i − i
∑
α

gi,α√
2ωi,α

(b̄†i,α − b̄i,α) ,

(39)

in terms of the dimensionless quadratures xi = a†i + ai
and pi = i(a†i−ai). By inserting Supplementary Eq. (37)
into Supplementary Eq. (39) we finally obtain

sx̄i = xi(0) +

(
Ωi −

∑
α

g2
i,α

2(s2 + ω2
i,α)

)
p̄i

−s
∑
α

g2
i,α

2ωi,α(s2 + ω2
i,α)

x̄i − xin
i

sp̄i = pi(0)−

(
Ωi −

∑
α

g2
i,α

2(s2 + ω2
i,α)

)
x̄i

−s
∑
α

g2
i,α

2ωi,α(s2 + ω2
i,α)

p̄i − pin
i ,

(40)

where

xin
i =

∑
α

gi,α√
2ωi,α

(
b†i,α(0)

s− iωi,α
+

bi,α(0)

s+ iωi,α

)

pin
i = i

∑
α

gi,α√
2ωi,α

(
b†i,α(0)

s− iωi,α
− bi,α(0)

s+ iωi,α

)
.

(41)

Using Supplementary Eq. (30), we can write
Supplementary Eq. (40) in the continuum limit as

sx̄i = xi(0) +

[
Ωi −

∫ ∞
−∞

dω
Ji(ω)ω

π(s2 + ω2)

]
p̄i

−s
∫ ∞
−∞

Ji(ω)

π(s2 + ω2)
x̄i − xin

i

sp̄i = pi(0)−
[
Ωi −

∫ ∞
−∞

dω
Ji(ω)ω

π(s2 + ω2)

]
x̄i

−s
∫ ∞
−∞

Ji(ω)

π(s2 + ω2)
p̄i − pin

i .

(42)
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By inserting Supplementary Eq. (34) into the equation
above we obtain

sx̄i = xi(0) + Ωip̄i − γi/2 x̄i − xin
i

sp̄i = pi(0)− Ωix̄i − γi/2 p̄i − pin
i .

(43)

Note that Supplementary Eq. (28) seems not to have the
correct renormalization terms for the frequency of the
pseudomodes. However, this is justified by the choice
of spectral densities in Supplementary Eq. (34) as the
additional term which renormalizes the frequencies in

Supplementary Eq. (42) is lim
Λ→∞

∫ Λ

−Λ

dω
Ji(ω)ω

π(s2 + ω2)
= 0,

where we regularized the integral at infinity. For this
reason, the frequencies Ωi already correspond to the cor-
rectly renormalized ones. Using the equation above, we
find the following equation for the Laplace transform of
the quadratures xi

[(s+γi/2)2+Ω2
i ]x̄i = (s+γi/2)[xi(0)−xin

i ]+Ωi[pi(0)−pin
i ],

(44)
which we can insert into the first of
Supplementary Eq. (32) to finally obtain the corre-
lation function as

C(t) =

N∑
i=1

λ2
i

2Ωi
L−1
t {TrRi

TrEi
[ρRi

(0)ρEi
(0)x̄ixi(0)]}

=

N∑
i=1

λ2
i

2Ωi

1

2πi

∫
ds

{
[s+ γi/2]〈x(0)x(0)〉Ri

(s+ γi/2)2 + Ω2
i

est

+
Ωi〈p(0)x(0)〉Ri

(s+ γi/2)2 + Ω2
i

est
}

=

N∑
i=1

λ2
i

2Ωi
exp {−(iΩi + γi/2)t} ,

(45)

where X̃a
i = λi/

√
2Ωixi and we defined 〈·〉Ri ≡

TrRi [ · ρRi(0)] as the trace over the ith pseudomode,
and L−1

t as the inverse Laplace transform. We further
assumed ρRi(0) to be the pseudomodes’ vacuum state
so that 〈xi(0)〉Ri

= 0, together with 〈xi(0)xi(0)〉Ri
= 1

and 〈pi(0)xi(0)〉Ri
= −i. This correlation is the same as

the one in Supplementary Eq. (35) which is the result we
wanted to prove to deduce Supplementary Eq. (33).

The pseudo-Schrödinger equation

Following Refs. [13] and [15], we can now complete the
third step promised at the beginning of this section, i.e.,
showing that the reduced dynamics of the system can be
obtained by considering the following effective equation
of motion for the system and the pseudomodes Ri

d

dt
ρpm = L[ρpm] , (46)

where L[ρ] = −i[Hpm, ρ] +
∑
iDi[ρ], where the pseudo-

modes Hamiltonian reads

Hpm = HS + σz
∑
i

X̃a
i +

N∑
i=1

Ωia
†
iai , (47)

and where Di[ρ] = γi/2
[
2aiρa

†
i − (a†iaiρ+ ρa†iai)

]
. As

before, when Hpm is non-Hermitian, the equation of mo-
tion above is non-standard.

To proceed in the proof, we use
Supplementary Eq. (46) to find that all operators

ÔSR(t) with support on the system and pseudomodes
space satisfy the equation of motion

d

dt
〈[ÔSR]〉SR = i〈[Hpm, ÔSR]〉SR +

N∑
i=1

〈[D†i (ÔSR)]〉SR ,

(48)
where we defined 〈·〉SR = TrSR[ · ρSR(0)] [with

ρSR(0) = ρS
∏N
i=1 ρRi(0)] and where D†i [·] is the ad-

joint of the operator Di[·] with respect to the trace,

i.e., TrSR[Di(Â)B̂] = TrSR[ÂD†i (B̂)] for any oper-

ator Â, B̂ with support on the system and pseu-

domode Hilbert spaces SR. Specifically, D†i [ρ] =

γi/2
[
2a†iρai − (a†iaiρ+ ρa†iai)

]
. In parallel, from

Supplementary Eq. (27), we obtain the following Heisen-
berg equation of motion

d

dt
〈[ÔSR]〉SRE = i〈[H ′′, ÔSR]〉SRE (49)

= i〈[Hpm, ÔSR]〉SRE
−
∑
i,α

gi,α√
2ωi,α

〈b†i,α[ai, ÔSR]〉SRE

+
∑
i,α

gi,α√
2ωi,α

〈[a†i , ÔSR]bi,α〉SRE ,

where 〈·〉SRE = TrE1 · · ·TrEN
TrSR. To close the equa-

tions above, we need to compute the equation of motion
d

dt
bi,α = i[H ′′, bi,α] for the operators bi,α(t) of the resid-

ual baths. This leads to a result which is equivalent to
Supplementary Eq. (37), and which reads∑

α

gi,α√
2ωi,α

b̄i,α(t) = bini (t) +Ai(t) , (50)

where

bini (t) = L−1
t

[∑
α

gi,αbi,α(0)√
2ωi,α(s+ iωi,α)

]
(51)

Ai(t) = L−1
t

[∑
α

g2
i,αāi

2ωi,α(s+ iωi,α)

]
.

Now, using the convolution theorem and the identities
L−1
t [1/(s+ iω)] = exp(−iωt) and L−1

t [āi] = ai(t), we
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notice that, in the continuum limit, the last term in the
previous expression can be written as

Ai(t) =
1

π
L−1
t

[∫ ∞
−∞

dω
Ji(ω)

s+ iω
āi

]
=

γi
2π

∫ ∞
−∞

dω

∫ t

0

dt′ai(t
′)e−iω(t−t′) (52)

=
γi
2
ai(t) ,

where we used
∫∞
−∞ dωei(t

′−t) = 2πδ(t−t′) and
∫ t

0
dt′δ(t−

t) = 1/2 (see Eq. 5.3.12 in Ref. [15]).

Using Supplementary Eq. (52) and
Supplementary Eq. (50) into Supplementary Eq. (49),
allows us to write

d

dt
〈ÔSR(t)〉SRE = i〈[Hpm, ÔSR(t)]〉SRE −

N∑
i=1

γi
2

[
〈a†i (t)[ai(t), ÔSR(t)]〉SRE − 〈[a†i (t), ÔSR(t)]ai(t)〉SRE

]
= i〈[Hpm, ÔSR(t)]〉SRE +

N∑
i=1

〈D†i [ÔSR(t)]〉SRE , (53)

where we assumed the initial state of each mode
of the residual environment to be the vacuum state,

giving bi,α(0)ρEi(0) = ρEi(0)b†i,α(0) = 0. We

can now notice that Supplementary Eq. (48) and
Supplementary Eq. (53), despite referring to different
underlying spaces, lead to the very same set of closed
equation for operators with support in SR, hence pre-
dicting the same physical dynamics in such a space. In
the Schrödinger picture this results in

TrR[ρpm(t)] = ρ′′S(t) = ρS(t) , (54)

where we used Supplementary Eq. (33). This completes
our proof.

For completeness, it is also interesting to explicitly
show that Supplementary Eq. (46) gives, indeed, the
same correlations as in Supplementary Eq. (45). In par-
ticular, we want to compute the correlations for the
“free” pseudomodes, i.e.,

Cpm(t) = TrR [F (t)F (0)ρR(0)] , (55)

where F (t) = exp
(
L†Rt

)
[F (0)], with LR [ · ] =

−i[
∑
i Ωia

†
iai, · ] +

∑
iDi[ · ], and where F (0) =∑

i X̃
a
i =

∑
i λi/
√

2Ωi(a
†
i + ai). We further defined

ρR(0) =
∏
i ρRi

(0), where ρRi
(0) is the initial state of

each pseudomodes (which, as before, we assume to be
the vacuum state). From its definition, we note that

F (t) =
∑
i λi/
√

2Ωi{a†i (t) + ai(t)}, where a†i (t) + ai(t) =

exp
(
L†Rt

)
[a†i + ai]. The operator a†i (t) + ai(t) can be

found solving the coupled differential equation [to be

compared with Supplementary Eq. (43)],

d

dt
{a†i (t) + ai(t)} = L†R

[
a†i (t) + ai(t)

]
= iΩi{a†i (t)− ai(t)}

− γi
2
{a†i (t) + ai(t)}

d

dt
{a†i (t)− ai(t)} = L†R

[
a†i (t)− ai(t)

]
= iΩi{a†i (t) + ai(t)}

− γi
2
{a†i (t)− ai(t)}, (56)

whose solution can be inserted into
Supplementary Eq. (55) to obtain

Cpm(t) = C(t) , (57)

as required.

Supplementary Note 7: Modeling the absence of
Matsubara correlations in the generalized

pseudomode model

In this section we apply the previous analysis to the
case in which the full correlation function in Eq. (2) in
the main text is approximated as

C(t)→ C0(t) =
λ2

2Ω
exp (−iΩt) exp

(
−γ

2
t
)

, (58)

i.e., we completely neglect the Matsubara correlations
in Eq. (5) from the main text in the zero temperature
limit. From Supplementary Eq. (28) we find that this
corresponds to an open quantum system in which a single
pseudomode (with annihilation operator a) mediates the
interaction between the system and the residual environ-
ment (with modes associated to annihilation operators
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bα and frequency ωα) as

HMats = HS + σz
λ√
2Ω

(a+ a†) + Ωa†a

+
∑
α

ωαb
†
αbα +

∑
α

gα√
2Ω
√

2ωα

(
b†αa− a†bα

)
.

(59)
As described in Supplementary Eq. (34), the coupling gα
to the residual environment are determined, in the con-
tinuum limit, by the spectral density

JMats(ω) = γΩ . (60)

Note that the apparent additional 2Ω factor in the
equation above with respect to Supplementary Eq. (34)
just reflects a different definition of the residual
couplings in Supplementary Eq. (59) with respect to
Supplementary Eq. (28). Alternatively, from the results
in the previous section, we also find that the system dy-
namics can be found by solving

d

dt
ρeff = −i[Heff, ρMats] +DMats[ρMats] , (61)

where

Heff = HS + σz
λ√
2Ω

(a+ a†) + Ωa†a (62)

DMats[ρMats] =
γ

2

(
2aρMatsa

† − a†aρMats − ρMatsa
†a
)
,

and tracing out the pseudomode from ρMats. The equa-
tion of motion in Supplementary Eq. (61) describes the
effect of neglecting the Matsubara correlations which
are needed to model the correct equilibrium and non-
Markovian physics. Consistently, the Lindblad opera-
tor in Supplementary Eq. (62) does not describe a resid-
ual bath at thermal equilibrium as it does not leave the
eigenstates of the system-pseudomode Hamiltonian Heff

invariant. This can lead to the possibility of peculiar ef-
fects, such as ground state decay and, in general, to a con-
stant dissipation of energy in the steady state. Interest-
ingly, it has been shown (see for a brief overview) that a
modified version of the model in Supplementary Eq. (59)
can be derived from mapping the original environment
into a single “reaction coordinate” and a residual (per-
turbative) environment. The differences between the
two models can be intuitively ascribed to performing a
rotating-wave and Markov approximations (in the cou-
pling with the residual bath). Within the perturbative
limits for the coupling to the residual environment, the
reaction-coordinate model leads to master equations3,4,16

which improve on Supplementary Eq. (61) to correctly
describe the equilibrium and Markovian physics of the
original spin-boson model.

Supplementary Note 8: Complete positivity

The pseudomodes mapping presented in the previous
section requires the original correlation function to take

(or to be approximated by) the functional form given in
Supplementary Eq. (35) in terms of a linear combination
of decaying exponentials. In the example we focus on
in this work, we found that to describe the Matsubara
contribution to the correlation, some of the weights λi
in Supplementary Eq. (35) have to be imaginary. In this
case, the effective reduced dynamics of the system ρ′′S(t)
might lack fundamental properties like complete positiv-
ity. This can be seen by the fact that ρ′′S(t) is obtained by
tracing the pseudomodes and their residual environments
from the full dynamics ρ′′(t) described by the pseudo-
Schrödinger equation in Supplementary Eq. (31).

It is useful to consider what further constraints
might be imposed on the functional form given in
Supplementary Eq. (35) so that the reduced dynamics of
the system is completely positive. To achieve this goal,
we will follow the same strategy used in the pseudomode
proof in the previous section. Namely, we define a bath
BCP supporting a specific operator X̂CP coupling to the
system such that the full dynamics of system+bath is uni-
tary. In turn, this implies the reduced system dynamics
will be completely positive (up to other sources of nu-
merical error which might invalidate the correspondence
between the pseudomode model and the full unitary dy-
namics, see the next subsection). For this reason, we
want to study the following relation

CCP(t) = C(t)δ(Ψ) , (63)

where, slightly generalizing the expression in
Supplementary Eq. (35), we write

C(t) =

N∑
i=1

λ̃ie
−(iΩi + Γi)t for t ≥ 0

N∑
i=1

λ̃ie
−(iΩi − Γi)t for t < 0

=
1

π

∫ ∞
−∞

dω

N∑
i=1

Γiλ̃i
e−iωt

(ω − Ωi)2 + Γ2
i

,

(64)

and where Ψ = Ψ({λ̃i,Ωi,Γi}) is a constraint on the
parameters of the correlation function needed to allow
the identity in Supplementary Eq. (63). In fact, without
such a constraint, this equation could not be, in general,
satisfied as the bath BCP generates a completely positive
reduced dynamics. Finding the explicit expression for Ψ
is the goal of this section. In turn, completion of this
goal allows to further constraint the parameters defining
the correlation in Supplementary Eq. (63), such that the
reduced dynamics is formally completely positive. We
also defined

CCP = 〈X̂CP(t)X̂CP(0)〉BCP , (65)

and

X̂CP =
∑ g2

i√
2|ωk|

(bk + b†k) , (66)
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where the oscillators bk of the bath are described by

the free Hamiltonian HBCP =
∑
k ωkb

†
kbk for both

positive and negative energies. Assuming the kth os-
cillator to be in the initial vacuum state |0〉k, from
Supplementary Eq. (65) we then find

CCP(t) =
∑
k

g2
k

2|ωk|
e−iωkt ≡ 1

π

∫ ∞
−∞

dωJCP(ω)e−iωt ,

(67)
in terms of a “spectral density” (or spectrum) defined for
both positive and negative energies as

JCP(ω) = π
∑
k

g2
k

2|ωk|
δ(ω − ωk) . (68)

We now note that the only restriction to the correlation
CCP(t) derives from the fact that the spectral density
which defines it satisfies J(ω) ≥ 0 as it can be seen from
Supplementary Eq. (68). Furthermore, we note that,
here, we do not consider any possible issues related to
the presence of negative frequencies in the bath. In fact,
we are here only concerned about the fact that the full
model in which the system interacts with the bath BCP

is unitary and, as a consequence, it gives rise to a re-
duced system dynamics which is completely positive. By
inserting the expression in Supplementary Eqs. (64) and
(67) into Supplementary Eq. (63) we find, by direct com-
parison that

N∑
i=1

Γiλ̃i
(ω − Ωi)2 + Γ2

i

= JCP(ω) ≥ 0 . (69)

Formally, this implies that

Ψ = 1− θ

(
N∑
i=1

Γiλ̃i
(ω − Ωi)2 + Γ2

i

)
, (70)

completing the goal of this section. This constraint
is a sufficient condition for the original ansatz on the
correlation function C(t) to describe a completely
positive reduced dynamics for the system.

Truncating the pseudomode Hilbert space

As mentioned throughout the article, the influence of
an environment on the system’s dynamics is encoded in
the correlation functions of the system-bath coupling op-
erator. For this reason, in order to build a pseudomode
model which accurately reproduces this dynamics, an
equivalence for the full set of correlation functions of the
two models is needed. However, when performing numer-
ical simulations of such an equivalent Pseudomode model,
it is very important to be aware of approximations that
might interfere with these equivalencies.

Specifically, in our proof it is important that both the
original bath and the pseudomode simulcra can be de-
scribed by a Gaussian process in which the two-time cor-
relation functions completely determines the higher or-
der ones. We can then distinguish different classes of
numerical errors in simulating the Pseudomode model.
Some errors might affect the two-time correlation func-
tion while preserving Gaussianity. This is the case for
the fit errors considered in this section. While affecting
the ability to perfectly reproduce the correct system’s dy-
namics, the Gaussianity condition still allows us to justify
fundamental properties, such as complete positivity.

However, it is also possible to have numerical errors
which break the Gaussianity condition. A simple exam-
ple is provided by the unavoidable truncation of the pseu-
domodes Hilbert space in the numerical implementation
of the pseudomode equation of motion. If this truncation
is too small, it induces an effective non-linearity which es-
sentially breaks the Gaussianity of the pseudo-mode free
evolution. Specifically, since the pseudomode model is
described by non-unitary dynamics, these errors are can
induce a non-positive reduced system’s dynamics, even if
the constraints in Supplementary Eq. (63) are satisfied.
This is a very different situation from the complete pos-
itivity one sees in a standard Lindblad master equation,
where insufficient truncation does not affect the positiv-
ity condition, so we emphasize that it is important to
consider a sufficiently large cut-off for the pseudomode’s
Hilbert space while performing numerical simulations.

Matsubara fitting example

Let us consider, as an example, the case in which the
correlation C(t) takes the form given in Eq. (14) of the
main text, i.e.,

C(t) =
λ2

2Ω
e−(iΩ+Γ)t + c1e

−µ1t + c2e
−µ2t , (71)

at zero temperature. From Supplementary Eq. (69) we
need to impose

Γλ2

2Ω

1

(ω − Ω)2 + Γ2
+

µ1c1
ω2 + µ2

1

+
µ2c2

ω2 + µ2
2

≥ 0 , (72)

to ensure complete positivity. This expression can be
used directly as a cost constraint across a finite frequency
range in fitting the parameters c1, c2, µ1, and µ2. It can
also, in principle, be analyzed analytically. To do this,
we note that the coefficients c1 and c2 are negative so
that we can write

Γλ2

2Ω

1

(ω − Ω)2 + Γ2
≥ µ1|c1|
ω2 + µ2

1

+
µ2|c2|
ω2 + µ2

2

. (73)

Now, since

µ1|c1|
ω2 + µ2

1

+
µ2|c2|
ω2 + µ2

2

≤ µ1|c1|
ω2 + µ2

+
µ2|c2|
ω2 + µ2

, (74)
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where µ = min(µ1, µ2), we can obtain a more restrictive
constraint on the parameters by solving

Γλ2

2Ω

1

(ω − Ω)2 + Γ2
≥ µ1|c1|+ µ2|c2|

ω2 + µ2
, (75)

or, equivalently,

(A−B)ω2 + 2ΩBω +Aµ2 −B(Ω2 + Γ2) ≥ 0 , (76)

where A = Γλ2/2Ω and B = µ1|c1| + µ2|c2|. By impos-
ing that the corresponding parabola is always above or
equal to zero we need the coefficient in front of ω2 to be
positive, i.e., we need

A/B > 1 . (77)

We then impose the determinant of the previous equation
to be non-positive, i.e.

4Ω2B2 − 4(A−B)[Aµ2 −B(Ω2 + Γ2)] ≤ 0 , (78)

which can be recasted as

(A/B)2µ2 − (A/B)(µ2 + Ω2 + Γ2) + Γ2 ≥ 0 , (79)

which imposes

A/B ≤ κ− or A/B ≥ κ+ , (80)

where

κ± =
µ2 + (Ω2 + Γ2)±

√
[(Ω2 + Γ2)− µ2]2 + 4Ω2µ2

2µ2

= 1 +
(Ω2 + Γ2)− µ2 ±

√
[(Ω2 + Γ2)− µ2]2 + 4Ω2µ2

2µ2
,

(81)
where we used the fact that (µ2 + Ω2 + Γ2)2 − 4µ2Γ2 =
(Ω2 + Γ2 − µ2)2 + 4Ω2µ2. We now note that (assuming
Ω, µ 6= 0)

√
[(Ω2 + Γ2)− µ2]2 + 4Ω2µ2 > (Ω2 + Γ2)− µ2 , (82)

so that the second term in the expression for κ± is posi-
tive (negative) for κ+ (κ−). In turn, this implies that

κ+ > 1 , κ− < 1 . (83)

By using this condition, the constraints in
Supplementary Eqs. (77) and (80) are equivalent to
just the single condition

A/B > κ+ , (84)

which, explicitly, reads

Γλ2

2Ω(µ1|c1|+ µ2|c2|)
> 1 +

(Ω2 + Γ2)− µ2 +
√

[(Ω2 + Γ2)− µ2]2 + 4Ω2µ2

2µ2
. (85)

This requirement is then a sufficient condition for the
completely positivity of the system’s dynamics (again,
up to other sources of error, as noted in the previous sec-
tion). We note that the whole procedure immediately
adapts to the case in which an arbitrary number of ex-
ponentials are used to fit the Matsubara part of the cor-
relations by simply redefining the parameters µ and B
above.

We also recall that the condition in
Supplementary Eq. (76), and hence the final result
in Supplementary Eqs. (84) and (85), is stricter than the

requirement in Supplementary Eq. (72) which is more
minimal but also more difficult to implement or check.
We also note that it could be interesting to analyze
milder conditions in which Supplementary Eq. (76), and
hence positivity, is guaranteed only within a certain
frequency range. For example, in the case A > B,
this can be done by allowing a positive determinant
in Supplementary Eq. (76). In this case, the range of
frequencies in which positivity is guaranteed would
be around infinity. Interestingly, the physically more
relevant case in which the range of frequencies is around
some finite value would arise when A < B.
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