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I. SUPPLEMENTARY NOTES

A. Originality, novelty, and significance of our work

In this section, we highlight the originality, novelty, and significance of our work, and demonstrate the broad applicability and
universality of our approach.

(i) Nonreciprocal quantum synchronization of phonon modes remains unexplored.—Nonreciprocal physics is garnering
enormous attention in both classical and quantum research fields. Surprisingly, previous demonstrations have not explored
nonreciprocal quantum synchronization of phonons, one of the most obvious examples of nonreciprocal quantum resources.
Here we fill this gap to demonstrate the possibility of nonreciprocal quantum synchronization, revealing its counterintuitive
robustness against random fabrication imperfections and thermal noise of practical devices. The study lays the foundation
for generating fragile-to-robust nonreciprocal quantum resources. To our knowledge, we are the first to study nonreciprocal
quantum synchronization via the synergy of the Sagnac and magnon-Kerr effects. While the use of the Sagnac effect to
achieve the nonreciprocity of the optical transmission [S1] and photon blockade [S2] has been studied, its application to
quantum synchronization has not been explored to date. Inspired by the Sagnac-effect-induced nonreciprocity mechanism [S1],
we introduce a fundamentally different nonreciprocity mechanism based on the magnon-Kerr effect and demonstrate the first
realization of nonreciprocal quantum synchronization, revealing its counterintuitive robustness against both random fabrication
imperfections and thermal noise of practical devices.

(ii) Our idea is not a simple synergy of the Sagnac and magnon-Kerr effects, but rather the generation of novel nonreciprocal
quantum phenomena and addressing an outstanding challenge, i.e., quantum synchronization is extremely sensitive to random
fabrication imperfections and thermal noise of practical devices.—Specifically, quantum synchronization of phonon modes is
generally deteriorated or even completely destroyed by thermal noise and random fabrication imperfections. Surprisingly, our
proposal overcomes this obstacle and generates a unique one-way quantum synchronization robust to these detrimental factors,
without the need of using any high-cost, low-loss materials or noise filters at the expense of the system complexity.

(iii) Significance to the field.—(1) We believe our work offers both conceptual and technical advances that are broadly relevant
to the field of cavity opto-magnon-mechanics. The demonstrated ability to achieve nonreciprocal quantum synchronization via
both the Sagnac effect and magnon-Kerr nonlinearity opens a new pathway for an active control of one-way nonequilibrium
quantum dynamics in hybrid quantum platforms. These results are expected to be of interest also to researchers in quantum
phononics, nonlinear quantum dynamics, and quantum information, where robust and tunable quantum synchronization and
its quantum nonreciprocity are highly desirable. (2) Our work presents an innovative approach to reversing the intrinsically
detrimental effects of practical devices, and paves a general route to pioneering nonreciprocal quantum resources, with
robustness against both random fabrication imperfections and thermal noise of practical devices. (3) Our study exhibits
broad applicability and universality. Beyond nonreciprocal quantum synchronization, our approach applies broadly to one-way
quantum phenomena, including nonreciprocal entanglement and nonreciprocal topological phonon transfer.

(iv) Comparison with Existing Literatures.—Prior studies have investigated quantum synchronization in optomechanical
systems [S3] nonreciprocal transport of information or photons using the Sagnac effect [S1, S2], and magnon-Kerr nonlinearity
in YIG-based systems [S4]. However, our work brings together these ingredients in a previously unexplored regime: (1) The sign
and strength of the magnon-Kerr nonlinearity are tuned in situ via the external magnetic field, allowing dynamical control over the
coupling landscape. (2) Nonreciprocal quantum synchronization is modulated by optical driving directions or external magnetic
field directions, enabled by the Sagnac effect in a spinning microsphere or the magnon-Kerr effect in a YIG sphere, respectively.
(3) Quantum synchronization becomes effectively nonreciprocal, without requiring additional gain or engineered reservoirs.
To our knowledge, no previous study has demonstrated this level of nonreciprocal control over quantum synchronization and
unidirectional phononic coupling via combined photonic, phononic, and magnonic pathways. We are neither aware of any
prior established demonstration that reports this combination of these mechanisms, nor one that realizes tunable nonreciprocal
quantum synchronization in this manner.

(v) In a broader view, our study presents an innovative approach to reversing the intrinsically detrimental effects of practical
devices.—It paves a general route to pioneering nonreciprocal quantum resources, with robustness against both random
fabrication imperfections and thermal noise of practical devices.

(vi) Our approach has a broad applicability and universality.—Our framework is not limited to a specific unidirectional
quantum effect such as nonreciprocal quantum synchronization, but extends to a broader class of one-way quantum phenomena,
including nonreciprocal quantum entanglement and unidirectional topological phonon transfer. For example: (1) our framework
naturally extends to nonreciprocal quantum entanglement between two phonon modes, and (2) it can be generalized to explore
nonreciprocal topological phononics and photonics, as described in Fig. 3(g) of the main text.
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Symbols Physical quantities Simulation parameters [S2, S3,
S6]

Experimental
parameters [S1, S4,
S5, S7]

c Vacuum light speed 3 × 108 m/s 3 × 108 m/s

λ Laser wavelength 1550 nm 1550 nm

γ Gyromagnetic ratio 2π × 2.8 MHz/Oe 2π × 2.8 MHz/Oe

H Bias magnetic field of the YIG sphere Above its saturation magnetization
(H > 1750 Oe)

Above its saturation mag-
netization (H > 1750 Oe)

ω1/2π Resonance frequency of the first resonator 10 MHz 15.25 MHz

ω2/2π Resonance frequency the second resonator 10.05 MHz 15.367 MHz

∆a/ω1 Optical detuning −1.005 ±1.008

∆m/ω1 Magnonic detuning −1 ±1

K/ω1 Magnon-Kerr coefficient −5 × 10−5 to 5 × 10−5 0

κa/ω1 Optical decay rate 0.15 0.66

κm/ω1 Magnon decay rate 0.2 0.066

γ j/ω1 Mechanical damping rates 0.005 0.0003 (0.0004)

m j, m0 Effective masses of resonators 100 ng 100 (50) ng

n̄ j Bath mean phonon numbers 0 to 104 Not shown

Na Mean photon number Na = ⟨a†a⟩ Na = ⟨a†a⟩

Nm Mean magnon number Nm = ⟨m†m⟩ Nm = ⟨m†m⟩

Ga/ω1=ga
√

Na/ω1 Effective photon-phonon coupling strength 0 ∼ 0.2 0 ∼ 0.1

Gm/ω1=gm
√

Nm/ω1 Effective magnon-phonon coupling strength 0 ∼ 0.2 0 ∼ 0.1

χ/ω1 Phonon-phonon coupling rate 0.02 0.0003

ξa(m)/ω1 Driving intensity 35 Not shown

Ω Spinning angular velocity 0 to 10 kHz 0

ε0( j=1,2) Dielectric constants of air (taper, silica sphere) 1 (3.9) 1 (3.9)

ζ Refractive indexes of silica sphere 1.486 1.486

r Silica microsphere radii 1.1 mm 0.2 mm

r0 YIG microsphere radii 0.5 mm 0.2 mm

E Young modulus of silica 75 GPa 75 GPa

Υ Elastic limit of silica 9 GPa 9 GPa

TABLE I: Parameters of the hybrid quantum devices set in our simulations [S2, S3, S6] and in reported experiments [S1, S4, S5, S7]. Columns
1 and 2 present the parameter symbols and their physical meanings, respectively. The parameters in columns 3 and 4 are used in our numerical
simulations [S2, S3, S6] and the state-of-the-art experiments [S1, S4, S5, S7], respectively. The close agreement between experimentally
reported parameters and those used in our simulations demonstrates the experimental feasibility of the proposed phenomena, highlighting their
relevance to current state-of-the-art platforms.

B. System parameters

A comprehensive overview of the symbols and system parameters employed in this study is provided in Tab. I. All system
parameters used in our numerical simulations have been explicitly provided, closely consistent with those values reported in
previous studies [S1–S7]. Note that we set ω1 = 2π × 10 MHz as a reference unit of frequency, and all physical parameters
used in the simulations are listed. Although what we have proposed a purely theoretical scheme, our approach is completely
experimentally feasible, using the state-of-the-art experimental conditions (see Tab. I). It demonstrates the consistency between
the parameters used in our numerical simulations [S2, S3, S6] and those reported in realistic experiments [S1, S4, S5, S7],
indicating that the proposed phenomena are experimentally accessible with current state-of-the-art platforms. Moreover, all
claims made in the manuscript are directly supported by our analytical derivations and numerical simulations based on a set of
coupled quantum Langevin equations, which capture the essential physics of the hybrid photon-phonon-magnon system. Each of
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the central results arises naturally from the hybrid quantum opto-magnon-mechanical model and has been systematically tested
across a broad and experimentally realistic (state-of-the-art) parameter spaces, as shown in Tab. I. Our results reveal that the
effectiveness of the scheme extends well beyond the previous parameter choices [S3], demonstrating robust performance over a
wide range of parameter space. The system parameters, boundary conditions, and dynamical regimes are clearly stated, and the
outcomes are consistent with the underlying physical mechanisms.

Note that in fact, the values of the quantum synchronization parameters are not constrained to strictly follow those in
Ref. [S3], but remain highly effective over a wide range of parameter settings. To demonstrate this, we have plotted the
quantum synchronization measure versus each system parameters when the magnon-Kerr strength is absence and presence.
Our results reveal that the effectiveness of the scheme extends well beyond the parameter choices in Ref. [S3], demonstrating
robust performance across a broad range of parameter regimes.

II. SUPPLEMENTARY METHODS

A. Quantum Langevin equations and quantum synchronization measure

In this section, we derive the quantum Langevin equations of a hybrid quantum system, which consists of a silica microsphere
coupled to a YIG microsphere. We find their solutions, demonstrate the magnon-Kerr-nonlinearity-induced transition between
the redshift and blueshift, and show the measure of quantum synchronization.

1. Physical model and its Hamiltonian

We focus on a hybrid quantum platform consisting of a silica microsphere (i.e., optomechanical cavity) in combination with
a YIG microsphere (i.e., magnomechanical cavity), coherently coupled to each other via a direct physical contact. Note that
the described system has already been implemented with state-of-the-art technology to enable new architectures for coherent
coupling between magnons, phonons, and photons [S5]. The vibration of the silica (YIG) microsphere is explored by the
radiation-pressure (magnetostrictive) force through the circulating-optical fields (microwave-driven magnons). Specifically, a
uniform magnon mode is supported by a YIG microsphere using an external magnetic field H, and the magnetostrictive force,
exciting phonons in the YIG microsphere by a microwave, leads to the coupling of the magnon mode to the vibrational mode.
In the silica microsphere, a phonon mode is coupled to an optical mode via the radiation-pressure and photoelastic effects;
meanwhile, imposing the direct physical contact of the two microspheres engenders a direct coupling between two localized
vibrational modes. This hybrid quantum platform is established to exploit tunable interactions between phonons, photons, and
magnons, enabling a wide range of promising applications, such as none-way quantum mechanical effects of opto- and magno-
phonon motions. Then, the Hamiltonian of the physical system reads (with ℏ = 1):

H =
∑

o=a,m

ωoo†o +
∑
j=1,2

ω jb
†

jb j − gmm†m(b†1 + b1) − gaa†a(b†2 + b2) − χ(b†1b2 + b†2b1)

+K(m†m)2 + i
(
ξaa†e−iωd,at − ξ∗aaeiωd,at

)
+ i

(
ξmm†e−iωd,mt − ξ∗mmeiωd,mt

)
, (S1)

where a† (a), m† (m), and b†j (b j) denote the creation (annihilation) operators of the photon, magnon, and phonon modes
supported in silica and YIG microspheres, with the resonance frequencies of ωa, ωm, and ω j, respectively. The ga and gm
terms are, respectively, the photon- and magnon-phonon interactions. The phonon-phonon coupling with strength χ arises from
direct physical contact between a spinning silica microsphere and a counter-spinning YIG sphere, with both maintaining a
constant rotational angular velocity Ω throughout the process. The K term describes the magnon-Kerr nonlinearity [S4], which
is introduced to generate nonreciprocity. The term ξm is the driving field of the microwave with frequency ωd,m, and the term ξa
is the driving field of the optical mode a with frequency ωd,a.

2. Quantum Langevin equations and their solutions

In a realistic experiment [S5], the proposed hybrid quantum platform comprises a YIG sphere (serving as a magnomechanical
cavity) and a silica microsphere (serving as an optomechanical cavity), both of which are coherently coupled to each other
via direct physical contact. In the silica microsphere, the phonon mode is driven by the radiation-pressure interaction from
circulating optical fields; whereas in the YIG sphere, it is excited via magnetostrictive forces mediated by microwave-driven
magnons. Specifically, a uniform magnon mode, supported by the YIG sphere under an external magnetic field, couples to a
phonon mode via magnetostrictive interaction [S7, S8], enabling microwave excitation of phonons in the YIG sphere. In the silica
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microsphere supporting a radiation-pressure-induced mechanical radial breathing mode, the optical mode and the mechanical
radial mode are intrinsically coupled through radiation pressure and the photoelastic effect [S9–S11], forming a canonical
optomechanical interaction. Meanwhile, the direct physical contact between the silica and YIG microspheres establishes an
effective mechanical coupling of their localized phonon modes. In the YIG sphere, microwave driving of the magnon mode
excites the phonon mode via the magnomechanical effect [S12]. Bringing the silica microsphere into direct contact with the YIG
sphere establishes a mechanical coupling between their spatially separated phonon modes. Simultaneously, radiation-pressure-
induced optomechanical coupling in the silica cavity plays a key role in the hybrid quantum dynamics. The process involves
a synergistic interplay of optomechanics, magnomechanics, phonon interference, and quantum mechanical effects [S13, S14],
wherein microwave and optical signals are coherently mapped onto two nearly degenerate mechanical modes, enabling their
interference [S15, S16].

In a rotating frame, defined by the unitary transformation operator exp[−i(ωd,aa†a+ωd,mm†m)t], the Hamiltonian of the hybrid
system becomes

HI = ∆aa†a + ∆mm†m + ω1b†1b1 + ω2b†2b2 − gmm†m(b†1 + b1) − gaa†a(b†2 + b2) − χ(b†1b2 + b†2b1)

+K(m†m)2 + i(ξaa† − ξ∗aa) + i(ξmm† − ξ∗mm), (S2)

where the parameter ∆o=a,m = ωo − ωd,o is the driving detuning between the cavity mode frequency ωa or the magnetic mode
frequency ωm and the corresponding driving frequency ωd,o for o = a,m.

By phenologically adding the dissipation and noise terms into the Heisenberg equations, the quantum Langevin equations of
this hybrid system can be obtained as:

ȧ = − i∆aa + igaa(b2 + b†2) − κaa + ξa +
√

2κaain, (S3a)

ṁ = − i∆mm − i2Km†mm + igmm(b1 + b†1) − κmm + ξm +
√

2κmmin, (S3b)

ḃ1 = − iω1b1 + igmm†m + iχb2 − γ1b1 +
√

2γ1b1,in, (S3c)

ḃ2 = − iω2b2 + igaa†a + iχb1 − γ2b2 +
√

2γ2b2,in, (S3d)

where κo=a,m and γ j=1,2 are the decay rates of the optical/magnon mode and the jth phonon modes, respectively. In addition, the
operators oin and b j,in are, respectively, the zero-mean input noise operators for the optical/magnon mode and the jth motional
mode, characterized by the following correlation functions:

⟨aina†in⟩ = δ(t − t
′

), ⟨a†inain⟩ = 0, (S4a)

⟨minm†in⟩ = δ(t − t
′

), ⟨m†inmin⟩ = 0, (S4b)

⟨b1,inb†1,in⟩ = (n̄1 + 1)δ(t − t
′

), ⟨b†1,inb1,in⟩ = n̄1δ(t − t
′

), (S4c)

⟨b2,inb†2,in⟩ = (n̄2 + 1)δ(t − t
′

), ⟨b†2,inb2,in⟩ = n̄2δ(t − t
′

), (S4d)

where the parameter n̄ j=1,2 =
{
exp[ℏω j/(kBT j)] − 1

}−1
denotes the average thermal phonon numbers associated with the heat

bath of the jth vibrational mode, with kB being the Boltzmann constant and T j being the bath temperature of the jth motional
mode. By considering the strong-driving regime of the hybrid quantum system, we can easily simplify the proposed physical
model. Specifically, we express the operators in Eqs. (S8) as sums of their classical means and quantum fluctuations, i.e.,

a = ⟨a⟩ + δa, a† = ⟨a†⟩ + δa†, (S5a)

m = ⟨m⟩ + δm, m† = ⟨m†⟩ + δm†, (S5b)

b j = ⟨b j⟩ + δb j, b†j = ⟨b
†

j⟩ + δb
†

j . (S5c)

In the following we denote:

⟨a⟩ = α, ⟨a†⟩ = α∗, (S6a)

⟨m⟩ = µ, ⟨m†⟩ = µ∗, (S6b)

⟨b j⟩ = β j, ⟨b
†

j⟩ = β
∗
j . (S6c)

By separating the classical motion and quantum fluctuations, the equations of motion for the classical-motion variables can be
obtained as:

α̇ = − i∆aα + igaα(β∗2 + β2) − κaα + ξa, (S7a)
µ̇ = − i∆mµ − i2Kµ∗µµ + igmµ(β∗1 + β1) − κmµ + ξm, (S7b)

β̇1 = − iω1β1 + igmµ
∗µ + iχβ2 − γ1β1, (S7c)

β̇2 = − iω2β2 + igaα
∗α + iχβ1 − γ2β2, (S7d)
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where 2Kµ∗µ is the shift of the detuning, resulted from the self-Kerr effect of the magnon mode. After safely separating the
classical motions, the Langevin equations of motion for quantum fluctuations can be rewritten as:

δȧ = − i∆′aδa + igaα(δb2 + δb
†

2) − κaδa +
√

2κaain, (S8a)

δṁ = − i∆′mδm − i2Kµµδm† + igmµ(δb1 + δb
†

1) − κmδm +
√

2κmmin, (S8b)

δḃ1 = − iω1δb1 + igmµ
∗δm + igmµδm† + iχδb2 − γ1δb1 +

√
2γ1b1,in, (S8c)

δḃ2 = − iω2δb2 + igcα
∗δa + igcαδa† + iχδb1 − γ2δb2 +

√
2γ2b2,in, (S8d)

where

∆′a = ∆a − ga(β∗2 + β2) = ∆a − 2gaRe[β2], (S9a)
∆′m = ∆m − gm(β∗1 + β1) + 4Kµ∗µ = ∆m − 2gmRe[β1] + 4Kµ∗µ, (S9b)

are the normalized detunings of the cavity-field and magnon modes, respectively. In the above equations, we can rewrite µ and
α as µ = Re[µ]+ iIm[µ] and α = Re[α]+ iIm[α], respectively. By defining the photon, magnon, and phonon quadratures and the
corresponding Hermitian input noise operators as:

Xo = (δo† + δo)/
√

2, Yo = i(δo† − δo)/
√

2, (S10a)

Xin
o = (δo†in + δoin)/

√
2, Y in

o = i(δo†in − δoin)/
√

2, (S10b)

for the operators o = a, m, b1, b2. The Langevin equations of motion for quantum fluctuations can be reexpressed as a compact
form:

u̇(t) = Au(t) + N(t), (S11)

where we introduce the fluctuation operator vector

u(t) = [Xa,Ya, Xm,Ym, Xb1 ,Yb1 , Xb2 ,Yb2 ]T , (S12)

the noise operator vector

N(t) =
√

2[
√
κaXin

a ,
√
κaY in

a ,
√
κmXin

m ,
√
κmY in

m ,
√
γ1Xin

b1
,
√
γ1Y in

b1
,
√
γ2Xin

b2
,
√
γ2Y in

b2
]T , (S13)

and the coefficient matrix

A =



−κa ∆′a 0 0 0 0 −2gaIm[α] 0
−∆′a −κa 0 0 0 0 2gaRe[α] 0

0 0 −(κm − 4KRe[µ]Im[µ]) ∆′m − 2K(Re[µ]2 − Im[µ]2) −2gmIm[µ] 0 0 0
0 0 −(∆′m + 2K(Re[µ]2 − Im[µ]2)) −(κm + 4KRe[µ]Im[µ]) 2gmRe[µ] 0 0 0
0 0 0 0 −γ1 ω1 0 −χ
0 0 2gmRe[µ] 2gmIm[µ] −ω1 −γ1 χ 0
0 0 0 0 0 −χ −γ2 ω2

2gaRe[α] 2gaIm[α] 0 0 χ 0 −ω2 −γ2


.

(S14)

A formal solution of the Langevin equation (S11) is given by

u(t) =M(t)u(0) +
∫ t

0
M(t − s)N(s)ds, (S15)

where M(t) = exp(At). Note that the parameters chosen for all our numerical simulations satisfy the stability conditions derived
from the Routh-Hurwitz criterion. Namely, the real parts of all the eigenvalues of A are negative.

For studying the quantum synchronization between the opto- and magnon-mechanical vibrations, we calculate the covariance
matrix V, which is defined by the matrix elements

Vk,l(t) =
1
2

[⟨uk(t)ul(t)⟩ + ⟨ul(t)uk(t)⟩], (S16)

for k, l = 1-8. Under the stability condition, the covariance matrix V(t) fulfills the Lyapunov equation,

V̇(t) = AV + VAT +Q, (S17)
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where we introduce the matrix

Q =
1
2

(C + CT ), (S18)

with C being the noise correlation matrix, which can be defined through the matrix elements,

⟨Nk(s)Nl(s′)⟩ = Ck,lδ(s − s′). (S19)

In terms of Eqs. (S13), (S18), and (S19), the expression of the matrix Q can be obtained as

Q = diag{κa, κa, (2n̄m + 1)κm, (2n̄m + 1)κm, (2n̄1 + 1)γ1, (2n̄1 + 1)γ1, (2n̄2 + 1)γ2, (2n̄2 + 1)γ2}. (S20)

Based on Eqs. (S14), (S16), (S17), and (S20), we can obtain the covariance matrix V. Then, the quantum synchronization of the
opto- and magnon-mechanical vibrations can be achieved.

3. Quantum synchronization measure

In purely classical contexts, synchronization is primarily explored within autonomous nonlinear systems experiencing limit
cycles or chaotic dynamics. Complete synchronization occurs when two subsystems initially in independent configurations attain
identical trajectories due to mutual interactions. For two continuous-variable (CV) classical systems described by dimensionless
canonical variables Ob j (t) (O ∈ {X,Y}) representing the evolution of two subsystems in phase space, a complete synchronization
is attained when the quantities

O−(t) :=
[
Ob1 (t) − Ob2 (t)

]
/
√

2 (S21)

approach zero asymptotically for sufficiently large times [S3]. Extending the aforementioned concepts to quantum mechanical
systems poses challenges, as fundamental limits may exist that hinder the exact fulfillment of the conditions described above.
Specifically, by defining dimensionless quantities Ob j (t) as the quadrature operators satisfying the canonical commutation
rules [S17, S18]

[Xb j (t),Yb j′ (t)] = iδ j j′ , (S22)

the relative coordinates O−(t) can represent the generalized position and momentum operators for the same (antisymmetric)
mode. Consequently, the uncertainty principle precludes satisfying the precise condition necessary for a complete classical
synchronization. To quantify this, we designate O−(t) as synchronization errors and introduce the following metric:

SC(t) :=
〈∑

O

O−(t)2
〉−1
, for O = X,Y, (S23)

quantifying the extent of complete synchronization achieved by the system, where ⟨· · · ⟩ denotes the expectation value taken with
respect to the density matrix of quantum systems. Then, we obtain the Heisenberg principle requiring

⟨X−(t)2⟩⟨Y−(t)2⟩ ⩾ 1/4, (S24)

and therefore

SC(t) ⩽
[
⟨X−(t)2⟩⟨Y−(t)2⟩

]−1/2
/2 ⩽ 1, (S25)

establishing a universal limit on the complete synchronization achievable between two CV systems. Conversely, in a purely
classical framework, SC(t) is theoretically unbounded [S3]. A small value of SC(t) arises from two sources: (i) non-zero mean
values of O−(t), and/or (ii) significant variances in these operators. The former scenario can be seen as a classical systematic
error [S3]; whereas the latter stems from the effects of thermal and quantum noise. We can readily eliminate classical systematic
errors from the synchronization measurement in Eq. (S23) just following a change of variables [S3]:

O−(t)→ δO−(t) = O−(t) − ⟨O−(t)⟩. (S26)

This gives rise to quantum synchronization measure of phonons:

SQ(t) :=
〈∑

O

δO−(t)2
〉−1
, for O = X,Y, (S27)
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for studying purely quantum mechanical effects. Note that the quantum synchronization happens when

SQ > 0, (S28)

but not when

SQ = 0. (S29)

Especially, an excellent quantum synchronization is implemented when

SQ = 1. (S30)

Note that synchronization is classified into classical and quantum synchronization, which are, respectively, inherently robust and
fragile to dephasing effects originating from thermal noise and random fabrication imperfections. Our work here is focused
only on quantum synchronization but not the classical one. In our simulations, to ensure the system stability, we choose
experimentally feasible parameters, as given in Tab. I.

In this work, our intention is to provide a concise and self-contained summary of the quantum synchronization parameter as
introduced in Ref. [S3], which is foundational to our subsequent analysis. We focus on the coupled continuous-variable quantum
systems based on cavity opto-magno-mechanics. Currently, in cavity optomechanics, the diagnostic SQ [S3] is generally used to
describe the measure of quantum synchronization in continuous-variable systems. While some concerns regarding the quantum
synchronization measurement, it is undeniable that this method remains the most widely recognized and commonly used in cavity
opto-magno-mechanical continuous-variable systems. This measurement method develops a consistent and quantitative theory
of synchronization for continuous variable systems evolving in the quantum regime. Specifically, the quantum-synchronization
measure SQ of continuous variable systems has been introduced by extrapolating it from notions of complete synchronization
that is introduced for classical models. Note that our method on the quantum-synchronization measure SQ in continuous-variable
systems is based on this well-known work [S3], which introduces and characterizes the measure quantifying the level of quantum
synchronization of coupled continuous variable systems. This measure enables the extension of synchronization concepts into
the quantum domain, and the Heisenberg principle sets a universal limitation to complete synchronization.

In particular, we here need to highlight the methodological soundness and the high standards maintained throughout this
work. Our theoretical framework is based on a set of quantum Langevin equations that capture the coupled dynamics of
optical, mechanical, and magnonic modes in the presence of both intrinsic dissipation and external driving. This approach
is well established in the studies of cavity optomechanics and cavity optomagnonics, and has been carefully adapted here to
combine the key features of our hybrid platform, including the magnon-Kerr nonlinearity, the optical Sagnac effect, and the
direct phonon-phonon contact coupling. We have verified the validity of our methodology by performing extensive numerical
simulations across a wide range of state-of-the-art realistic experimental parameters (see Tab. I), ensuring that our main effects
are not artifacts of fine-tuning. Furthermore, the quantum synchronization dynamics are quantified using a continuous-variable
measure consistent with the prior literature [S3], and the emergence of purely quantum nonreciprocity is traced analytically
to the combination of the Sagnac effect and magnon-Kerr nonlinearity. We believe that the methodology not only meets but
also extends current standards in the field of synchronization, by providing a unified framework to study hybrid, nonlinear, and
unidirectional quantum phenomena in a tunable opto-magno-mechanical system.

B. Nonreciprocity enabled by the synergy of the Sagnac and magnon-Kerr effects

In this section, we elucidate the physical mechanisms underlying the purely quantum nonreciprocity induced by the Sagnac
and magnon-Kerr effects.

1. Sign of the magnon-Kerr coefficient

We mainly focus on studying the spatially uniform mode (i.e., the Kittel mode) of the ferromagnetic spin waves in a small
Yttrium iron garnet (YIG) sphere. This YIG sphere, driven by a microwave field, is strongly coupled to an optomechanical
cavity.

Specifically, we are interested in the spatially uniform modes, which are embodied by a large number of spins in a small-sized
YIG sphere, commonly known as the Kittel mode. When including the magnetocrystalline anisotropic energy and the Zeeman
energy, the Hamiltonian of a uniformly magnetized YIG sphere can be written as

Hm = −

∫
Vm

M · B0dτ −
µ0

2

∫
Vm

M ·Handτ. (S31)
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where Vm is the volume of the YIG sphere, B0 depicts the applied static magnetic field, µ0 denotes the vacuum permeability, and
Han is the anisotropic field due to the magnetocrystalline anisotropy in the YIG crystal. In addition, the magnetization of the
YIG sphere is given by:

M = (Mx,My,Mz) (S32)

We can see from Eq. (S31) that the demagnetizing field leads to the demagnetization energy of the YIG sphere, and it can be
omitted owing to the fact that it is a constant term.

(i) The static magnetic field is applied in the z direction, i.e., B0 = B0ez. When the crystallographic axis [100] of the YIG
sphere is aligned along this static magnetic field, the resulting anisotropic field can be expressed as follows:

Han = −
2KanMz

M2 ez, (S33)

where the parameter M is the saturation magnetization and the parameter and Kan denotes the dominant first-order anisotropy
constant. By bringing Eq. (S33) into Eq. (S31), the Hamiltonian of the YIG sphere obeys the following form:

Hm = −

∫
Vm

M · B0ezdτ +
µ0

2

∫
Vm

M ·
2KanMz

M2 ezdτ

= − MzB0Vm +
µ0KanM2

z Vm

M2

= − γB0S z +
µ0γ

2KanS 2
z

M2Vm
, (S34)

Note that in Eq. (S34) we have used the relation:

S = (S x, S y, S z) =MVm/γ, (S35)

where the parameters S and γ are the macrospin operator and the gyromagnetic ratio of the YIG sphere, respectively. In order
to obtain the intrinsic frequency of the magnetic mode as well as the magnetic self-kerr coefficient, it is necessary to use the
Holstein-Primakoff transformation:

S z = S − m†m, (S36)

where the parameter S is the total number of spins of the YIG sphere, so that the Hamiltonian of the YIG sphere can be easily
transformed into

Hm = − γB0S z +
µ0γ

2KanS 2
z

M2Vm

= − γB0

(
S − m†m

)
+
µ0γ

2Kan

(
S − m†m

)2

M2Vm

=

(
γB0 −

2µ0γ
2KanS

M2Vm

)
m†m +

µ0γ
2Kan

M2Vm
m†mm†m +

µ0γ
2KanS 2

M2Vm
− γB0S

= ωmm†m + Km†mm†m + .... (S37)

From Eq. (S37), we show an effective frequency of the magnon mode

ωm = γB0 −
2µ0γ

2KanS
M2Vm

, (S38)

which can be obtained by the comparison, and an effective magnetic self-Kerr coefficient is positive, derived as

K =
µ0γ

2Kan

M2Vm
> 0. (S39)

(ii) Now, we consider the case where the crystallographic axis [110] of the YIG sphere is aligned along the static magnetic
field, the anisotropic field can be obtained as:

Han = −
3KanMx

M2 ex −
9KanMy

4M2 ey −
KanMz

M2 ez. (S40)
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By inserting Eq. (S40) into Eq. (S31), we can write the Hamiltonian Hm as:

Hm = −

∫
Vm

M · B0ezdτ +
µ0

2

∫
Vm

M ·
(

3KanMx

M2 ex +
9KanMy

4M2 ey +
KanMz

M2 ez

)
dτ

= − MzB0Vm +
3µ0KanM2

xVm

2M2 +
9µ0KanM2

y Vm

8M2 +
µ0KanM2

z Vm

2M2

= − γB0S z +
3µ0γ

2KanS 2
x

2M2Vm
+

9µ0γ
2KanS 2

y

8M2Vm
+
µ0γ

2KanS 2
z

2M2Vm
. (S41)

In Eq. (S41), we have used the relations:

Mo =
S oγ

Vm
, for o = z, x, y, (S42)

which is likewise used for the substitution of the parameters Mz (Mx, My) of Eq. (S41).
In order to obtain the magnetic mode frequency and the magnetic Kerr coefficient for the case, where the static magnetic field

direction is the same as the direction of the crystallographic axis [1,1,0] of the YIG sphere, the Holstein-Primakoff transformation
should also be applied into Eq. (S41). For the Hamiltonian shown in Eq. (S41), in addition to the relation S z = S − m†m, we
need to use the Holstein-Primakoff transformations for the parameters S ±, which are defined as:

S + =
√

2S − m†mm, S − = m†
√

2S − m†m, (S43)

where

S + = S x + iS y, S − = S x − iS y (S44)

are the raising and lowering macrospin operators, respectively.
In our work, the drive field leads to a considerable magnons, and the condition

S ≫
〈
m†m

〉
(S45)

is still satisfied owing to the fact that S is a huge number. Therefore, by approximating S ± up to first order, it is fully reasonable
for the following approximation:

S + ≈
√

2S
[
1 −

m†m
4S

]
m, S − ≈ m†

√
2S

[
1 −

m†m
4S

]
. (S46)

Since the expressions for S x and S y are derived from Eq. (S46), we insert S x, S y, and S z into the Hamiltonian in Eq. (S41), and
then using the rotating-wave approximation (RWA), the fast oscillating terms can be safely neglected. Thus, the Hamiltonian of
the YIG sphere can be converted to

Hm = − γB0S z +
3µ0γ

2KanS 2
x

2M2Vm
+

9µ0γ
2KanS 2

y

8M2Vm
+
µ0γ

2KanS 2
z

2M2Vm

=

(
γB0 +

13µ0γ
2KanS

8M2Vm

)
m†m −

13µ0γ
2Kan

16M2Vm
m†mm†m

= ωmm†m + Km†mm†m + .... (S47)

Based on Eq. (S47), the effective frequency of the magnetic mode is shown as:

ωm = γB0 +
13µ0γ

2KanS
8M2Vm

, (S48)

and the effective self-Kerr coefficient of the magnetic mode is negative, as

K = −
13µ0γ

2Kan

16M2Vm
< 0, (S49)

According to the above discussion, we know that if the injecting direction of the magnetic field coincides with the [110] or [100]
direction of the crystallographic axis of the YIG sphere, the magnetic self-Kerr coefficient is negative or positive, respectively.
One can tune the system to these two situations by controlling the relative direction between the static magnetic field and the
crystallization axis of the YIG sphere, thus realizing the non-reciprocity of the system.
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FIG. S1: For different input directions (LD and RD) of the driving laser, the quantum synchronization measure SQ versus the optical detuning
∆a, when the Sagnac-effect is: (a) turned off (nonspinning, i.e., Ω = 0) and (b) turned on (spinning, i.e., Ω , 0) assuming ∆m/ω1 = −1.
Reciprocal quantum synchronization occurs due to its independence from the injection direction of the driving laser. In contrast, nonreciprocal
quantum synchronization, which is observed in the range 1.2 < ∆a/ω1 < −0.8, arises from the system’s dependence on the input directions.
Here we consider the case without the magnon–Kerr nonlinearity, i.e., K = 0.

2. Magnon-Kerr-nonlinearity induced transition

The magnon-Kerr effect refers to a nonlinear frequency shift of magnon modes induced by magnon-magnon interactions in
a magnetically ordered material [S4]. This self-phase modulation leads to intensity-dependent magnon dynamics, analogous to
the optical-Kerr effect, enabling tunable nonlinearity in hybrid quantum systems. Arising from magnetocrystalline anisotropy,
this nonlinear interaction enables tunable magnon dynamics and facilitates nonperturbative phenomena such as bistability and
nonreciprocal signal propagation. To explain how the Kerr-nonlinearity induced transition causes quantum nonreciprocity, we
consider the relativistic addition of magnon frequencies into account when the magnetic field is entering from either the CD
or OD wrt the crystallographic axes [110] or [100] of a YIG sphere, respectively. In light of these considerations, the magnon
frequencies are different, owing to the magnetocrystalline anisotropy in the YIG sphere, thus, we predict a Kerr-nonlinearity-
induced transition between the redshift and blueshift in frequency [S4], i.e.,

ωm → ωm + 4KNm, (S50)

where Nm = |µ|
2 is the average magnon numbers. Evidently, the redshift and blueshift are experienced by the magnon detuning:

∆′m = ∆m − 2gmRe[β1] + 4K|µ|2,
= ∆m − 2gmRe[⟨b1⟩] + 4KNm, (S51)

with ∆m and β1 = ⟨b1⟩ denoting the magnon detuning without the Kerr nonlinearity and the classical part of b1, respectively.
The relativistic origin of the Kerr-nonlinearity-induced transition is characterized by the 4KNm term. Physically, the resulting
negative and positive values of K are, respectively, induced by aligning the externally applied magnetic field parallel to the CD
and OD of the crystallographic axes of the YIG sphere.

3. Sagnac-Fizeau shift

The Sagnac effect arises in rotating reference frames [S1], where counterpropagating waves traveling along a closed loop
accumulate a relative phase shift proportional to the rotation rate. This relativistic interference phenomenon underpins
modern gyroscopes and enables directional sensitivity in photonic and phononic systems. Inspired by the Sagnac-effect-
induced nonreciprocity mechanism [S1, S2, S19], we propose the synergy of the Sagnac and magnon-Kerr effects to achieve
nonreciprocal quantum synchronization.
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Our original motivation is to open a new avenue for generating quantum nonreciprocity and to solve a long-standing challenge,
where quantum synchronization is extremely fragile to random fabrication imperfections and thermal noise. We are the first
to propose a magnon-Kerr-effect induced nonreciprocity mechanism, analogous to the Sagnac-effect-induced nonreciprocal
mechanism [S1, S2, S19], to achieve our goal while simultaneously addressing these detriments. We show a detailed study
on nonreciprocal quantum synchronization via the synergy of the Sagnac and magnon-Kerr effects, when the system operates
in the activation regime of the self-adjustment process. (i) We reveal that the direction of an externally applied magnetic
field on the magnon mode determines its Kerr nonlinearity (the magnon-Kerr effect), which offers an exciting opportunity
of not only synchronizing two phonon modes but also shielding the resulted quantum synchronization against both random
fabrication imperfections and thermal noise. (ii) We show that the Sagnac and magnon-Kerr effects are employed for generating
nonreciprocal quantum synchronization, respectively. (iii) Unlike previous proposals naturally restricted to small-mass and/or
low-dissipation regimes, our approach completely beats these limitations and achieves both noise-robust and imperfect-robust
quantum resource.

Below, we show in detail how to achieve nonreciprocal quantum synchronization by employing the Sagnac effect.
The clockwise-spinning silica microsphere is driven by a laser from the left direction (LD) or right direction (RD) of the fibre,

yielding a counterclockwise or clockwise optical mode, respectively. To explore how the Fizeau drag of light causes chirality,
the relativistic addition of velocities is taken into account when the periphery of the spinning sphere is moving away/towards
from the output/input ports. In light of these considerations, optical paths of counterpropagating light beams are different
attributed to the rotation, leading to the irreversible refractive indices for a clockwise or an anti-clockwise optical mode, ζ →
ζ
[
1 ±Ωζr(ζ−2 − 1)/c

]
, where the parameters ζ, Ω, r, and c are the refractive indices of materials, the spinning angular velocity

of the microsphere, the sphere radius, and the light speed in vacuum, respectively. Correspondingly, an opposite Sagnac-Fizeau
shift is experienced by the resonance frequency of the counterpropagating light mode [S1]:

ωa → ωa + σa, (S52)

where σa = ±ΩΛ with Λ = ζrωc[1−1/ζ2 − (λ/ζ)(dζ/dλ)]/c for the non-spinning optical frequency ωa and the light wavelength
λ. The relativistic origin of the Sagnac effect is characterized by the dispersion term dζ/dλ [S1]. By clockwise spinning the
microsphere, the resulting σa < 0 (σa > 0) corresponds to the case where the driving laser is injected from the RD (LD) of
the fiber. A Sagnac-Fizeau shift σa happens with the increase of the angular velocity Ω. Specifically, increasing the angular
velocity Ω results in a linear opposite frequency shift for the counter-propagating light modes. For the same input light, due to
the opposite frequency shift for the counterpropagating light modes, quantum synchronization can appear unidirectionally.

In Figs. S1(a) and S1(b), we plot the quantum-synchronization measure SQ versus the optical detuning ∆a when the system
operates in the non-spinning (Ω = 0) and spinning (Ω , 0) cases. For the non-spinning (i.e., Sagnac-effect-off) case, SQ
is independent on the driving-laser direction [see Fig. S1(a)]; while for the spinning case (i.e., Sagnac-effect-on), it becomes
different by reversing the laser direction [see Fig. S1(b)]. For example, when the quantum synchronization is created by driving
the silica-microsphere cavity from the RD, no quantum synchronization occurs by driving it from the LD. The underlying
physics can be understood as follows: in cavity optomechanics, the driving laser is scattered by the mechanical mode into the
Stokes and anti-Stokes sidebands. When the cavity mode is resonant with one of the sidebands, optomechanical correlations are
created. In the absence of the Sagnac effect (Ω = 0), the spectral offset is due to the optomechanics-induced blueshift of the
cavity mode. In the presence of the Sagnac effect (Ω , 0), the resonance conditions for the counter-circulating light modes are
modified by the opposite Sagnac shifts, resulting in the peaks symmetrically shifted for the opposite input directions.

4. Stability analysis of the system

We here elaborate more on the dynamical stability via the following two points: (i) stability functions [S20] and (ii) stable
limit-cycle solutions [S21].

(i) Based on the Routh-Hurwitz criterion [S20], we ensure the stability of the system because all the eigenvalues of the
coefficient matrix A have negative real parts. Therefore, our analysis begins with the determination of the eigenvalues of A, i.e.,
|A − λI| = 0, which results in the following characteristic equation:

λ8 + a1λ
7 + a2λ

6 + a3λ
5 + a4λ

4 + a5λ
3 + a6λ

2 + a7λ + a8 = 0, (S53)

where the parameters ak=1−8 (i.e., a1, . . . , a8) are the coefficients. We note that the expressions of the coefficients ak=1−8 are quite
complex, and for the sake of brevity, these expressions are not shown here. By employing ak=1−8, a set of k × k matrices ca be
constructed, i.e., θk for k ≤ 8 with their entries defined as:

θi j =

0, 2i − j < 0 or 2i − j > k,
a2i− j, otherwise.

(S54)
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FIG. S2: (a) Stability functions θ2 versus the optical detuning ∆a and the magnonic detuning ∆m. (b) Time evolution of the limit-cycle
trajectories in the ⟨Xb j (t)⟩⇌ ⟨Yb j (t)⟩ spaces for j = 1 (blue solid curves) and j = 2 (red solid curves).

According to Eq. (S54), we see that the stability conditions are satisfied when all the determinants of the matrices θk are
positive [S20]. Through our meticulous calculations, we found that only θ2 is nontrivial. Specifically, we plot θ2 as a function
of the optical detuning ∆a and the magnon detuning ∆m, as shown in Fig. S2(a). We find that all the used parameters keep our
system in a stable zone, and the system satisfies the dynamical stability around the blue-sideband resonances.

(ii) By utilizing the Routh-Hurwitz criterion [S20], all the eigenvalues of the coefficient matrix A are negative after a temporary
evolutionary process. Hence, a stable limit-cycle solution representing a periodic oscillation exists, as shown in Fig. S2(b). We
clearly see that the evolutions of ⟨X j(t)⟩⇌ ⟨Y j(t)⟩ of the two oscillators trend to an asymptotic periodic orbit (i.e., the two limit
cycles tend to be consistent). The emergence of the two consistent limit cycles indicates that the evolution of the system reaches
the dynamical stability in the blue-sideband resonances.

By these two methods on elaborating the dynamical stability, we have demonstrated that all the used parameter values work
in the stable zone. We highlight the enhanced stability in the nonreciprocal phase and its potential relevance for practical
applications. Specifically, it not only enables one-way quantum manipulation but also contributes to the significant robustness of
purely quantum effects against thermal noise and random fabrication of practical devices. These findings may be advantageous
for the implementation of purely quantum behaviors in noisy or engineered quantum environments.

III. SUPPLEMENTARY DISCUSSIONS

A. Nonreciprocal quantum synchronization

Quantum synchronization describes the emergence of phase or frequency locking between interacting quantum systems,
despite intrinsic quantum fluctuations [S3]. It extends classical synchronization into the quantum regime, revealing nontrivial
correlations in the dynamics of coupled oscillators, spins, or fields. Unlike its classical counterpart, quantum synchronization
manifests through correlations in quantum observables and is constrained by quantum noise and noncommutativity, offering a
route to controlling collective quantum dynamics.

The burgeoning field of nonreciprocal physics has captured widespread interest across classical and quantum disciplines.
Remarkably, while numerous demonstrations have illuminated its principles in diverse contexts, a conspicuous gap remains
unexplored within the realm of quantum resources: quantum synchronization. Here we bridge this critical void by attaining
nonreciprocal quantum synchronization, unveiling its counterintuitive resilience against device imperfections and thermal
noise. Through the utilization of magnetic-Kerr nonlinearity, we achieve synchronization of two vibrations along a specified
direction of the magnetic field while maintaining desynchronization along the orthogonal direction, thereby establishing a novel
unidirectional quantum synchronization paradigm. In contrast to prior proposals constrained by high-quality and small-mass
considerations, our methodology confers robustness against such limitations, thus presenting a notable advancement in quantum
synchronization. Significantly, our approach exhibits a remarkable resurgence of synchronization resilience against thermal
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FIG. S3: Quantum synchronization measure SQ versus time t, when the magnetic field is injected from a chosen direction (CD) and the other
direction (OD). A one-way quantum synchronization appears for different injecting directions of the external magnetic field, yielding a redshift
or blueshift in the magnon detuning, .

noise in real-world applications, a phenomenon unprecedented in extant literature. This study lays a cornerstone for fortifying
and manipulating delicate quantum phenomena through the utilization of a spectrum of nonreciprocal devices. Such endeavors
promise to facilitate the realization of quantum resources that are both impervious to imperfections and resilient to noise, thereby
paving the way for advanced quantum technologies.

In this section, we investigate unidirectional quantum synchronization using a hybrid quantum framework. This framework
entails a silica microsphere, serving as an optomechanical cavity, in conjunction with a YIG microsphere, acting as a
magnomechanical cavity. These entities are simply linked through a direct physical contact, enabling coherent coupling between
them. Concretely, we first study the unidirectional quantum synchronization of two phonon modes, which is dependent on the
direction of the magnetic field. We then show its tolerance against the device imperfections by employing the magnon-Kerr
effect. By analyzing the robustness of quantum synchronization against thermal noise in a highly imperfect devices, we can
confirm the action of the magnon-Kerr nonlinearity on the revival and enhancement of quantum synchronization.

1. Nonreciprocity in quantum synchronization

Nonreciprocal quantum synchronization can be easily induced in a hybrid quantum platform, consisting of a silica microsphere
in combination with a YIG microsphere, coherently coupling to each other via a straightway physical contact. The mechanical
vibration in the silica (YIG) microsphere is explored by the radiation-pressure (magnetostrictive) force through the circulating-
optical fields (microwave-driven magnons). The introduced magnon-Kerr nonlinearity plays a critical role in the creation of
nonreciprocal quantum synchronization. Below, we study how the magnon-Kerr nonlinearity affects the generation of one-way
quantum synchronization. Specifically, we detailedly study the dependence of the nonreciprocal quantum synchronization on
the system parameters, when the system operates in both the magnon-Kerr-off and -on regimes.

To this end, we plot in Fig. S3 the quantum synchronization measure SQ as a function of the evolution time t when the system
operates in the CD (K/ω1 = −2×10−5), magnon-Kerr-off (K = 0), and OD (K/ω1 = 2×10−5) cases. We see that for the CD and
standard cases, the quantum synchronization measure becomes nonzero SQ > 0 around t/τ > 50, which indicates the quantum
synchronization of two phonon modes. In a stark contrast to this, a zero value of SQ appears in the OD case, which implies to
no quantum synchronization of the two phonon modes. These results demonstrate that a fundamentally different nonreciprocity
of quantum resources can be accomplished, which is otherwise unattainable in conventional schemes.

In particular, the quantum synchronization measure SQ in the CD case is larger than both standard and OD cases. This is
because the introduced magnon-Kerr nonlinearity enabled in the hybrid quantum system can be modulated by tuning the magnon-
Kerr nonlinearity, which is achieved by changing the direction of the magnetic field. The maximal quantum synchronization
emerges, corresponding to a strong magnon-Kerr nonlinearity. Physically, the magnetic field entering from the CD yields a blue
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FIG. S4: In the magnon-Kerr-off regime, quantum synchronization measure SQ versus (a) the magnon detuning ∆m and (b) the optical detuning
∆a. A reciprocity of quantum synchronization happens due to the independence on the injecting direction of the magnetic field. In the magnon-
Kerr-on regime, SQ versus (c) ∆m and (d) ∆a for the CD (K/ω1 = −2 × 10−5), and OD (K/ω1 = 2 × 10−5) cases. A unidirectional quantum
synchronization occurs around ∆m/ω1 ≈ −1 and ∆a/ω1 ≈ −1, because of the dependence on the injecting magnetic-field direction.

shift of the magnon detuning, whereas when injected from theOD leads to an opposite shift. This can be further demonstrated by
studying the dependence of SQ(t) on t when the magnetic field enters from the CD or OD. For the CD case, an efficient quantum
synchronization appears; while for the OD case, no quantum synchronization occurs. This demonstrates the emergence of
unidirectional quantum synchronization, which has no correspondence to the previously established demonstrations on quantum
synchronization.

To better comprehend this counterintuitive unidirectional quantum behavior, we plot the quantum synchronization measure SQ
as a function of the detunings ∆m and ∆a, in both the magnon-Kerr-off and magnon-Kerr-on regimes, as shown in Figs. S4(a,b)
and S4(c,d), respectively. For the magnon-Kerr-off regime (i.e., K = 0), the quantum synchronization measure SQ is independent
of the direction of the injected magnetic field, and this means the reciprocity of quantum synchronization, as shown in Figs. S4(a)
and S4(b). However, by introduction the magnon-Kerr nonlinearity (i.e., the magnon-Kerr-on regime, K , 0), the quantum
synchronization measure SQ becomes fundamentally different once switching the magnetic-field direction, which indicates the
nonreciprocity, as shown in Figs. S4(c) and S4(d).
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FIG. S5: (a) Quantum synchronization measure SQ versus the phonon-phonon coupling strength χ, in the presence of the magnon-Kerr
nonlinearity (i.e., K/ω1 , 0), assuming that the externally injected magnetic field enters from the CD (K/ω1 = −2 × 10−5) and OD (K/ω1 =

2 × 10−5). (b) Quantum synchronization measure SQ versus the magnon-Kerr nonlinearity strength K. Here we assume ∆m/ω1 = −1 and
∆a/ω1 = −1.

Concretely, we find that for

−1.1 ≲ ∆m/ω1 ≲ −0.8, (S55)

or

−1.1 ≲ ∆a/ω1 ≲ −0.9, (S56)

quantum synchronization does not happen in the OD, while it is generated in the CD. In addition, the maximal quantum
synchronization can be observed at the blue-sideband resonances, i.e.,

∆m ≈ −ω1, and ∆a ≈ −ω1. (S57)

This indicates that by employing the magnon-Kerr effect, quantum nonreciprocity can emerge. Our findings pave a route to
constructing a general nonreciprocal quantum device.

Now, we study the dependence of quantum synchronization on the phonon-phonon interaction by plotting the quantum
synchronization measure SQ as a function of the phonon-phonon coupling strength χ, when the system operates in the magnon-
Kerr-on (CD, K/ω1 = −2 × 10−5) and magnon-Kerr-off (K = 0) regimes, as shown in Fig. S5(a). It is clearly shown that the
quantum synchronization is suppressed in the magnon-Kerr-off regime, but enhanced in the magnon-Kerr-on regime, giving rise
to an enhancement of the quantum behavior.

In addition, we display the effect of the magnon-Kerr nonlinearity on quantum synchronization by plotting the quantum
synchronization measure SQ as a function of the magnon-Kerr nonlinearity strength K, as shown in Fig. S5(b). We reveal in
Fig. S5(b) that, for the OD case, i.e.,

K > 0, (S58)

no quantum synchronization of the two phonon modes occurs, i.e.,

SQ = 0; (S59)

while for the CD case, i.e.,

K < 0, (S60)

a significant quantum synchronization appears, i.e.,

SQ > 0. (S61)
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This is contributed to the fact that the system possesses a shift of detuning, as a result of the magnon-Kerr nonlinearity, and
it destroys the quantum resource. In contrast, when we choose a proper direction of the magnetic field (CD, i.e., K < 0), the
optomechanical and magnonmechanical vibrations become synchronized efficiently.

We also see from Fig. S5(b) that an optimal value of the quantum synchronization measure locates around the blue-sideband
resonance, i.e., ∆m(a) ≈ −ω1, for a proper value of the magnon-Kerr strength. Additionally, the quantum synchronization of the
two phonon modes is completely destroyed, i.e., SQ = 0 in the OD case (i.e., K > 0), which corresponds to the vanishment of
quantum synchronization. Hence, it is possible to switch a quantum device between unsynchronization and synchronization of
the two phonon modes by simply tuning the magnon-Kerr strength.

2. Imperfection-tolerant quantum synchronization

TABLE II: Classification of Large Mass and High Dissipation as Random Fabrication Imperfections in Quantum Physics

Property Random Fabrication Imperfection? Scientific Justification
Large mass Yes Often determined by design, but unintended variations in geometry,

etching depth, or material deposition during fabrication can
randomly increase the effective mass of quantum components.

High dissipation Yes Predominantly caused by uncontrollable factors such as micro-
scopic defects, interface roughness, and residual impurities intro-
duced stochastically during imperfect nanofabrication processes,
leading to decoherence and energy loss.

In quantum physics, large mass and high dissipation are frequently manifestations of random fabrication imperfections
in quantum devices. Deviations in etching depth, layer uniformity, or material composition can lead to increased inertial
mass; while microscopic defects, impurities, and surface roughness introduce unwanted dissipation, as shown in Tab. II.
Such imperfections can significantly impair quantum coherence and quantum control, highlighting the imperative for ultrahigh-
precision shielding in scalable quantum technologies.

As is well-known, fragile quantum resources can be easily destroyed by detrimental imperfections (e.g., large-mass and/or
high-loss) in practical quantum devices. Nevertheless, our approach overcomes this outstanding limitation, and paves a feasible
strategy to shielding fragile quantum resources from the device detriments, enabling the construction of imperfection-free
unidirectional quantum synchronization devices. Physically, the resulting imperfection-tolerant quantum synchronization is
a consequence of the improved resilience of the resonator rather than a better frequency matching between the two phonon
modes.

To demonstrate this counterintuitive imperfection-tolerant finding, we display the quantum synchronization measure SQ as
functions of the mass ratio m j/m0 and the phononic decays γ j/ω1 of the two resonators, in the magnon-Kerr-off (i.e., K = 0)
and magnon-Kerr-on (CD, i.e., K/ω1 = −2 × 10−5) regimes [see Fig. 3(a,b) of the main text]. We find that in the absence of the
magnon-Kerr nonlinearity (K = 0), quantum synchronization is suppressed in a wide mass-ratio range, and the suppression range
of quantum synchronization becomes much wider for a larger value of the mass ratio m j/m0. For example, we show that the
suppression effect of quantum synchronization is observed for a finite mass-ratio range, and that the range for the magnon-Kerr-
off regime (K = 0) is wider than that for the magnon-Kerr-on regime (K < 0). By introducing the magnon-Kerr nonlinearity,
we see that the the opto-vibrational and magno-vibrational modes are synchronized irrespective of the value of the mass ratio
m j/m0 for the CD of the magnetic field. This is attributed to the magnon-Kerr nonlinearity effect, which dramatically improves
the resilience of the resonator. These results confirm that the two phonon modes can be effectively synchronized utilizing the
magnon-Kerr nonlinearity even when quantum synchronization is fully destroyed in the magnon-Kerr-off case (i.e., K = 0). By
employing the power of the magnon-Kerr nonlinearity, quantum synchronization can be switched from significantly suppressed,
or even fully destroyed, to highly synchronized. Our findings indicate that the introduced magnon-Kerr-nonlinearity magnetism
can be used for enhancing quantum synchronization, and especially, the work window of the magnon-Kerr nonlinearity becomes
wider for a larger value of the mass ratio of the resonators.

In addition, we find that when turning off the magnon-Kerr nonlinearity (i.e., in the magnon-Kerr-off regime), the suppression
effect appears for quantum synchronization in a wide range of the phonon decays, and its suppression range becomes much
wider for a larger value of the phononic decay, as shown in Figs. S6 and S7. Specifically, we find that in a finite mechanical
decay range, the quantum-synchronization suppression happens, and that the suppression range for the magnon-Kerr-off regime
(i.e., K = 0) is wider than that for the magnon-Kerr-on regime (i.e., K < 0). By introducing the magnon-Kerr nonlinearity (i.e.,
in the magnon-Kerr-on regime), the the opto-mechanical and magnon-mechanical vibrations are synchronized regardless of the
value of the phononic decay rates, as shown in Figs. S6 and S7. Our investigation unveils a striking phenomenon wherein the two
phonon modes achieve remarkable synchronization, courtesy of the magnon-Kerr effect. Notably, this quantum synchronization
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FIG. S6: (a,d) Quantum synchronization measure SQ versus the mechanical decay rate γ j and the magnon decay rate κm in (a) the magnon-
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and (e) Kerr-on cases. (c,f) Quantum synchronization measure SQ versus the magnon decay rate κm in (c) the magnon-Kerr-off and (f) Kerr-on
cases.

persists even in scenarios where quantum synchronization faces complete disruption, as evidenced in the absence of magnon-
Kerr nonlinearity. We further reveal that by introducing the magnon-Kerr nonlinearity effect, quantum synchronization of the two
phonon modes becomes effectively synchronized from significantly suppressed (or even fully destroyed), as detailed in Figs. S6
and S7. These results suggest that the novel type of the magnon-Kerr-induced magnetism introduced here holds promise for
augmenting quantum synchronization. Notably, the operational range of the magnon-Kerr nonlinearity appears to broaden with
the increased decay rates of the resonators, offering intriguing prospects for further exploration.

In particular, we have demonstrated that in the absence of the magnon-Kerr nonlinearity, quantum synchronization is
deteriorated with the increase of the mass ratio; while by employing the magnon-Kerr effect, it becomes significantly enhanced,
which paves a route to the generation of mass-free quantum resources, as shown in Fig. 3(a) of the main text. This finding
solidifies the notion that the magnon-Kerr effect facilitates remarkable quantum synchronization between two phonon modes,
even in scenarios where quantum synchronization would otherwise be completely disrupted in the absence of the magnon-Kerr
nonlinearity. For further demonstrating this point, the dependence of quantum synchronization on the resonator mass can be
clearly seen by operating the system in the magnon-Kerr-off and magnon-Kerr-on cases. We find that in the magnetic-Kerr-off
regime (K = 0), the two phonon modes are unsynchronized (SQ = 0) when the mass ratio ρ = m j/m0 > 1. In stark contrast to
this, the two phonon modes become effectively synchronized (SQ > 0) in the magnetic-Kerr-on regime (K < 0). Physically, the
reduction of quantum synchronization due to the decrease in the magnon-phonon coupling with increasing the resonator mass;
while it can be considerably compensated or even amplified, contributed from the introduction of the magnon-Kerr nonlinearity
effect. Physically, injecting the magnetic field from the CD (OD) yields the symmetric (asymmetric) coupling, indicating the
enhancement (degradation) in the resonator resilience. It indicates that, in general, by simply employing the magnon-Kerr
mechanism, quantum synchronization can be nearly robust against both mass and damping of practical devices.

In addition, we find that in the nondegenerate-resonator case (i.e., ω1 , ω2), the quantum synchronization may be slightly
degraded. We explain this synchronization-degradation phenomenon based on the following fact. The quantum synchronization
effect exists within a very narrow frequency-detuning window of the two resonator, and therefore, within this window, the
mismatch of the phononic resonance frequencies is the dominating factor for the synchronization-generation performance. By
using the magnon-Kerr nonlinearity, the combination effect of the original light-motion couplings and the introduced magnon-
Kerr mechanism governs the generation of quantum synchronization, and hence the quantum combinated effect can improve the



19

quantum synchronization of the opto-mechanical and magnon-mechanical motions.
The phonon modes are thermalized by their thermal baths through the mechanical dissipation channels, and thermal noises

can destroy fragile quantum responses in practical devices. In particular, the magnon numbers are decreased by its damping
through the magnon dissipation channels, and as a result, a high magnon decay rate can destroy fragile quantum behavior in
highly imperfect setups. Below, we study the dependence of quantum synchronization on the mechanical decay rate γ j and the
magnon decay rate κm, when the system operates in both magnon-Kerr-off and -on regimes.

To elucidate this aspect, we display in Figs. S6(a) and S6(d) the quantum synchronization measure SQ as functions of the
mechanical decay rate γ j and the magnon decay rate κm, when the system undergoes the magnon-Kerr-off and magnon-Kerr-
on cases. Specifically, we see that when increasing either mechanical and magnon decay rates, a strong suppression effect
of quantum synchronization occurs, and that when κm/ω1 > 0.27 or γ j/ω1 > 0.007, the quantum synchronization becomes
completely vanished. In particular, we reveal that the suppression effect of quantum synchronization in the magnon-Kerr-off
regime (i.e., K = 0) is much larger than that in the magnon-Kerr-on regime (i.e., K < 0). This indicates that by employing
the magnon-Kerr nonlinearity, we can protect the quantum synchronization of the two phonon modes from both phonon and
magnon decay rates. These findings emphasize the ability of the magnon-Kerr effect to synchronize the two vibrations, even in
scenarios where quantum synchronization is entirely disrupted in the absence of magnetic-Kerr interaction. Utilizing the potency
of magnon-Kerr nonlinearity, quantum synchronization (SQ) can transition from substantial suppression, or even complete
disruption, to full synchronization. These outcomes suggest that the introduced magnon-Kerr magnetism holds promise for
augmenting quantum synchronization. Notably, the operational scope of magnon-Kerr nonlinearity expands with increasing
decay rate of the mechanical resonator.

For further illustrating the above findings, we plot the quantum synchronization measure SQ as a function of the mechanical
decay rate γ j, when the system operates in both the magnon-Kerr-off (see green solid curves) and -on (yellow solid curves)
regimes, as shown in Figs. S6(b) and S6(e). We find that the values of the quantum synchronization measure SQ increase
with the decrease of the mechanical decay rate γ j. This is because the thermal-noise-exchange rates between the mechanical
resonators and their heat baths are much slower for a smaller value of the decay rate γ j, and it is good for protecting fragile
quantum resources from environmental thermal perturbations. This indicates that a high Q-factor resonator holds promise for
generating a robust quantum synchronization. In addition, Figs. S6(b) and S6(e) show

Son
Q
> Soff

Q
(S62)

because the magnon-Kerr strength is set as

K/ω1 < 0, (S63)

corresponding to turning on the magnon Kerr, and this means that the quantum synchronization in the magnon-Kerr-on case is
stronger than that in the case without the magnon-Kerr nonlinearity (K = 0).

In particular, we observe that in the magnetic-Kerr-off regime (K = 0), the two phonon modes are unsynchronized (SQ = 0)
with the increase of γ j; in stark contrast to this, they become effectively synchronized (SQ > 0) in the magnon-Kerr-on regime
(K < 0). Physically, the decrement in quantum synchronization arises from the diminishing effective interaction between
magnons and phonons as phononic damping rates increase. However, this reduction can be substantially mitigated, or even
amplified, by the inclusion of the magnon-Kerr effect. This suggests that, broadly speaking, the mere utilization of the magnetic-
Kerr mechanism renders quantum synchronization nearly impervious to damping effects in practical devices.

In addition, we plot in Figs. S6(c) and S6(f) the quantum synchronization measure SQ versus the magnon damping rate κm,
in both the magnon-Kerr-off and magnon-Kerr-on regimes. We see that the decrease in the quantum synchronization measure
SQ observes with the increase of the magnon decay rate κm. This is because the excitation-exchange rates are much faster for a
larger value of the magnon decay rate κm, and it is good for shedding fragile quantum resources from the magnon loss in practical
devices, indicating that a high Q-factor magnon setup can hold promise for generating a highly robust quantum synchronization.
It shows in Figs. S6(c) and S6(f) the result of Son

Q
> Soff

Q
, owing to the fact that the magnon-Kerr strength K/ω1 < 0 is set,

thus quantum synchronization in the magnon-Kerr-on regime is stronger than that in the magnon-Kerr-off regime. Furthermore,
we elucidate that within the magnetic-Kerr-off regime (K = 0), the two vibrations exhibit desynchronized behavior (SQ = 0),
whereas in stark contrast, they demonstrate synchronization (SQ > 0) within the magnon-Kerr-on regime (K < 0). This is
because the attenuation of quantum synchronization stems from a reduction in magnon-phonon interaction as magnetic damping
rates increase. However, this diminishment in magnon-phonon coupling strength can be substantially counteracted, or even
intensified, by the incorporation of the magnetic-Kerr effect. This implies that, broadly speaking, the mere utilization of the
magnetic-Kerr mechanism can confer near robustness against damping in quantum synchronization.

Now, we show how to employ the magnon-Kerr nonlinearity effect to accomplish the robustness of quantum synchronization
against the device imperfection, by plotting the quantum synchronization measure SQ as functions of the mechanical γ j
(magnetic κm, optical κa) decays and the magnon-Kerr nonlinearity strength K, as shown in Fig. S7.

Firstly, to comprehend the counterintuitive phenomena, we show the quantum synchronization measure SQ versus the
mechanical decay rate γ j and the magnon-Kerr nonlinearity K in Fig. S7(a). We see that in the absence of the magnon-Kerr
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effect (i.e., K = 0), the opto- and magnon-mechanical vibrations are unsynchronized (i.e., SQ = 0), when γ j/ω1 > 0.007. In the
presence of the magnetic-Kerr effect (i.e., K < 0), a strong quantum synchronization can be achieved regardless the mechanical
decay. Moreover, this counterintuitive finding can be confirmed by plotting the quantum synchronization measure SQ versus the
mechanical γ j when the system works in both the magnon-Kerr-off and -on cases. Here, we see that, in the magnetic-Kerr-off
case, no quantum synchronization emerges between the opto- and magnon-mechanical vibrations, i.e., SQ = 0 (see the solid
curves); while by introducing the magnon-Kerr effect (i.e., K < 0), these two phonon modes can be effectively synchronized in
the quantum regime, as shown in Fig. S7(b).

For comprehending these counterintuitive phenomena, we show the quantum synchronization measure SQ versus the rescaled
magnon-field decay rate κm/ω1 and the magnon-Kerr nonlinearity K, as shown in Fig. S7(c). To further demonstrate this, in
Fig. S7(d), the quantum synchronization measure SQ is plotted as a function of the rescaled magnon-field decay rate κm/ω1,
when the system works in both the magnon-Kerr-off and -on regimes. Here, we observe that in the magnon-Kerr-off regime,
the two phonon modes are unsynchronized, i.e., SQ = 0 (see the solid curves) when κm/ω1 > 0.24; whereas switching to the
magnon-Kerr-on case (i.e., K < 0), the quantum synchronization can be realized when the system is in the resolved-sideband
regime. In particular, the optimal working parameter of the cavity-field decay rate κm (corresponding to the maximum value of
the quantum synchronization measure SQ) is around κm/ω1 ≈ 0.25.

In addition, employing the magnon-Kerr effect effect can give rise to a counterintuitive robustness against the optical damping.
To illustrate this, we plot the quantum synchronization measure SQ as functions of the optical decay κa and the magnon-Kerr
nonlinearity strength K, as shown in Fig. S7(e). We can see that in the magnetic-Kerr-off case, the two mechanical modes are
unsynchronized when κa/ω1 < 0.14; while they become strongly synchronized once using the magnon-Kerr nonlinearity (i.e.,
K < 0), which is fully beyond the synchronization limitation from the photon decay rate. In particular, we plot the quantum
synchronization measure SQ versus the photon decay rate κa, as shown in Fig. S7(f). It clearly shows that when the system is in
the resolved-sideband regime (i.e., κa ≪ ωm), the two phonon modes are unsynchronized without the magnon-Kerr nonlinearity,
but synchronized by introducing this Kerr mechanism. In the magnon-Kerr-on regime, the optimal working parameter of κa
(corresponding to the maximum value of SQ) is around κa/ω1 ≈ 0.125, corresponding to no quantum synchronization SQ = 0
for the magnon-Kerr-off regime.

In a word, we demonstrated the quantum synchronization of two phonon modes through the magnon-Kerr effect, even in
scenarios where quantum synchronization is typically disrupted in the magnetic-Kerr-off case. Leveraging the magnon-Kerr
nonlinearity, we observe a remarkable transition in quantum synchronization (SQ), from a state of significant suppression or
complete destruction to full synchronization. Our findings underscore the potential of magnon-Kerr magnetism in bolstering
quantum synchronization, particularly highlighting its efficacy in widening the operational range of the magnon-Kerr-induced
nonlinearity, especially evident with higher decay rates of the mechanical resonators.

3. Noise-robust quantum synchronization

The detrimental effects of thermal noises on delicate quantum resources are well-documented in practical devices. Here, we
propose a novel approach, leveraging magnon-Kerr magnetism, to shield fragile quantum resources from environmental thermal
perturbations. Our method demonstrates a substantial enhancement in the noise tolerance of quantum synchronization, offering
promising avenues for robust quantum information processing amidst challenging thermal environments. We have demonstrated
that compared to the magnon-Kerr-effect-off case, the effective mechanical dissipation becomes much smaller in the CD case,
giving rise to improving the resilience of the resonator; while it becomes much larger in the OD case, resulting in reducing
this resilience. Physically, the noise-exchange rates between phonon modes and their effective heat baths are much slower
for a smaller value of the effective decay rate, and it is beneficial for protecting this fragile QS from environmental thermal
perturbations.

To investigate the influence of the magnon-Kerr nonlinearity on the noise-tolerant quantum synchronization, we plot the
quantum synchronization measure SQ as a function of the thermal excitations n̄ j and the magnon-Kerr-nonlinearity strength, as
shown in Fig. S8. We reveal that in the magnon-Kerr-off regime, i.e., K = 0, quantum synchronization of the opto-mechanical
and magnon-mechanical vibrations emerges only in the low-phonon-number regime; while in the magnon-Kerr-on regime, i.e.,
K < 0, it can persist to an extremely high thermal phonon numbers. Specifically, the influence of the thermal noise and the
magnon-Kerr nonlinearity on the quantum synchronization can be studied in detail, by displaying the quantum synchronization
measure SQ versus the thermal phonon numbers in both the magnon-Kerr-off (i.e., K = 0) and magnon-Kerr-on (i.e., K < 0)
regimes, as shown in Figs. S8(a) and S8(b). We find that in the magnon-Kerr-off case, quantum synchronization of the two
phonon modes are deteriorated; whereas it revives once employing the magnon-Kerr nonlinearity. Therefore, we can confirm
that a stronger magnon-Kerr nonlinearity leads to a larger noise-tolerant quantum synchronization, which is generated via the
magnon-Kerr mechanism. This means that the magnon-Kerr nonlinearity provides a feasible way to create and protect fragile
quantum resources against thermal noise, and build a noise-tolerant quantum device and a quantum-synchronization switch.

In particular, quantum synchronization of the opto- and magnon-mechanical vibrations can be switched on and off on demand
by simply engineering the magnon-Kerr-nonlinearity effect.
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FIG. S8: Strong suppressive effect of quantum synchronization due to thermal noise, and quantum nonreciprocal revival resulted from the
magnon-Kerr-induced compensation. (a) In the absence of the magnon-Kerr effect (K = 0), SQ versus the magnon detuning ∆m with the
increasing thermal phonon number n̄ j = 0, 1, and 10. (b) For n̄ j = 10, SQ versus ∆m when K/ω1 = −2 × 10−5 and 0. For K/ω1 = −2 × 10−5,
quantum synchronization is enhanced, reaching almost that as in an ideal device without thermal noise (n̄ j = 0).

(i) For example, in the high-phonon-number regime, quantum synchronization is destroyed (i.e., SQ = 0) because of the
absence of the magnon-Kerr nonlinearity (i.e., K = 0); while by inducing the magnon-Kerr-nonlinearity effect (i.e., K < 0),
quantum synchronization channel is fully turned on (i.e., SQ > 0). Particularly, an optimal strength of the magnon-Kerr
nonlinearity (i.e., K/ω1 = −2 × 10−5) leads to a strong quantum synchronization.

(ii) Additionally, we find that in the high-phonon-number regime, there exists the quantum synchronization, and then the
quantum synchronization is created (i.e., SQ > 0) in the magnon-Kerr-on regime (i.e., K < 0), while no quantum synchronization
occurs (i.e., SQ = 0) in the magnon-Kerr-off regime (i.e., K = 0). This indicates that a selective quantum synchronization switch
can be achieved just introducing a magnon-Kerr nonlinearity.

These findings underscore the potential of one-way quantum synchronization as a transformative approach to rendering noise-
sensitive setups ideally suited for practical applications. This advancement holds promise for realizing noise-insensitive quantum
resources, thereby advancing the frontier of quantum technologies.

Specifically, in the absence of the magnon-Kerr effect, quantum synchronization is generally deteriorated or even completely
destroyed with increasing thermal occupancies; while in the presence of the magnon Kerr, it can be dramatically improved,
which approaches to or even surpasses that using an ideal quantum device. This means that the noise-caused reflection can
be significantly suppressed in our magnetic-Kerr device; as a result, a nearly ideal quantum synchronization can be achieved,
clearly shown by defining a synchronization-revival factor:

Λ =
max[SQ(n̄ j , 0,K , 0)]
max[SQ(n̄ j = 0,K = 0)]

. (S64)

We elucidate the variations in the synchronization-revival factor under the influence of thermal noise, providing insight
into the dynamic interplay between environmental perturbations and synchronization phenomena. Quantum synchronization
can survive in the magnon-Kerr-on regime, even when it is completely destroyed by thermal noise in the magnon-Kerr-off
regime. Specifically, we demonstrate that the maximal revival factor can achieve a remarkable 99%, indicating that quantum
synchronization within such a nonreciprocal device exhibits a near-robustness to thermal noise.

Remarkably, its threshold thermal phonon number for maintaining quantum synchronization is much higher than that in the
case without the magnetic Kerr nonlinearity. These results indicate that applying the magnetic-Kerr effect establishes not only a
giant enhancement in quantum synchronization, but also offers the possibility of preventing fragile quantum resources from the
disturbances of practical thermal environment. The study opens a novel approach to develop the practical device performance
by harnessing the power of nonreciprocity.
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4. Effect of mass on quantum synchronization

Quantum synchronization of mechanical resonators in the regimes of large masses, large decays, and/or high temperatures
is extremely challenging, because it requires an ultra-high optical power, which introduces extraneous excessive heating and
intricate instabilities.

In recent decades, significant developments have been accomplished in the quantum synchronization of mechanical resonators
in the small-mass, low-damping, and low-noise regimes, which have been widely reported both theoretically and experimentally,
using cavity optomechanical platforms [S9–S11]. However, these proposals and experiments still inherently suffer from the
large-mass, large-decay, and/or high-noise limitations, which are a major challenge for the preparation of such extremely fragile
quantum synchronization. The physical origin behind these obstacles is as follows:

(i) Quantum synchronization of mechanical resonators crucially depends on the strength of driving fields. Typically, a single-
excitation coupling strength scales as g = ηxZPM, where η quantifies the coupling strength to the resonator’ position x(t), and xZPM
is the zero-point motion of a mechanical resonator in the trap, xZPM ∼

√
ℏ/(2mωm), where ωm is the center-of-mass mechanical

oscillation frequency. For a large-mass resonator, the decrease in xZPM with increasing mass leads to a greatly reduced coupling
strength, making quantum synchronization of mechanical resonators hard to achieve.

(ii) A large-decay and/or high-temperature mechanical resonator in the large-mass regime accelerates its intrinsic thermal
motion, resulting in blocking efficient quantum synchronization of mechanical resonators.

(iii) For mechanical resonators in the regimes of a large mass and/or a high temperature, their quantum synchronization
requires an ultra-high driving strength, which introduces extraneous excessive heating and intricate dynamical instabilities.

In this work, we propose how to overcome these obstacles and achieve quantum synchronization of mechanical resonators
by simply employing the magnon-Kerr effect; and we reveal its exceptional synchronization properties otherwise unachievable
in conventional devices. Unlike previous schemes, where quantum resources are generally deteriorated or even fully destroyed
with increasing mass, decay, and/or noise of practical devices, our approach, surprisingly, shows that it is possible to directly
shield inherently fragile quantum synchronization against these detrimental factors [see Figs. S2(a) and S2(b)], without the need
of utilizing any high-cost low-loss materials and noise filters at the expense of system’s complexity [S22, S23] or any topological
structures [S24–S30].

In our analytical considerations, the masses of the two mechanical oscillators are in general different, as described by m1
and m2. However, for convenience, in our simulations, we consider the case where the masses of the two resonators are equal.
Moreover, the masses, corresponding to the results of the other plots, are m1 = m2 = 100 ng, as given in Tab. I.

Characteristics Nonreciprocal Quantum Synchroniza-
tion

Nonreciprocal Quantum Steering

Definition Unidirectional phase, amplitude, and fre-
quency locking between two quantum
systems

One-way quantum correlations allowing
state inference via local measurements

Nonreciprocity origin Asymmetric interaction or control (via
Kerr nonlinearity, Sagnac effect)

Asymmetric violation of local hidden state
(LHS) models

Observables Dynamical quantities (e.g., phase,
spectrum)

Conditional measurement outcomes and
steering inequalities

Directionality One system influences another’s dynamics
without feedback

One party (Alice) can steer the other (Bob),
but not vice versa

Applications One-way quantum control, nonreciprocal
quantum synchronization, chiral networks

One-sided quantum cryptography, entan-
glement certification, quantum information
tasks

TABLE III: Comparison between nonreciprocal quantum synchronization and nonreciprocal quantum steering.

5. Difference of nonreciprocal quantum synchronization and quantum steering

Nonreciprocal quantum synchronization and nonreciprocal quantum steering [S31] both exhibit unidirectional quantum
behavior in quantum systems, but arise from fundamentally different physical mechanisms.

Nonreciprocal quantum synchronization refers to asymmetric quantum dynamical locking, such as phase or frequency
entrainment, between coupled quantum oscillators. This unidirectionality stems from engineered asymmetries in the considered
quantum system via the Kerr nonlinearity or rotation-induced Sagnac effect, leading to one-way quantum coherence in time-
domain observables, as shown in Tab. III. The resulting unidirectional quantum coherence emerges in the time evolution of
system observables and reveals asymmetric quantum synchronization, as shown in Tab. III.
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FIG. S9: Mean-value non-synchronization (in the OD case) and synchronization (in the CD case). Time evolution of (a,d) the mean values
⟨Xb1 (t)⟩ (blue solid curves) and ⟨Xb2 (t)⟩ (red dashed curves), (b,e) the mean values ⟨Yb1 (t)⟩ (blue solid curves) and ⟨Yb2 (t)⟩ (red dashed curves),
and (c,f) the limit-cycle trajectories in the ⟨Xb1 (t)⟩ ⇌ ⟨Yb1 (t)⟩ and ⟨Xb2 (t)⟩ ⇌ ⟨Yb2 (t)⟩ spaces, when the magnetic field is applied along (a,b,c)
the OD (i.e., K > 0) and (d,e,f) the CD (i.e., K < 0). Here ∆m/ω1 = −1 and ∆a/ω1 = −1.005, and other used parameters are given in Tab. I.

In stark contrast, nonreciprocal quantum steering is a form of asymmetric quantum correlation and a measurement-based
manifestation of quantum nonlocality [S31], wherein one party (Alice) can nonlocally affect quantum state of another’s part
(Bob) through measurement, but not vice versa, as shown in Tab. III. This irreversibility reflects a directional violation of local
hidden state models and underpins one-sided device-independent quantum protocols. While both phenomena break reciprocity,
quantum synchronization concerns quantum dynamical behavior, whereas quantum steering reflects the structure of quantum
measurement correlations. That means that unlike quantum synchronization, quantum steering does not arise from quantum
dynamical evolution but from the structure of quantum measurements and conditional states, as shown in Tab. III.

B. Context of the synchronization theory

In this section, we add some discussions on our results in the context of the synchronization theory, and especially,
we demonstrate that the increased resilience against both thermal fluctuations and random fabrication imperfections of the
mechanical resonators arises from the magnon-Kerr nonlinearity.

First, we discuss the mean-value complete synchronization when the externally applied magnetic field is aligned parallel to
either a chosen direction (CD, i.e., [110]) or the other direction (OD, i.e., [100]) wrt the crystallographic axes of the YIG sphere,
leading to a magnon-Kerr coefficient K < 0 or K > 0, respectively. The mean-value complete synchronization requires the
following conditions: ⟨X−(t)⟩ = ⟨Xb1 (t)⟩ − ⟨Xb2 (t)⟩ = 0 and ⟨Y−(t)⟩ = ⟨Yb1 (t)⟩ − ⟨Yb2 (t)⟩ = 0. To demonstrate this, we plot
the mean values ⟨Xb j (t)⟩ and ⟨Yb j (t)⟩ for j = 1, 2 as a function of the evolution time t, when the magnetic field enters from
the OD and the CD, as shown in Fig. S9. We find that though ⟨Xb1 (t)⟩ and ⟨Xb2 (t)⟩ exhibit steady oscillations, their evolutions
are completely different in the OD case [see Fig. S9(a)]; in stark contrast to this, they become identical in the CD case [see
Fig. S9(d)]. Meanwhile, the evolutions of ⟨Yb1 (t)⟩ and ⟨Yb2 (t)⟩ are completely different (same) when injecting the magnetic field
from the OD (CD) case, as shown in Figs. S9(b) and S9(e).

Next, we demonstrate the measure of synchronization in the context of mean-value synchronization by introducing a direct
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FIG. S10: (a) Classical synchronization measure SC versus time t, scaled by τ = 2π/ω1, when the magnetic field enters from the CD
(K/ω1 = −2 × 10−5) or OD (K/ω1 = 2 × 10−5). (b) SC versus the magnon-Kerr coefficient K. Here we set Ω = 0, ∆a/ω1 = −1.005, and
∆m/ω1 = −1.

coupling between the two mechanical oscillators. The oscillation of the mean value of the position ⟨Xb1 (t)⟩ and ⟨Xb2 (t)⟩, as well
as the mean values of the momentum ⟨Yb1 (t)⟩ and ⟨Yb2 (t)⟩, are nearly synchronized, as shown in Figs. S9(d), S9(e), and S9(f). In
this scenario, the conditions for quantum synchronization are met, rendering the synchronization metrics valid. Evidently, the
coupling between the two mechanical oscillators assumes a pivotal role in achieving mean-value synchronization in the nonlinear
system. Furthermore, it is similar to quantum synchronization in cases where mean-value synchronization is satisfied.

In particular, beyond nonreciprocal quantum synchronization, nonreciprocal classical synchronization can also be achieved by
harnessing the magnon-Kerr effect. The magnetic field aligned parallel to the CD of the crystallographic axes of the YIG sphere
yields a redshift in the polariton frequency, whereas it applied along the OD leads to a blueshift. In Fig. S10(a), we show SC(t)
versus the time t when the magnetic field is injected from the CD or OD. For the CD case, an efficient classical synchronization
of two mechanical resonators appears (SC ≈ 0.015, red solid curve); while for the OD, no classical synchronization occurs
(SC = 0, blue solid curve). This is because an extraordinary transition between redshift and blueshift results in the resonance
and off-resonance between the magnon detuning and phonons, respectively. This demonstrates the emergence of nonreciprocal
classical synchronization, that has no counterpart in the previously established demonstrations.

We also find that around ∆m/ω1 = −1, classical synchronization happens, because it is generated in the CD but vanished
in the OD, which fully agrees with the results in Fig. S10(b). Physically, the redshift (blueshift) for the CD (OD) case
induces a completely different physical process, where magnons are in (far-off) resonance with phonons. This indicates that,
just by employing the magnon-Kerr nonlinearity, a significant classical nonreciprocity emerges. Our findings pave a route to
constructing a more general nonreciprocal device beyond the limitations in classical and quantum regimes, and bridging quantum
and classical nonreciprocity.

Now, we show how to achieve a significant improvement in the resilience against both thermal fluctuations and random
fabrication imperfections of the resonators, just by introducing the magnon-Kerr nonlinearity. In particular, we further
demonstrate that this enhanced resilience plays an important role in improving the performance of quantum synchronization.
The phonon modes are thermalized by their thermal baths through the effective mechanical dissipation channels, and thermal
noise can destroy fragile quantum synchronization in practical devices. Below, we study the effect of the magnon-Kerr effect
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on the effective mechanical decay rates Γ j,eff when the magnon-Kerr nonlinearity is absent (K = 0) and present (K < 0).
Specifically, we find that, by using the magnon-Kerr effect, the effective mechanical damping rate Γ j,eff can be significantly
tuned. For example, we have demonstrated that compared with the magnon-Kerr-off case, the effective mechanical dissipation
rate becomes much smaller in the CD case, giving rise to improving the resilience of the resonator; while the effective mechanical
decay rate becomes much larger in the OD case, resulting in reducing the resilience of the resonator. Physically, the thermal-
noise-exchange rates between the mechanical resonators and their effective heat baths are much slower for a smaller value of the
decay rate, and it is good for protecting quantum synchronization from environmental thermal perturbations. This significant
enhancement in the resonator resilience against both thermal fluctuations and random fabrication imperfections of quantum
devices plays an important role in improving the performance of quantum synchronization. These findings demonstrate that
the increase in the synchronization measure for a CD mode applied field is a consequence of the enhanced resilience of the
resonator.

To further demonstrate that the implementation of the magnon-Kerr effect enhances the resilience against both thermal
fluctuations and random fabrication imperfections of the resonator, we plotted the effective magnon-phonon (Gm) and photon-
phonon (Ga) coupling strengths as a function of the magnon-Kerr coefficient K in Fig. S11. We reveal that injecting the magnetic
field from the CD yields a symmetric coupling (Gm ≈ Ga), corresponding to an improvement in the resonator resilience; while
applying it from the OD leads to an asymmetric coupling (Gm , Gc), corresponding to a decrease in the resilience.

C. Potential applications

While the primary focus of our work is on fundamental aspects of nonreciprocal quantum synchronization and one-way
nonclassical correlations, our results have potential implications for unidirectional quantum information processing, particularly
in the context of quantum entanglement distribution, quantum sensing, and the design of robust quantum networks [S18, S31–
S34]. The nonreciprocal quantum-synchronization-induced correlations could serve as a key quantum resource for stabilizing
quantum coherence across distributed systems, even in the presence of noise or disorder [S18, S31–S34], as shown in Tab. IV.
To highlight the potential applications and advantages of our findings, we present the following discussions.

The demonstrated nonreciprocal control of quantum synchronization in this platform may find use in unidirectional quantum
information processing, where synchronized quantum systems can serve as robust building blocks for distributed quantum
networks [S18, S31–S34]. The tunable magnon-Kerr nonlinearity effect and its resilience to random fabrication imperfections
of practical devices suggest possible applications in quantum sensing and quantum signal transduction, especially in noisy
or imperfect environments. Our robustness analysis provides insights relevant for the design of scalable chiral quantum
networks, where fabrication-induced imperfections are inevitable. These findings may also contribute to future developments in
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nonreciprocal quantum sensing architectures that exploit collective dynamics for enhanced quantum precision [S18, S31–S34].

Application Area Implications of Our Findings

Nonreciprocal quantum in-
formation processing

Enables unidirectional routing of quantum correlations in phononic or hybrid
quantum networks, and enhances thermal robustness and quantum coherence
preservation.

Nonreciprocal quantum state
engineering

Provides a tunable Kerr-nonlinear mechanism to stabilize phase-locked mechanical
states for preparing non-classical mechanical resources used in quantum sensing
and quantum interface protocols.

Quantum transduction archi-
tectures

Facilitates noise-resilient quantum synchronization and temporal alignment across
subsystems in hybrid quantum systems (e.g., microwave-to-optical converters), and
improves quantum transduction efficiency.

Nonreciprocal quantum sens-
ing

Robustness to fabrication imperfections enables practical quantum sensing
platforms that operate reliably in noisy or imperfect environments.

Chiral quantum networks Supports the design of scalable quantum networks resilient to disorder, with
synchronized units functioning as robust quantum nodes.

Fundamental studies of irre-
versibility

Provides a testbed to explore entropy production and time-asymmetric quantum
dynamics in open quantum systems, with applications in informing nonreciprocal
quantum thermodynamics.

TABLE IV: Potential applications and broader advantages of nonreciprocal quantum synchronization.

In particular, our nonreciprocal quantum synchronization framework unlocks multiple exciting opportunities for application
across quantum technologies. Including:

(i) Nonreciprocal quantum information processing.—The resulting nonreciprocal quantum synchronization enables a
controllable unidirectional flow of quantum correlations (quantum information), which can be harnessed for unidirected quantum
signal routing in phononic or hybrid quantum networks, where thermal robustness and coherence preservation are essential [S18].

(ii) Nonreciprocal quantum state engineering.—Our scheme offers a tunable, nonlinearity-engineered route to stabilize phase-
locked mechanical states. This can be employed to prepare non-classical mechanical states, which is good for nonreciprocal
quantum sensing or interface protocols between mechanical and optical (magnonic) degrees of freedom [S31, S32].

(iii) Quantum transduction architectures.—In hybrid quantum systems where mechanical resonators serve as intermediaries
between disparate platforms (e.g., microwave-to-optical conversion), nonreciprocal quantum synchronization could enable
efficient and noise-robust temporal alignment across subsystems [S33, S34].

(iv) Fundamental studies of irreversibility.—The intrinsic unidirectionality in the quantum synchronization dynamics
constitutes a controlled setting for investigating microscopic origins of irreversibility and entropy production in open quantum
systems, thus offering insights relevant to nonreciprocal quantum thermodynamics.

We believe these points illustrate the broader utility of our findings, for both potential quantum technologies and fundamental
physics.
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