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Supplementary Figure 1 Determination of the coupling-parameter values and 
dependences (see explanations in the Supplementary Note 1). 
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Supplementary Note 1. Determination of the coupling-parameter values 
and dependences from the experimental data. 

The theoretical dependence of the time delay Dt  on the coupling parameter, Γ , has a resonant 
shape with two well-pronounced extrema (see Figure 3b and Supplementary Figure 1a). The 
experimentally-measured time delay as a function of the voltage V  of the positioner (changing the 
distance d ∝V  between the resonator and the fiber) also exhibits a similar resonant shape with two 
extrema (Supplementary Figure 1b).  

As discussed in the main text, the relation between the voltage and coupling constant has the 
form Γ =α exp −βV( )  with two unknown constants α  and β . Associating the voltages Vmin  and 
Vmax , corresponding to the extrema of the Dt V( )  curves, with the values Γmin  and Γmax , 
corresponding to the extrema in theoretical dependences Dt Γ( ) , we retrieve the two parameters α  

and β . Finally, using equation Γ =α exp −βV( ) , we plot the experimentally measured time delay 
Dt  versus the coupling strength Γ  (see Supplementary Figure 1c).  

The above procedure was repeated for a series of measurements Dt V( )  with different 
detunings νc . Importantly, determining the constants α  and β  at different detunings νc  resulted in 
approximately the same values (with variations ~10%). Therefore, we calculated the averaged 
values α  and β  from all these series of measurements and used these values for the global 
mapping Γ V( )  in all the experimental data.  

The final dependences of the time delays Dt  on the dimensional coupling parameter 
γ /Γ0 = Γ − Γ0( ) /Γ0  are shown in Figures 5d-f. We also used the obtained dependence Γ V( )  to 
determine the values of the coupling constant shown in the series of measurements with varying 
detuning, Figures 5a-c. 
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Supplementary Note 2. Refined time-delay calculations. 

The transmission coefficient T ω( )  [Eq. (1) in the main text] connects the amplitudes of the 
Fourier components of the incident and transmitted fields,  

!E ω( )  and  ′!E ω( ) . It is easy to see that in 
the time domain, the amplitudes of these signals, E t( )  and ′E t( ) , are connected by the differential 
equation 

 d ′E
dt

+ iω 0 + Γ0 + Γ( ) ′E = dE
dt

+ iω 0 + Γ0 − Γ( )E . (1) 

The solution of this equation can be written in the integral form: 

 ′E t( ) = E t( )− 2Γ e iω0+Γ+Γ0( )τ

−∞

0

∫ E t +τ( )dτ . (2) 

The field of the incident wave packet can be written as  E t( ) = E t( )e− iωct , where  E t( )  is the 
slowly-varying amplitude. In a similar way, we write the transmitted wave-packet field as 

 ′E t( ) = ′E t( )e− iωct . In terms of these slow amplitudes, Eq. (2) becomes 

 
 
′E t( ) = E t( )− 2Γ e − iνc+Γ+Γ0( )τ

−∞

0

∫ E t +τ( )dτ , (3) 

where νc =ω c −ω 0 .  
The typical scale of the temporal variations of the amplitude  E t( )  is assumed to be large as 

compared with the resonator relaxation time Γ + Γ0( )−1 ~ Γ0
−1 , which is the adiabatic condition 

Eq. (3) or (14) in the main text. Then, one can expand  E t +τ( )  in the Taylor series (keeping the 
second-derivative term) 

 
  
E t +τ( ) ! E t( ) +τ dE t( )

dt
+ τ 2

2
d 2E t( )
dt 2

. (4) 

Substituting Eq. (4) into Eq. (3), we evaluate the integral and arrive at 

 
  

′E t( ) ! νc − i Γ − Γ0( )
νc + i Γ + Γ0( )E t( )− 2Γ

νc + i Γ + Γ0( )⎡⎣ ⎤⎦
2
dE t( )
dt

+ 2iΓ
νc + i Γ + Γ0( )⎡⎣ ⎤⎦

3
d 2E t( )
dt 2

. (5) 

Equation (5) is the time-domain analogue of Eq. (4) in the main text, but now keeping the second-
derivative term in the Taylor series. It can be written in a compact form using the transmission 
coefficient [Eq. (1) in the main text] and its derivatives: 

 
  
′E t( ) ! u0E t( ) + iu1

dE t( )
dt

+ i
2u2
2

d 2E t( )
dt 2

, (6) 

where u0 = T ω c( ) , u1 =
dT ω c( )
dω c

, and u2 =
d 2T ω c( )
dω c

2 .  

Let the temporal centroid of the incident wave packet be 
 
tc = t E t( ) 2

−∞

∞

∫ dt E t( ) 2
−∞

∞

∫ dt = 0 . 

Then, the time delay of the transmitted wave packet is defined as  
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Dt =
t ′E t( ) 2

−∞

∞

∫ dt

′E t( ) 2
−∞

∞

∫ dt
. (7) 

Assuming that the wave-packet envelope  E t( )  is real and symmetric with respect to t = 0 , we 
evaluate Eq. (7) with Eq. (6). Cumbersome but straightforward calculations result in 

 Dt =
Im u0

*u1( ) + 12 Im u1
*u2( ) I1I0

u0
2 + u1

2 +Re u0
*u2( )⎡

⎣
⎤
⎦
I1
I0

, (8) 

where 
 
I0 = E t( ) 2

−∞

∞

∫ dt  and 
 
I1 = dE t( ) / dt 2

−∞

∞

∫ dt . For the Gaussian incident pulse, Eq. (2) in the 

main text, we have 
 
E t( )∝ exp −t 2 / 2Δ2( )  and  I1 / I0 =

!Δ2 / 2 .  
If we neglect the second-derivative terms in Eq. (S8), u2 → 0 , it becomes equivalent to 

Eqs. (11) and (12) in the main text. With the u2  terms, Eq. (8) represents a 1D temporal analogue 
of the 2D beam-shift equation derived in [1]. When the adiabatic parameter  ε =

!Δ /Γ0  is 
sufficiently small, the u2 -terms practically do not affect the Dt νc ,γ( )  dependences, and could be 
safely neglected (see Figure 5). 

One can also note that the integral in Eq. (3) can be evaluated exactly for the Gaussian 
incident pulse. This yields 

 
 
′E t( ) = E t( ) 1− 2π ΔΓ ez

2

1− erf z( )⎡⎣ ⎤⎦{ } , (9) 

where z = Δ Γ0 + Γ − iνc( )− Δ−1t⎡⎣ ⎤⎦ . Equation (9) allows calculation of the time and frequency shifts 
even when the adiabatic parameter ε  is not small. However, in this case, the spectrum width of the 
pulse becomes of the order of or wider than the resonator linewidth, and the approximate resonance-
transmission equation (1) in the main text can become invalid for side frequencies with 

 ω −ω 0 ≫ Γ0 + Γ( ) . 
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