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EXPERIMENTAL SETUP

The experimental setup is shown in Supplementary
Fig. 1. The transmission spectra of the multimode
ultrastrongly-coupled qubit–resonator system in Fig. 2
of the main text are measured with a vector network an-
alyzer. A signal generator and a spectrum analyzer are
used for the SHG and the interference measurements in
Fig. 3 and Fig. 4 of the main text.

A current source is used to generate the external flux
bias δΦext via an on-chip control line. The input sig-
nals are all attenuated and filtered at different temper-
ature stages in the dilution refrigerator before reaching
the sample. The output signals are amplified by both a
cryogenic and a room temperature amplifier before being
collected by the network analyzer and the spectrum an-
alyzer. Isolators and low-pass filters (LPF) are used to
protect the sample from the amplifiers’ noise.

The data presented in Figs. 2, 3, and 4 in the main
text were all acquired as coherent signals using a vector
network analyzer (VNA). For Fig. 2 in the main text,
the VNA was employed to measure the S21 parameter
of the transmitted signal. In the case of Fig. 3 in the
main text, the VNA detected the SHG signal emanating
from the device, which was excited by an external signal
generator. The VNAs output port was terminated, and it
functioned solely to capture the SHG signal. For Fig. 4 in
the main text, the VNA measured the S21 parameter of
the signal at the frequency ω/2ω, while a simultaneous
signal at 2ω/ω frequency was applied from a separate
signal generator.

THEORY

Circuit quantization
To derive the total Hamiltonian of the system, here we
follow the procedure applied in Ref. [1], where the quanti-
zation was applied to the case of a single Josephson junc-
tion or a superconducting quantum interference device
(SQUID) embedded in a transmission line, while here we
consider the flux qubit. A similar procedure can also be
found in Ref. [2]. The flux qubit circuit is composed by
a loop of three Josephson junctions, as in Supplementary
Fig. 1. Without the qubit, the Lagrangian of the bare
transmission line is given by [3]

Ltl =

∫ l

−l

[
c0
2
ψ̇2(x, t)− [∂xψ(x, t)]

2

2l0

]
dx , (1)

where c0 and l0 are the capacitance and inductance per
unit length, respectively, and ψ(x, t) is the flux along
the waveguide. For simplicity, we consider c0 and l0
as constants, although the inhomogeneous geometry of
the waveguide in the region of the qubit can make them
space-dependent [4]. The qubit is placed at the point x0,
and the related Lagrangian is

Lq =
Cj
2
ϕ̇2 +

Cj
2
ϕ̇1

2 +
αCj

2
ϕ̇2

2

+ Ej cos

(
ϕ

ϕ0

)
+ Ej cos

(
ϕ1

ϕ0

)
+ αEj cos

(
ϕ2

ϕ0

)
,

(2)

where Cj and Ej are the capacitance and energy of the
junction, ϕ0 = ~/(2e) is the reduced flux quantum, ϕ1

and ϕ2 are the fluxes across the junctions in the lower
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Supplementary Fig. 1. a, Schematic of the experimental setup. RT: room temperature. Cryo: cryogenic. LPF: low pass
filter. The green dashed rectangle indicates the region of the chip. b, The optical image of the chip. The red dashed rectangle
indicates the location of the flux qubit.

arm, while ϕ = ψ(x+
0 , t)− ψ(x−0 , t) is the flux across the

junction in the upper arm.
By moving the quadratic term of cos(ϕ/ϕ0) into the

resonator term, the total Lagrangian can be expressed as

L = L′tl + L′q , (3)

where the prime in the resonator term indicates that it
includes the quadratic term Ejϕ

2/(2ϕ2
0), while the prime

in the qubit term indicates that it does not include this
term.

To proceed with the quantization, we need to express

the resonator Lagrangian in terms of the normal modes.
This can be done by solving the Euler-Lagrange equation∑

ν=x,t

∂ν

(
∂L′tl

∂ [∂νψ(x, t)]

)
− ∂L′tl
∂ψ(x, t)

= 0 , (4)

together with the boundary conditions at the two ends
of the resonator and the constraint dictated by the qubit
at position x0. We now express the field in terms of the
modes

ψ(x, t) =
∑
n

ψn(t)un(x) , (5)
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with ψ̈n(t) = −ω2
nψn(t) a function of time oscillating

at mode frequency ωn and un(x) are determined by the
boundary conditions. We define these functions to be of
the form

un(x) = An

{
sin [kn (x+ l)− φn] for − l ≤ x < x−0 ,

Bn sin [kn (x− l) + φn] for x+
0 < x ≤ l ,

(6)
with kn = ωn

√
l0c0, An, Bn and φn are constants deter-

mined by the various constraints. The boundary condi-
tions at the two ends of the resonator are

1

l0

∂ψ(x, t)

∂x

∣∣∣∣
x=−l,l

= 0 , (7)

which imply φn = π/2. The current on both sides of the
qubit is equal, giving the condition

1

l0

∂ψ(x, t)

∂x

∣∣∣∣
x=x−

0

=
1

l0

∂ψ(x, t)

∂x

∣∣∣∣
x=x+

0

= Cjϕ̈+
ϕ

Lj
, (8)

with Lj = ϕ2
0/Ej the flux-dependent Josephson induc-

tance. The first equation gives the value of Bn

Bn =
cos [kn (x0 + l)− φn]

cos [kn (x0 − l) + φn]
. (9)

The value of kn is found by inserting the mode shape in
Supplementary Eq. (6) into the constraint in Supplemen-
tary Eq. (8), giving the following transcendental equation

{tan [kn (x0 − l) + φn]− tan [kn (x0 + l)− φn]}

×
[
l0l

Lj
− (knl)

2 Cj
c0l

]
− knl = 0 .

(10)

The profile shapes un(x) satisfy the orthonormality con-
dition [1]

〈un(x) · um(x)〉 = CΣδnm , (11)

with CΣ = 2lc0 + Cj .

Using the orthonormality condition above and the
mode decomposition in Supplementary Eq. (6), we can
express the total Lagrangian in terms of the normal
modes

L =
∑
n

(
CΣ

2
ψ̇2
n −

ψ2
n

2Ln

)
+ Lq , (12)

with Ln = ω2
nCΣ.

When applying an external field Φext, the three junc-
tion fluxes are related by the flux quantization

ϕ+ ϕ1 + ϕ2 = Φext . (13)

Thus, we can express ϕ2 in terms of ϕ, ϕ1 and Φext. We

now pass to the Hamiltonian formalism, obtaining

H =
∑
n

(
q2
n

2CΣ
+

ψ2
n

2Ln

)
+

ϕ2

2Lj
+

q2
1

2Cj

− Ej cos

(
ϕ

ϕ0

)
− Ej cos

(
ϕ1

ϕ0

)
− αEj cos

(
Φext − ϕ− ϕ1

ϕ0

)
,

(14)

where ϕ =
∑
n ψn∆un is a resonator variable, with

∆un = un(x+
0 )− un(x−0 ).

By using the trigonometric property cos(x+ y) =
cosx cos y − sinx sin y and the last term, with x =
(ϕ−Φext)/ϕ0 and y = ϕ1/ϕ0, we can express the Hamil-
tonian in the form

H =
∑
n

(
q2
n

2CΣ
+

ψ2
n

2Ln

)
+

ϕ2

2Lj
+

q2
1

2Cj

− Ẽj(Φext) cos

(
ϕ

ϕ0
− δ0

)
− Ej cos

(
ϕ1

ϕ0

)
− αEj cos

(
ϕ− Φext

ϕ0

)[
cos

(
ϕ1

ϕ0

)
− 1

]
+ αEj sin

(
ϕ− Φext

ϕ0

)
sin

(
ϕ1

ϕ0

)
,

(15)

where

Ẽj(Φext) = Ej

√
1 + α2 tan2

(
Φext

2ϕ0

)
cos

(
Φext

2ϕ0

)
(16)

is the flux-dependent Josephson energy, and δ0 =
α tan(Φext/2ϕ0) is the phase shift. By expanding

the term Ẽj(Φext) cos
(
ϕ
ϕ0
− δ0

)
up to the second or-

der, we obtain a flux-dependent renormalization of the
bare modes frequencies ω′n(Φext), together with a flux-
dependent self- and cross-Kerr [1]. Here we neglect the
effect of the Kerr terms, as they don’t play a signifi-
cant role in the dynamics studied in this work, while
the renormalization of the frequency of the modes gives
the V-shape behavior. A similar flux-dependent renor-
malization of the modes frequencies is also present in a
flux qubit interacting with a LC resonator [5].

We now quantize the Hamiltonian in Supplementary
Eq. (15). Furthermore, we can apply the trigonometric
property to separate the terms in ϕ−Φext in the last two
terms, and then expanding them up to first order in ϕ,
obtaining the following Hamiltonian

H '
∑
n

~ω′n(Φext)a
†
nan +

q2
1

2Cj
− Ej cos

(
ϕ1

ϕ0

)
− αEj cos

(
Φext

ϕ0

)[
cos

(
ϕ1

ϕ0

)
− 1

]
− αEj sin

(
Φext

ϕ0

)
sin

(
ϕ1

ϕ0

)
+
αEj
ϕ2

0

cos

(
Φext

ϕ0

)
ϕϕ1 .

(17)



4

��ext (m�0)

4.0

4.5

5.0

10

0

20

30

b

0 40 806020

9.0

9.5

10.0 c

With Without
�
/2
� 

(G
H

z)
�q

�
/2
� 

(G
H

z)
�
/2
� 

(G
H

z)

a

Supplementary Fig. 2. Influence of the fourth mode of the res-
onator. a, eigenvalues of the total Hamiltonian (solid blue)
including the fourth mode with coupling g4/2π = 2 GHz,
without the fourth mode (dashed orange) and bare qubit fre-
quency (dash-dotted green) as a function of the flux bias
δΦext. The qubit becomes resonant with the fourth mode
at δΦext ' 40 mΦ0. However, the low energy eigenvalues re-
main unperturbed. b, c transmission spectra for the first and
second mode, respectively. The results are indentical to the
ones presented in the main text.

Notice that we have neglected the term ϕ[cos(ϕ1/ϕ0)−1]

and considered ϕ sin(ϕ1/ϕ0) ' ϕϕ1/ϕ0. Not doing these
approximations would only lead to a small renormaliza-
tion of the coupling strengths and modes frequencies,
when projecting in the two-level subspace.

By projecting the total Hamiltonian into the two
lowest-energy levels of the qubit, we get

H =
~ωq
2
σz +

∑
n

[
~ω′n(Φext)a

†
nan

+ ~gn (− sin θ σx + cos θ σz)
(
an + a†n

)]
,

(18)

with

gn = cos

(
Φext

ϕ0

)
αEj
~ϕ0

√
~

2CΣωn
∆un , (19)

which is equivalent to the Hamiltonian in Eq. (1) of the
main text, but expressed in the qubit energy basis in-
stead of the persistent current one. The qubit position
corresponds to the current node of the third mode of the
waveguide (∆u3 ≈ 0), leading to g3 ≈ 0. Hence, we
can consider only the first and second modes for the en-
ergy region we studied here. Numerical calculation using
circuit design parameters (i.e., l0 = 0.43 nH/mm, c0 =
0.16 pF/mm, Lj ≈ 0.94 nH, Cj ≈ 11 fF, l = 4.7 mm)
shows that g1/2π ≈ 2.53 GHz and g2/2π ≈ 2.70 GHz
near the optimal point (Φext/ϕ0 ' π), which qualita-
tively agree with the fitted values in the main text. A
study of the influence of the fourth mode is presented in
the next section.

Influence of higher modes
Although the physics of this work involves only the first
two modes of the waveguide resonator, here we study the
influence of the higher energy modes. The position of the
qubit coincides with the node of the third mode, corre-
sponding to a negligible coupling. Hence, we now study
the influence of the fourth mode on both the eigenvalues
and the transmission spectrum.

Supplementary Fig. 2a shows the first eigenvalues of
the total Hamiltonian with and without the fourth mode
(solid blue and dashed orange lines, respectively), to-
gether with the bare qubit frequency (dash-dotted green
line). Although the qubit is in resonance with the fourth
mode at approximately δΦext ' 40 mΦ0, the eigenvalues
in the low energy region remain unperturbed. In Sup-
plementary Fig. 2b,c we show that also the transmission
spectra are unaltered by the presence of the fourth mode.
Again, the spectra is obtained using a low power input
drive, involving less then one photon. This keeps the
dynamics inside the low-energy subspace.

Efficiency of the Second Harmonic Generation
Here we define the efficiency

η ≡ S(2ω)
21 /S

(ω)
21 (20)
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of the SHG as the ratio between the signal transmitted
at 2ω over the one at ω, when driving at ω. This quan-
tity gives us more information on the number of photons
up-converted per unit incoming photon. Supplementary
Fig. 3 shows the SHG efficiency as a function of the theo-
retical input photon number n̄1. This value is significant
already for very small number of input photons.
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Supplementary Fig. 3. Theoretically calculated efficiency of
the second harmonic generation as a function of the theo-
retical input photon number n̄1. This quantity is related to
the number of photons emitted at frequency 2ω per unit in-
put photon at ω. This simulation was performed at δΦext =
−45 mΦ0.

Input–output and generalized master equation
We start by considering the losses of the two-mode res-
onator field due to the presence of both the input and
output ports, where the resonator is capacitively coupled
to open coplanar waveguides. On the input side, the in-
teraction term can be described as

Vl = i

∫ ∞
0

dω gl(ω)
(
al,ω − a†l,ω

)
X , (21)

where gl(ω) =
√
κlω/ω1 is the frequency dependent

bath–resonator coupling rate (expressed in terms of the
bare loss rate κl), and

X = i(a1 − a†1) + i

√
ω2

ω1
(a2 − a†2) (22)

is the adimensional two-mode field momentum. Assum-
ing the driving tone at frequency ωin to be in a coherent
state, the input creation operator |αin〉 can be decom-
posed into the sum of a zero-mean quantum operator ãl,ω
plus a c-number: al,ω = ãl,ω + δ(ω − ωin)αinexp(iωint).
Using αin = |αin| exp{iφ}, the resulting driving term is

Vin(t) = 2|αin|
√
κl

√
ωin

ω1
sin(ωint+ φ)X . (23)

Here |αin|2 describes the rate of input photons and can
be directly related to the input power: Pin = ~ωin|αin|2.

Supplementary Eq. (23) can be easily generalized to two
(or more) driving tones. When considering a single tone,
αin can be assumed to be real without any loss of gener-
ality. However, in the multi-tone case, the relative phase
between different tones becomes relevant (see, e.g., Fig. 4
in the main text). On the output side, we have an anal-
ogous term

Vr = i

∫ ∞
0

dω gr(ω)
(
ar,ω − a†r,ω

)
X , (24)

with gr(ω) =
√
κrω/ω1. In the Heisenberg picture, we

define the positive frequency part of the output field op-
erator [6] as

Φ+
r,out(t) =

1√
2π

∫ ∞
0

dω
1√
ω
e−iω(t−tf )ar,ω(tf ) , (25)

where tf is the time at which the measurement is per-
formed, and we assume that there is no input field from
the output port 〈Φ+

r,in(t)〉 = 0.
We now take the positive frequency part of the system

field operator

X+ ≡
∑
j>k

Xkj (26)

(Xkj ≡ Xkj |k〉〈j|), which is written in the basis of the
eigenstates of the system Hamiltonian, with |j〉 being the
j-th eigenstate and Xkj = 〈k|X|j〉. By performing the
rotating-wave approximation in Supplementary Eq. (24)(

ar,ω − a†r,ω
)
X ' ar,ωX

− − a†r,ωX+ , (27)

and following the standard input–output procedure [6],
the relation between Φ+

out and X+ is〈
Φ+

r,out

〉
(t) =

√
κr

ω1

〈
X+
〉

(t) , (28)

where the time dependence of 〈X+〉(t) originates from
the Hamiltonian dynamics, dissipations, and the coherent
input field Vin(t). Moreover, it is often useful to write
the input–output relation in terms of Φ̇+

r,out rather than

Φ+
r,out, because it is directly linked to the measurement

of the voltage.
Compared to the standard treatment of driven-

dissipative systems, the explicit time dependence cannot
be traced out through a unitary transformation, due to
the presence of the counter-rotating terms. This results
in a time-dependent stroboscopic steady state ρss(t) for
t → ∞, which, following the Floquet formalism, is peri-
odic, with period T = 2π/ωin. Indeed, the time evolution
of the total density matrix follows the generalized master
equation ρ̇ = Lgme(t)ρ, where

Lgme(t) = L0 + L1exp(iωint) + L−1exp(−iωint) . (29)

Here L0 describes the open evolution of the system in
the absence of any external drive, taking into account
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losses of the resonator in both the input and output ports
and possible additional internal loss. It also takes into
account intrinsic qubit loss and pure dephasing with rates
κq and κq,dep, respectively. Indeed, the Liouvillian can
be written as [7]

L0ρ =− i[HS , ρ] +
1

2

∑
n=(r1,r2,q)

j,k>j
l,m>l

κ̃(n)(ω̃ml)×

{ [
X

(n)†
lm ρX

(n)
jk −X

(n)
jk X

(n)†
lm ρ

]
nth(ω̃ml, Tn)

+
[
X

(n)
lm ρX

(n)†
jk −X(n)†

jk X
(n)
lm ρ

]
[nth(ω̃ml, Tn) + 1]

+
[
X

(n)†
jk ρX

(n)
lm − ρX

(n)
lm X

(n)†
jk

]
nth(ω̃ml, Tn)

+
[
X

(n)
jk ρX

(n)†
lm − ρX(n)†

lm X
(n)
jk

]
[nth(ω̃ml, Tn) + 1]

}
+ κq,depD

[∑
j

X
(q)
jj

]
ρ ,

(30)

where

X(r1) = i(a1 − a†1) + i

√
ω2

ω1
(a2 − a†2) , (31a)

X(r2) =

√
ω2

ω1
(a1 + a†1) + (a2 + a†2) , (31b)

X(q) = σz (31c)

are the dissipation operators, and ω̃ml = ω̃m − ω̃l. Here
X(r1) is related to the dissipation induced by the interac-
tion with the coplanar waveguide, X(r2) is related to the
internal loss through the inductance, and X(q) is related
to the qubit dissipation. Moreover,

κ̃(r1)(ω) = (κl + κr)ω/ω1 , (32a)

κ̃(r2)(ω) = κintω/ω1 , (32b)

κ̃(q)(ω) = κqω/ω1 , (32c)

and

nth(ω, Tn) = [exp(~ω/kBTn)− 1]
−1

(33)

is the thermal population of the n-th reservoir describing
the number of excitations at a given temperature Tn; kB

is the Boltzmann constant, and

D [O] ρ =
1

2

(
2OρO† −O†Oρ− ρO†O

)
(34)

is the standard Lindblad dissipator. This term consid-
ers qubit pure dephasing effects due to stochastic fluc-
tuations of the flux passing through the qubit, inducing
additional decoherence effects.

It is worth to introduce real loss rates (directly related
to the decay rate of a specific transition, corresponding

to their spectral linewidths). For a given transition ω̃p,q
[which corresponds to the case where (l,m) = (j, k) =
(q, p) in Supplementary Eq. (30)], the total loss rate is
then

Γp,q = κ̃(r1)(ω̃p,q)|X(r1)
pq |2 + κ̃(r2)(ω̃p,q)|X(r2)

p,q |2 , (35)

where we considered here only the resonator losses. Note
that the relevant transitions studied here are not signif-
icantly affected by qubit decoherence. As an example,
the linewidth of the transition at ω̃1 is

Γ1,0 = (κin + κout)|X(r1)
10 |2 + κint|X(r2)

10 |2 . (36)

The influence of the coherent input drive comes from
L±, where

L±1ρ = ±i|αin|e±iφ
√
κin

√
ωin

ω1
[X, ρ] . (37)

Following Supplementary Eq. (29), we can expand
the steady state in Fourier components ρss(t) =∑+∞
n=−∞ ρnexp(inωint). By putting this form of the den-

sity matrix into Supplementary Eq. (29), and equating
each Fourier component, we obtain a tridiagonal recur-
sion relation

(L0 − inωin) ρn + L1ρn−1 + L−1ρn+1 = 0 , (38)

and impose that ρm = 0 for a sufficiently large m.
The coherent emission intensity of the resonator at

a frequency nωin is proportional to Tr[X+ρ−n]. For
the transmission spectrum, where the coherent input
|αin|/

√
ωin at frequency ωin is compared to the coherent

output Φ+
r,out at the same frequency, we have

S21 =

√
ωin

ω1

√
κr

|αin|
Tr
[
X+ρ−1

]
. (39)

In the simple case of a single harmonic oscillator without
internal loss (κint = 0), we have

Tr
[
X+ρ−1

]
= 2|αin|

√
κr/(κr + κl) (40)

on resonance, and the standard transmission formula is
obtained [6]. For the SHG spectrum, we calculate the
emission from the component oscillating at 2ωin. In other
words,

SSHG ∝ Tr
[
X+ρ−2

]
. (41)

In the case of the interference pattern in Fig. 4 of the
main text, we used a drive with harmonics of frequency

ω
(1)
in and ω

(2)
in . In the first case, depicted in Fig. 4a,b of

the main text, the interaction term Vin on the left side
becomes

Vin(t) =2
√
κl

|α(1)
in |

√
ω

(1)
in

ω1
sin
(
ω

(1)
in t
)

+ |α(2)
in |

√
ω

(2)
in

ω1
sin
(
ω

(2)
in t+ φ

)X ,

(42)
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Supplementary Fig. 4. Population of the dressed qubit as a
function of the flux bias δΦext. The population is computed
as 〈Σ−Σ+〉, with Σ+ =

∑
j>k〈k|σz|j〉|k〉〈j|, and it is almost

negligible in the region around δΦext ' 47 mΦ0, demonstrat-
ing the pure-photonic nature of the effect.

where φ is the relative phase between the two tones, and
we vary the intensity of the second tone at frequency

ω
(2)
in = 2ω

(1)
in . In the second case, as shown in Fig. 4c,d of

the main text, we vary the intensity of the first tone, with
the phase factor inside the first driving term rather than
the second one. Since in the device presented here, the
left port corresponds to the input port, while the right
one is the output port, throughout this article we define
κin ≡ κl and κout ≡ κr (see Supplementary Fig. 1). The
estimation of the number of photons is performed follow-
ing the standard formula of a simple driven-dissipative
harmonic oscillator. Although in the USC regime, this
might slightly change, it provides a simple formula relat-
ing the input power with the mean number of photons
in the resonator and helps for comparison with standard
quantum optics architectures. Thus, the mean number
of photons in the first (second) mode is evaluated as

n̄1 = 4
P 1

inκin

ω1Γ2
1,0

, n̄2 = 4
P 2

inκin

ω2Γ2
3,0

. (43)

Phase sensitivity of parametric amplification
The evolution equation for a linear degenerate parametric
amplifier is (see, e.g., [8])

b = a coshr + eiφa sinhr , (44)

where a and b are the input and output destruction pho-
ton operators at ω, r is a real constant determined by the
strength and duration of the interaction (proportional to
the pump amplitude at 2ω, and φ describes the pump
phase. Assuming a coherent input at ω, a → α with α
real (corresponding to a relative phase between the two
tones φ), in the weak r limit, we obtain

〈b〉 = α(1 + eiφr) (45)

9.4 9.6 9.8 10.0 10.2
�/2� (GHz)

2

4

6

8

10

κ/
κ 0

Supplementary Fig. 5. Rabi splitting visibility as a function
of the qubit losses κq and κq,dep for both internal losses and
pure dephasing. The value of the losses is normalized by the
ones used in this work. As can be seen, aside from a small
attenuation of the intensity, the Rabi splitting remains visible
and distinguishable even at large qubit losses.

and thus

|〈b〉|2 = α2(1 + r cosφ)2 + r2 sin2 φ , (46)

showing an output signal at ω depending on both the
phase and amplitude of the drive at 2ω, in qualitative
agreement with the data shown in Fig. 4a in the main
text.

Dependence of the Rabi splitting on the qubit de-
coherence rate
Here we demonstrate that, despite the non-negligible
qubit decoherence in our device, the visibility of the effect
(e.g., the Rabi splitting in Fig. 2 of the main text) is not
significantly impacted by the qubit decoherence. Indeed,
the qubit is very far detuned from the photonic resonance
frequencies, especially in the region of the avoided-level-
crossing. For this reason, as also shown in Supplementary
Fig. 4, its participation in the dynamics is minimal. Sup-
plementary Fig. 5 shows the photonic Rabi splitting as in
Fig. 2 of the main text, as a function of the qubit losses κq
and κq,dep for both internal losses and pure dephasing.
The value of the losses is normalized by the ones used
throughout the work. As already explained, the qubit
participation is very small, and it does not affect the visi-
bility, aside from a small attenuation. Indeed, we observe
no significant linewidth broadening as the qubit losses in-
crease. This fact is very important, because many qubits
are susceptible to noise. Thus, this shows the robustness
of our setup under nearly all conditions.

Photonic transition matrix elements
Many peculiar behaviors of the circuit-QED system in-
vestigated here can be understood based on a few pho-
tonic transition matrix elements, describing the strength
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Supplementary Fig. 6. Relevant photonic transition matrix
elements between the lowest energy levels of the system as a
function of the flux offset. The matrix elements are calculated
for both the input–output dissipation operator X (bottom
panel) and X (upper panel).
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Supplementary Fig. 7. Energy levels in the region of the one-
two-photon avoided level crossing obtained by diagonalizing
three different Hamiltonians. The case with Hs is the only
one showing the avoided level crossing, proving that both the
counter-rotating terms and the parity symmetry breaking are
needed to achieve this effect.

of transitions between the lowest energy levels of the sys-
tem. We calculated them by direct numerical diagonal-
ization of the Hamiltonian in Eq. (1) of the main text,
after fixing parameters by fitting the experimental spec-
tral lines in Fig. 2 of the main text.

Supplementary Fig. 6 shows the calculated off-diagonal

matrix elements 〈Ej |X |Ek〉 and 〈Ej |X|Ek〉, as a function

of the flux offset, where X = a1 + a†1 + a2 + a†2 and X
as in Supplementary Eq. (22). The eigenstates |Ej〉 of
the Hamiltonian in Eq. (1) of the main text are sorted
in ascending order so that j > k for energy eigenvalues
ω̃j > ω̃k. State |E1〉 ≡ |1̃, 0〉 ' |1, 0, g〉 corresponds to
the dressed one-photon (of mode n = 1) state. The im-
pact of the hybridization of one- and two-photon states
around the avoided-level crossing (δΦext ≈ −47 mΦ0)
is evident. For small absolute values of the flux off-
set |δΦext|, |E2〉 ' |2, 0, g〉, and |E3〉 ' |0, 1, g〉, while
in the opposite limit, after the avoided-level crossing,
(|δΦext| > 80 mΦ0), |E2〉 ' |0, 1, g〉, and |E3〉 ' |2, 0, g〉.
The vertical dashed line indicates the degeneracy con-
dition where SHG occurs. Note that at this flux off-
set (δΦext ∼ −47 mΦ0) |X1,0|2 ∼ 1.2, |X3,1|2 ∼ 1.4,
while |X3,0|2 ∼ 0.8. The one–two-photon strong cou-
pling gives rise to a harmonic three-level ∆ system (|E0〉,
|E1〉, |E3〉), where ω̃3 − ω̃1 = ω̃1 − ω̃0, with all transition
matrix elements comparable and close to the standard
matrix element 〈0|a|1〉 = 1 for one-photon transition in
vacuum. The matrix elements in Supplementary Fig. 6
enter in all the theoretical calculation displayed in this
article and determine the observed nonlinear optical pro-
cesses below the single-photon power level. Note that at
δΦext ∼ −47 mΦ0 state |E3〉 corresponds to the upper
energy state |ψ+〉 in the one–two-photon avoided level
crossing, while |E2〉 ≡ |ψ−〉 to the lower energy state.

Comparison with other Hamiltonians
It is useful to compare our model with other two cases.
The first one without considering the parity symmetry
breaking term, and the second one without including the
counter-rotating terms. First, we express the original
Hamiltonian in Eq. (1) of the main text using the basis
where the qubit Hamiltonian is diagonal:

Hs =
ωq
2
σz +

∑
n=1,2

[
ωna

†
nan

+ gn(a†n + an)(− sin(θ)σx + cos(θ)σz)
]
.

(47)

Now, we can define the Hamiltonian H ′s, obtained by
neglecting the parity-symmetry breaking term in the in-
teraction part:

H ′s =
ωq
2
σz +

∑
n=1,2

[
ωna

†
nan − sin(θ)gn(a†n + an)σx

]
,

(48)
and the Jaynes–Cummings equivalent Hamiltonian

HJC
s =

ωq
2
σz+

∑
n=1,2

[
ωna

†
nan− sin(θ)gn(a†nσ− + anσ+)

]
.

(49)
Supplementary Fig. 7 shows the energy levels of these
three Hamiltonians, proving that both the parity symme-
try breaking and the counter-rotating terms are needed
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to achieve the avoided-level crossing (and thus the strong
coupling between one and two photons).
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