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Supplementary Figure 1: Comparison of the real parts of the eigenvalues λ3,4 between a 4×4 matrix
(i.e., effective two-level case) and a 9×9 matrix (i.e., three-level case) with respect to γeff/4Ω. We see
the bifurcations (denoted by orange stars) in both panels occur at γeff/4Ω = 1, indicating that the two cases share
the same Liouvillian exceptional point (LEP). The horizontal blue line shows λ1 and the pink straight line indicates
λ2, but both are irrelevant to our experimental observation. For the case of 9×9 matrix, we only plot four eigenvalues
for comparison, and neglect the remaining unphysical eigenvalues.
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Supplementary Figure 2: A quantum Otto cycle is composed of four strokes: two adiabatic strokes
referred to as adiabatic compression and expansion and two isochoric strokes describing the energy
exchange with a hot and cold bath. The density operators remain constant during adiabatic strokes, that is
ρ2 = ρ1 , and ρ

3
= ρ4 . The density operators change during the isochoric strokes, implying energy exchange with

either the hot or cold bath. Hi denotes the Hamiltonian describing the ith stroke, and ρ′i represent the time-dependent
matrix in the ith Stroke.
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Supplementary Figure 3: Time evolution of the effective temperature Teff in a quantum Otto cycle in
the single ion heat engine. The red and green curves represent, respectively, the Otto cycle with both isochoric
processes in the exact phase and both in the broken phase. The blue curve represents the isochoric heating process
in the exact phase but the isochoric cooling process in the broken phase. τi is the total execution time of the Otto
cycle.
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Supplementary Figure 4: The evolution of coherence in a quantum Otto cycle in the trapped single
ion heat engine. The red and green curves represent, respectively, the Otto cycle with both isochoric processes are
implemented in the exact phase and in the broken phase. Blue curve represents the case where the isochoric heating
process is implemented in the exact phase and the isochoric cooling process implemented in the broken phase. τi is
the total execution time of the Otto cycle.
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Supplementary Figure 5: Dynamical evolution of the population versus the duration of the isochoric
heating stroke. (a), (b) and (c) represent, respectively, the Otto cycle with isochoric processes in exact phase, with
the isochoric heating process in exact phase but the isochoric cooling process in broken phase, and with isochoric
processes in broken phase. The dashed lines correspond to the ideal evolution of the population and the solid lines
represent numerical simulation using experimentally available parameter values.
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Supplementary Figure 6: Schematic for the sequential change of ∆ in the adiabatic expansion stroke.
Ideally, the detuning ∆ should be tuned smoothly in a continuous fashion (blue line). In the experiments; however,
this is approximated by a sequence of discrete steps where each step decreases the detuning by 2 kHz within 400 ns
(red line) using an acousto-optic modulator (AOM). This results in a tuning curve (green) which is slightly different
than the ideal tuning curve (blue), leading to unexpected phases in the operation of our system.
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Supplementary Note 1: Hamiltonian and Effective decay rate

The Hamiltonian describing the three-level system which corresponds to the single trapped ion in our experi-
ments is given as:

Hs = ωe |e〉 〈e|+ ωp |p〉 〈p|+ Ω
2 (|e〉 〈g| e−iωlt + |g〉 〈e| eiωlt) +

Ωp

2 (|e〉 〈p| eiωdt + |p〉 〈e| e−iωdt), (1)

where ωp and ωe are, respectively, the energies of the levels |p〉 and |e〉 with respect to the level |g〉, and ωl and ωd
are, respectively, the frequencies of the lasers coupling |g〉 to |e〉 and |e〉 to |p〉. This Hamiltonian Hs satisfies the
Schrödinger equation (in units of ~ = 1)

d

dt
|ψ〉s = −iHs |ψ〉s , (2)

where Hs = H0 + H1(t), with H0 corresponding to the time-independent part of the Hamiltonian. Then defining
|ψ〉s = UI |ψ〉I with UI = e−iH0t, we rewrite the Schrödinger equation and obtain

U†IUI
d

dt
|ψ〉I = −i

(
U†IHsUI − iU†I

dUI
dt

)
|ψ〉I = −iHI |ψ〉I , (3)

which implies that the Hamiltonian HI in the interaction picture satisfies

HI = U†IHsUI − iU†I
dUI

dt = U†IHsUI −H0. (4)

Defining H0 = ωl |e〉 〈e|+ ωp |p〉 〈p| and using the Baker-Hausdorff formula

eiH0tAe−iH0t = A+ it[H0, A] +
(it)2

2!
[H0, [H0, A]] + · · · (5)

we find

HI = ∆ |e〉 〈e|+ Ω
2 (|e〉 〈g|+ |g〉 〈e|) +

Ωp

2 (|e〉 〈p|+ |p〉 〈e|), (6)

where we have ∆ = ωe − ωl and ωp = ωd + ωl, ωd = ωp − ωl = ωp − (ωe −∆) ' ωp − ωe. The effective Hamiltonian
Heff is then given by [1]

Heff = − 1
2V−[H−1

NH + (H−1
NH)†]V+ = ∆ |e〉 〈e|+ Ω

2 (|e〉 〈g|+ |g〉 〈e|), (7)

where the non-Hermitian Hamiltonian HNH is given by HNH = − i
2 (γe+γg) |p〉 〈p| = − i

2γ |p〉 〈p|, with γi corresponding
to the decay rate from the level |p〉 to the level |i〉, while the perturbative excitations V+ and de-excitations V− are

defined as V+ =
Ωp

2 |p〉 〈e|+
Ω
2 |e〉 〈g| and V− =

Ωp

2 |e〉 〈p|+
Ω
2 |g〉 〈e|. We then write the effective Lindblad operator as

[1]

Le→geff = i
√
γg

Ωp
γ
|g〉 〈e| , (8)

from which the effective decay rate γeff from the excited state |e〉 to the ground state |g〉 is found as

γeff =
γgΩ

2
p

γ2
=

(γ − γe)Ω2
p

γ2
=
(

1− γe
γ

)Ω2
p

γ
'

Ω2
p

γ
. (9)

The same result by an alternative method can be found in [2]. We note that the expression for Heff in Eq. (7) is the
same as Eq. (2) in the main text and γeff appears in Eq. (1) of the main text and in the expression of the LEP of
the system.

Supplementary Note 2: Liouvillian Exceptional Points

Our system obeys the Lindblad master equation ρ̇(t) = Lρ(t) as defined in Eq. (1) of the main text. Here
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L is the Liouvillian superoperator and ρ is the density operator of the system. From the Hamiltonian, as written in
Eq. (7) and Eq. (2) of the main text, we can write L as

L =

 −γeff iΩ/2 −iΩ/2 0
iΩ/2 −(γeff/2 + i∆) 0 −iΩ/2
−iΩ/2 0 −(γeff/2− i∆) iΩ/2
γeff −iΩ/2 iΩ/2 0


By setting ∆ = 0, we find the eigenvalues of L as λ1 = 0, λ2 = −γeff , λ3 = 1

4 (−3γeff −
√
γ2

eff − 16Ω2), and

λ4 = 1
4 (−3γeff +

√
γ2

eff − 16Ω2).
Since these eigenvalues are related to dissipation terms, their real parts indicate decaying effects while their imag-

inary parts define the eigenenergies [3]. It is easily seen that the eigenvalues λ3 and λ4 become degenerate and an
LEP emerges at λ3 = λ4 = −3γeff/4, when γeff = 4Ω. As explained in the main text, for γeff > 4Ω, we have real λ3

and λ4 with a splitting amount given by ξ =
√
γ2

eff − 16Ω2). Thus, when γeff > 4Ω, the system is in the broken phase.
For γeff < 4Ω, on the other hand, λ3 and λ4 become complex conjugate pairs with a splitting of ξ in their imaginary
parts, corresponding to the exact phase.

Moreover, to justify the validity of our reduced matrix, i.e., Eq. (12), which comes from the effective Hamiltonian
Eq. (8), we have calculated the LEPs for both Hamiltonians (6) and (7), and found that the LEPs share the same
decay rate as written in (9) in the case of ∆ = 0. This is further confirmed in Supplementary Figure 1. The
eigenvectors corresponding to the above eigenvalues are,

ρ1 =

(
Ω2

γ2
eff+Ω2 −i γeffΩ

γ2
eff+Ω2

i γeffΩ
γ2
eff+Ω2 0

)
, ρ2 =

(
0 1
1 0

)
, (10)

and

ρ3,4 =

 −1 −−iγeff±
√

16Ω2−γ2
eff

4Ω
−iγeff±

√
16Ω2−γ2

eff

4Ω 1

 , (11)

Clearly, at ∆ = 0 and γeff = 4Ω, the eigenstates ρ3 and ρ4 coalesce, confirming that a second-order LEP emerges at
γeff = 4Ω, separating the exact- and broken-phases.

Supplementary Note 3: Thermodynamic quantities

In this section, we present the definitions and discussions on the five thermodynamic quantities [4]: the net
work W , the output power P , and the efficiencies ηo, ηc, ηq. We note that in our system of a trapped ion, the internal
energy of the spin heat engine is defined as U = tr(ρH), where ρ and H are the density matrix and Hamiltonian of
the spin system, respectively. Moreover, the Hamiltonian H = ∆ |e〉 〈e|, the coupling strength Ω, and the effective
dissipation rate γeff are used to tune the system such that an Otto engine cycle is performed, as explained in the
main text. Quantum coherence affecting the performance of the quantum Otto cycles in our system is investigated
by tuning the execution time t2.

The net work and output power

In classical thermodynamics, the first law of thermodynamics is expressed as dU = dW + dQ. In contrast, in
quantum thermodynamics [4, 5], it is expressed as dU = d(tr(ρH)) = tr(ρdH) + tr(Hdρ) where the work and heat
in differential form are defined as dW = ρdH and dQ = Hdρ, respectively. Then the energy absorption Qin from
the hot bath and the energy dissipation Qout to the cold bath can be written as Qin =

∑
i

Hidρ
′
i (for dρ′i > 0) and

Qout =
∑
i

Hidρ
′
i (for dρ′i < 0), respectively (see Supplementary Figure 2). As we discussed in the main text, when

Qin and Qout are calculated for our quantum Otto cycle, we see that during both of the isochoric processes the system
absorbs and releases energy due to the quantum coherence involved. This is reflected in the oscillation observed in
the populations of the excited and ground states. Thus, the net acquired work and the corresponding output power
can be written, respectively, as

W = Q
in

+Qout =
∑
i

Hidρ
′
i, (12)
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and

P = W/(t1 + t2 + t3 + t4), (13)

where ti is the execution time of the i-th Stroke in the cycle.

Heat engine efficiencies

Ideal Otto engine efficiency ηo: In an ideal adiabatic process, the density matrix remains constant (ρ
2

= ρ
1
, and

ρ
3

= ρ
4
), where ρ

2
and ρ

3
are the density matrices of the initial and final states of the isochoric heating process,

respectively, and ρ
4

and ρ
1

are the density operators in the isochoric cooling process (See main text Fig. 1F).
In classical thermodynamics, the energy can be transferred only from a hot system to a cold one, and the energy

flow is unidirectional. We can write the energy absorption from the hot bath during the isochoric heating stroke as

Qoin = tr[(ρ
3−ρ2

)H
2
], (14)

and the energy release to the cold bath during the isochoric cooling stroke as

Qo
out

= tr[(ρ
4−ρ1

)H
4
], (15)

where H
2

= ∆max |e〉 〈e| and H
4

= ∆min |e〉 〈e| are the Hamiltonians in the isochoric heating and cooling strokes,
respectively. Here, ∆min and ∆max are the minimum and maximum detunings, respectively. So, the corresponding
ideal Otto engine efficiency can be written as

ηo = 1− Qoout

Qoin
= 1− ∆min

∆max
, (16)

which is in the ideal limit (ηo = 1) when ∆min = 0.

Conventional Otto engine efficiency ηc: The efficiency of the conventional Otto cycle is defined by

ηc = W
Qin

= 1− Qout

Qin
. (17)

Quantum Otto engine efficiency ηq: In contrast to the classical counterpart, the heat absorption takes
place during both the isochoric heating and cooling strokes of a quantum Otto cycle. To focus on the coherent
effects in the isochoric heating process, we define ηq to be only regarding the heat absorption in the isochoric heating
process:

ηq = W
Qq

in
, (18)

where W = H2dρ
′
2 +H4dρ

′
4 = tr[H2(ρ3 − ρ2)] + tr[(H4(ρ1 − ρ4)] is the work done and Qqin is the heat absorption

Qqin = (PLh − PSh )∆max, (19)

with PLh and PSh denoting, respectively, the final steady state and initial populations in the isochoric heating process.
Since there is no change in the state of the system during the adiabatic strokes, we have ρ1 = ρ2 = ρSh , ρ3 = ρ4 = ρh(t).
Using this in the above expressions, we find ηq as

ηq = W (t)
Qq

in
=

(∆Pe+PL
h −P

S
h )(∆max−∆min)

(PL
h −P

S
h )∆max

=
(∆Pe+PL

h −P
S
h )

(PL
h −P

S
h )

(
1− ∆min

∆max

)
=
(

1 + ∆Pe

(PL
h −P

S
h )

)
ηo, (20)

where we have defined the time-dependent population difference caused by the quantum coherence as
∆Pe = Ph(t) − PLh . It is clear in Eq. (20) that ηq equals to the classical ideal Otto engine efficiency ηo,
that is ηq = ηo when ∆Pe = 0. Similarly, we have ηq > ηo for ∆Pe > 0, and ηq < ηo for ∆Pe < 0. Since ∆Pe is a
signature of the coherence in the system, we conclude that coherence may increase or decrease the efficiency of a
quantum Otto cycle.
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Supplementary Note 4: Effective temperature and Coherence

In the interaction picture, we consider the two-level system consisting of the ground state |g〉 and the excit-
ed state |e〉, with energy gap ∆. The occupation probabilities Pe and Pg obey the Boltzman distribution
Pe/Pg = exp[−β∆(t)], and Pe + Pg = 1, giving the effective temperature [4, 5]

Teff =
1

kBβ
=

∆

kB

(
ln
Pg
Pe

)−1

. (21)

Supplementary Figure 3 depicts the evolution of the effective temperature during a quantum Otto cycle. Here the
changes in the temperature are mainly due to the detuning variation in the adiabatic compression and expansion
strokes and the population oscillation in the isochoric strokes. The effective temperature can be made zero if the
detuning is set to zero.

Using the expression Cl1(ρ) =
∑
i 6=j |ρi,j | for the coherence [6], we have calculated the coherence involved in

an Otto cycle in our system and presented the results in Supplementary Figure 4. We see that the coherence
remaining at the end of an Otto cycle is the lowest when the system is operated such that both of the isochoric
strokes are in the broken phase and the highest when both of the isochoric strokes are implemented in the exact phase.

Supplementary Note 5: Dynamical evolution of the population

We represent the dynamic evolution of the population in Supplementary Figure 5, in which more cycles are
plotted for the three cases considered in our experiment, i.e., both the isochoric processes in the exact phase, the
isochoric heating process in the exact phase but the isochoric cooling process in the broken phase, and both the
isochoric processes in the broken phase. This figure helps to understand the variation of some key quantities in the
heat engine performance.

Supplementary Note 6: Experimental details

During the implementation of the Otto cycles, we drive the qubit by an ultra-stable narrow linewidth laser
with wavelength 729-nm as expressed in Eq. (2) of the main text. This driving laser is controlled by a double-pass
acousto-optic modulator which helps control the phase and the frequency of the 729-nm laser. We use a field
programable gate array to control a direct digital synthesizer as the frequency source of the acousto-optic modulator.
We repeat each single-qubit measurement 10,000 times to minimise the quantum projection noise. Due to the
noises caused by the fluctuations in the applied magnetic and electric fields, the qubit in our system suffers from
dephasing of 0.81(11) kHz. Other sources of error in our experiments are the laser instability and imperfections in
the single-qubit pulses, whose effects are assessed from the Rabi oscillations. After calibration, we estimate the total
error in the initial-state preparation and the final-state detection to be 0.7(2)% and 0.22(8)%, respectively. The
influence of these noises and imperfections are reflected in the error bars shown in the figures of the main text.

In Figs 2A1, 2B1 and 3A, we note a slight reduction (≈0.1) in the population of the excited state |e〉 during the
first and third strokes. This deviation from the ideal theoretical expectation (i.e., no population change during the
adiabatic compression and expansion strokes) can be attributed to the fact that in the experiments the frequency of
the 729 nm laser was not tuned smoothly in a continuous fashion but instead we used a sequence of discrete steps using
an AOM. As shown in Supplementary Figure 6, although the required continuous change of the detuning ∆ (blue line)
can be equivalently accomplished by discrete steps of operation, as plotted by the red line. In our experiments, the
variation of detuning is accomplished by a sequence of AOM which leads to a slightly different tuning curve (green)
due to the switching time of the AOM. This leads to imperfect variation of the detuning, bringing in unexpected
phases in the operation. Nevertheless, considering these unexpected phases in numerical simulation, we have fitted
the experimental observations involving such cases by theory very well, see Figs. 2A1, 2B1 and 3A in the main text.
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