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Supplementary Methods

Further explanations of the quantum operator ÛG

Math Preparation

In order to illustrate the effect of the operator ÛG in the QSL model, we rewrite the superposition

state |ψ⟩ in trial t in this form (t is omitted for simplicity):

|ψ⟩ =
4∑

k=1

ψk |ak⟩

= ψa |a⟩+ ψa⊥ |a⊥⟩ ,

(1)

where |a⟩ is the chosen action, and |a⊥⟩ is a vector orthogonal to |a⟩ satisfying

|a⊥⟩ =
∑
ak ̸=a

ψk

ψa⊥

|ak⟩ , (2)

where

ψa⊥ =

√∑
ak ̸=a

|ψk|2 =
√
1− |ψa|2 . (3)

This means that |ψ⟩ can be taken as a vector in the two dimensional space spanned by |a⟩ and |a⊥⟩.
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Geometric explanation for fixed learning factors

We first consider a simple example, where ϕ1 = ϕ2 = π:

Q̂1 = Î − 2 |a⟩ ⟨a| , (4)

Q̂2 = 2 |ψ⟩ ⟨ψ| − Î . (5)

It is clear that

Q̂1 |a⟩ = (Î − 2 |a⟩ ⟨a|) |a⟩ = − |a⟩ , (6)

Q̂1 |a⊥⟩ = (Î − 2 |a⟩ ⟨a|) |a⊥⟩ = |a⊥⟩ . (7)

Here, Q̂1 flips the sign of the amplitude of action |a⟩ but keeps the amplitude of any action orthog-

onal to |a⟩. Hence Q̂1 will reflect any vector about the hyperplane orthogonal to |a⟩. Similarly, Q̂2

keeps the sign of the amplitude of action |ψ⟩ but flips the amplitude of any action orthogonal to

|ψ⟩.

Let |⟨ψ|a⟩| = sin θ̄ (having a period of 2π). Q̂1 first flips |ψ⟩ into |ψ′⟩ = Q̂1 |ψ⟩ (Figure S3),

and Q̂2 then flips |ψ′⟩ into |ψ′′⟩ = Q̂2 |ψ′⟩. The pure effect of ÛG is rotating |ψ⟩ by 2θ̄. This

example is slightly different from the original one1, where Q̂2 is constructed from another vector

with different properties.

Geometric explanation for the general case

We now go to the full formula of Grover iteration, where the learning factors are flexible:

Q̂1 = Î − (1− eiϕ1) |a⟩ ⟨a| , (8)
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Q̂2 = (1− eiϕ2) |ψ⟩ ⟨ψ| − Î . (9)

Similarly, we have

Q̂1 |a⟩ = (Î − (1− eiϕ1) |a⟩ ⟨a|) |a⟩ = eiϕ1 |a⟩ , (10)

Q̂1 |a⊥⟩ = (Î − (1− eiϕ1) |a⟩ ⟨a|) |a⊥⟩ = |a⊥⟩ , (11)

so that,

|ψ′⟩ = Q̂1 |ψ⟩

=
[
Î − (1− eiϕ1) |a⟩ ⟨a|

]
|ψ⟩

= eiϕ1ψa |a⟩+ ψa⊥ |a⊥⟩ ,

(12)

where Q̂1 acts as a phase gate (conditional phase shift operation) in quantum computation,

Uphase =

eiϕ 0

0 1

 . (13)

To visualize the transformation geometrically, we introduce the Bloch sphere representation2,

which provides a useful means to visualize a single qubit (like our |ψ⟩ in the two dimensional

Hilbert space). We have

|ψ⟩ = ψa |a⟩+ ψa⊥ |a⊥⟩

= eiγ(cos
θ

2
|a⟩+ eiφ sin

θ

2
|a⊥⟩)

≃ cos
θ

2
|a⟩+ eiφ sin

θ

2
|a⊥⟩ ,

(14)
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where the factor eiγ can be ignored, because a global phase has no observable effects. The pa-

rameter polar angle θ (having a period of π) and azimuthal angle φ (having a period of 2π) define

a point on the Bloch sphere (Figure 2c in the main text). A Bloch sphere is a two-dimensional

manifold embedded in the three-dimensional Euclidean space, with antipodal points correspond-

ing to a pair of orthogonal vectors. The vectors or states |a⟩ and |a⊥⟩ are the north and south poles

(zenith direction) and the angle between them is π, different from π/2 in Figure S3. Here, θ is

conceptually equivalent to 2θ̄ in Figure S3.

The effect that Q̂1 adds ϕ1 to the phase of the amplitude of |a⟩ can be seen as subtracting ϕ1 from

the phase φ of the amplitude of |a⊥⟩ if throwing away a global phase, and thus can be shown as

the clockwise rotation around the z-axis ẑ by ϕ1 on the blue circle on the Bloch sphere, without

changing the value of θ, rotating |ψ⟩ into |ψ′⟩.

We then transform the basis {|a⟩ , |a⊥⟩} into the basis {|ψ⟩ , |ψ⊥⟩}, and |ψ⟩ becomes the new

z-axis ẑ′. Similarly, |ψ′⟩ has the two spherical coordinates parameters θ′ and φ′. Q̂2 also subtracts

ϕ2 from the phase φ′ of the amplitude of |ψ⊥⟩ , which clockwise rotates around the new z-axis ẑ′

on the purple circle, rotating |ψ′⟩ into |ψ′′⟩.

Taken together, the effect of ÛG is a two-step rotation, which finally changes the angle θ in the

basis {|a⟩ , |a⊥⟩}. The composition of two rotations is still a rotation. To determine the rotation

angle and the rotation axis, we use the notation of three-dimensional rotations3. Assuming that the

first rotation is βm̂ (rotating around m̂ by β) and the second is αl̂, then the composition rotation is
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γn̂. We have

cos
γ

2
= cos

α

2
cos

β

2
− sin

α

2
sin

β

2
l̂ · m̂

sin
γ

2
n̂ = sin

α

2
cos

β

2
l̂ + cos

α

2
sin

β

2
m̂+ sin

α

2
sin

β

2
l̂ × m̂ .

(15)

Taking α = −ϕ2, β = −ϕ1, l̂ and m̂ to be the direction vector of |ψ⟩ and |a⟩, we obtain the com-

position results immediately. Naturally, a generalization of Grover iteration could be an arbitrary

parametric rotation on the Bloch sphere.

Visualization of the general case

We can also compute the effect of ÛG analytically:

Q̂1 |ψ⟩ =
[
Î − (1− eiϕ1) |a⟩ ⟨a|

]
|ψ⟩

= eiϕ1ψa |a⟩+ ψa⊥ |a⊥⟩
(16)

Q̂2Q̂1 |ψ⟩ = (1− eiϕ2)
[
ψa |a⟩+ ψa⊥ |a⊥⟩

][
ψ∗
a ⟨a|+ ψ∗

a⊥
⟨a⊥|

]
Q̂1 |ψ⟩ − Q̂1 |ψ⟩

= (f − eiϕ1)ψa |a⟩+ (f − 1)ψa⊥ |a⊥⟩ ,
(17)

where

f = (1− eiϕ2)(eiϕ1|ψa|2 + |ψa⊥|
2)

= (1− eiϕ2)(eiϕ1|ψa|2 + 1− |ψa|2)

= (1− eiϕ2)
[
1− (1− eiϕ1)

]
|ψa|2 .

(18)
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The effect of ÛG on |ψ⟩ is to change the amplitude of |a⟩ and |a⊥⟩. The ratio of the amplitude of

action |a⟩ after and before ÛG can be written as:

R = f − eiϕ1

= (1− eiϕ1 − eiϕ2)− (1− eiϕ1)(1− eiϕ2)|ψa|2 .
(19)

Let p = |ψa|2 be the probability of action |a⟩ before learning. Then the ratio of the probability

after (pnew) and before (p) learning is:

|R|2 =pnew

p

=
∣∣(1− eiϕ1 − eiϕ2)− (1− eiϕ1)(1− eiϕ2)p

∣∣2
=3 + 2

[
cos(ϕ1 − ϕ2)− cosϕ1 − cosϕ2

]
−

[
6 + 4 cos(ϕ1 − ϕ2) + 2 cos(ϕ1 + ϕ2)− 6 cosϕ1 − 6 cosϕ2

]
p

+ 4(1− cosϕ1)(1− cosϕ2)p
2 ,

(20)

which is symmetric about ϕ1 = ϕ2 and ϕ1 = −ϕ2, and depends only on the learning factors ϕ1,

ϕ2, and the current probability p. For convenience, we use R2 to refer to |R|2 later.

We can plot pnew or LR = logR2 as a function of ϕ1, ϕ2 and p (Figure S4a-b). A LR larger than

zero means reinforcement (red) and smaller than zero means penalization (blue) (Figure S4b). The

mapping from u(t) to (ϕ1, ϕ2) then delineates a line with slope tanπη (−1 < η < 1) moving

from the starting point (b1, b2), the intersection point of the cyan (when the outcome is smaller

than zero) and orange lines (when the outcome is larger than zero). The outcome determines one

point on this line and reinforces or penalizes the action based on the LR value (Figure S4c-d). The

previous work chose (η, b1, b2) manually4; in contrast, in our models, we left these parameters free
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and optimized them to fit the data.

Quantum transition amplitudes and probabilities

In each trial t, since the Grover operation can be described in the two-dimensional space spanned

by |a⟩ and |a⊥⟩, all the operators have a two-dimensional representation in this basis. The repre-

sentation of |ψ⟩ is

ψ⃗ =

 ψa

ψa⊥

 . (21)

And the representations of Q̂1, Q̂2 and ÛG are

Q1 =

eiϕ1 0

0 1

 , (22)

Q2 =

(1− eiϕ2)ψaψ
∗
a − 1 (1− eiϕ2)ψaψ

∗
a⊥

(1− eiϕ2)ψa⊥ψ
∗
a (1− eiϕ2)ψa⊥ψ

∗
a⊥

− 1

 , (23)

UG = Q2Q1 =

eiϕ1 [(1− eiϕ2)ψaψ
∗
a − 1] (1− eiϕ2)ψaψ

∗
a⊥

eiϕ1(1− eiϕ2)ψa⊥ψ
∗
a (1− eiϕ2)ψa⊥ψ

∗
a⊥

− 1

 . (24)

From the theory of the special unitary group, it can be shown that the general expression of any

2× 2 unitary matrix U is:

U =

 a b

−eiϕb∗ eiϕa∗

 , |a|2 + |b|2 = 1 , (25)
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which depends on four free real parameters (the phase of a, the phase of b, the angle ϕ and the

magnitude between a and b). However, if U is timed by eiϕ̄ for some ϕ̄, its effect does not change

because a global phase shift is not observable.

In our case, a and b depict the effect of ÛG on ψ⃗. We have

|a|2 =
∣∣eiϕ1 [(1− eiϕ2)ψaψ

∗
a − 1]

∣∣2
= 2(1− cosϕ2)(|ψa|4 − |ψa|2) + 1 ,

(26)

and

|b|2 =
∣∣(1− eiϕ2)ψaψ

∗
a⊥

∣∣2
= 2(1− cosϕ2)(|ψa|2 − |ψa|4) ,

(27)

where b is the quantum transition amplitude (we took its norm in the analyses) and |b|2 is the

quantum transition probability5,6. Because of the symmetry, the transition probability describes

the probability of the transition from |a⟩ to |a⊥⟩ or the transition from |a⊥⟩ to |a⟩, measuring the

effect of learning from outcome in our system.

Quantum distances

In classical probability theory, if we consider a probability distribution as a state, the distinguisha-

bility of states can be computed using the distance measures. Similarly, we can characterize the

distinguishability of superposition states using quantum distances. There are several distance mea-

sures commonly used in quantum information, such as the trace distance2, the Hilbert-Schmidt

distance7, the Bures distance2, and the Hellinger distance8. Though different distance measures
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have different meanings in physics, such as the geometrical or statistical explanations9,10, they are

equivalent in our system because of the pure state representation of internal states. We use the

trace distance for the analyses, and the choice of distance measures will not affect the results in

our paper.

Let us consider two superposition states |ψ1⟩ and |ψ2⟩, which refer to |ψ(t)⟩ and |ψ(t+ 1)⟩ in our

case. For any superposition state |ψ⟩, its density operator is defined as ρ̂ = |ψ⟩ ⟨ψ|. Correspond-

ingly, we have two density operators ρ̂1 and ρ̂2. Moreover, tr is the trace operator and
√
· is the

principal square root of a positive-semidefinite matrix. The trace distance is then half of the trace

norm of the difference of the matrices (the Schatten norm for p = 1):

Dtr(ρ̂1, ρ̂2) =
1

2
||ρ̂1 − ρ̂2||1

=
1

2
tr
√
(ρ̂1 − ρ̂2)†(ρ̂1 − ρ̂2) .

(28)

Relations between quantum transition amplitudes and quantum distances

We define the formula ÛG = Q̂2(ϕ2)Q̂1(ϕ1) as the primal QRL and the equality ˆ̃UG = Q̂2(ϕ1)Q̂1(ϕ2)

as the dual QRL. The final probability of the chosen action is symmetric about ϕ1 = ϕ2, which

means we cannot tell the primal QRL from the dual QRL only by projected probabilities, though

they have different effects on the state vectors.

It can be numerically verified that the quantum transition amplitude |b| in the primal QRL is the

quantum distance D in the dual QRL, while the proof details will be presented in another the-

oretical paper (Ji-An, L. et al., unpublished manuscript). Similarly, the quantum distance D in

the primal QRL is the quantum transition amplitude |b| in the dual QRL. Though the transition

amplitude and the quantum distance have different definitions and meanings, they are not distin-
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guishable at the projected probability level. We then define the generalized quantum distance as

the geometric average of these two signals, combining the information from them.

Uncertainty

Uncertainty here is computed using the Shannon’s entropy:

uncertainty(t) = −
4∑

j=1

Pr(δj(t) = 1) log Pr(δj(t) = 1) . (29)

Here, uncertainty(t) means the uncertainty for the task of one subject in trial t computed by one

model and Pr(δj(t) = 1) represents the probability of choosing deck j in trial t.

Supplementary Results

I - The Decay rule is better than the Delta rule with the goodness-of-fit but

worse with the simulation method

In all groups, when the one-term Decay (EVLDecayTDC, EVLDecayTIC, PVLDecayTDC, PVLDe-

cayTIC) and the one-term Delta models (EVLDeltaTDC, EVLDeltaTIC, PVLDeltaTDC, PVLDeltaTIC)

were compared, the one-term Decay model was superior than the one-term Delta model with one-

step-ahead predictions. However, this superiority was reversed when the total choice sequences

were simulated without using past choices (Figure 3), as reported in former papers11,12.

12



II - The QSPP model performs significantly better than other models

We also did Wilcoxon signed rank tests between the QSPP model and other CRL models with false

discovery rate (FDR) correction of linear step-up procedure13. The QSPP model has smaller AICc

values (p < 0.001 for all), smaller BIC values (p = 0.685 for VPPDecayTDC and p = 0.007 for

VPPDecayTIC in the control group, and p < 0.001 for others), and smaller MSE values (p < 0.001

for all).

III - Similarities in parameters between the QSPP and the CRL models

The QSPP model adopted a time independent rule (TIC) for the perseverance part. Hence, we

compared the reinforcement learning weight w in the QSPP model with those in the VPPDeltaTIC

and the VPPDecayTIC models. A smaller w means that the perseverance plays a larger role in the

models. We found that there is a larger correlation between the QSPP w and the VPPDecayTIC

w, compared with the correlation between the QSPP w and the VPPDeltaTIC w in the control and

smoking groups (Figure S9a-b), showing a larger similarity of the role that the perseverance plays

in the QSPP and the VPPDecayTIC models. We also found that, in the control and the smoking

groups, the increase of model fit ability (log likelihood) by adding the perseverance into the one-

term models (QSL, PVLDecayTIC and PVLDeltaTIC) has a stronger negative correlation with w

in the QSPP and the VPPDecayTIC models than w in the VPPDeltaTIC model (Figure S10a-b).

This means that if the perseverance cannot help model fitting, it tends to have a small impact on

model behavior. The larger similarity of the perseverance term in the QSPP and the VPPDecayTIC

models indicates that the VPPDecayTIC model is a better counterpart of the QSPP model in our

fMRI analyses. One possible reason why the correlation between w and the increase of model fit
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in the VPPDeltaTIC model is near zero in our groups is that the PVLDeltaTIC model showed bad

performance for most subjects, while the incorporation of the perseverance term provides a general

improvement on model fitting.

IV - The basic reinforcement learning signals were replicated in the VPPDe-

cayTIC model

To demonstrate the rationality of fMRI analysis comparing the QSPP and the VPPDecayTIC mod-

els, we also replicated some basic reinforcement learning signals in the VPPDecayTIC model,

consistent with former studies14–16. We found that the reward prediction error signal was posi-

tively related to the activation in the striatum (in the caudate and extended into putamen) and the

current action value signal was positively related to the activation in the ventromedial prefrontal

cortex (vmPFC) (Figure S8). It was not suitable to test these basic reinforcement learning signals

in the QSPP model because the QRL models do not assume action value or prediction error per se.

V - The quantum learning variables showed consistent results

In the control group, the quantum transition amplitude significantly activated the medial frontal

gyrus (MeFG)/anterior cingulate cortex (ACC), the precuneus, the left fusiform gyrus, the infe-

rior parietal lobule (IPL), the middle frontal gyrus (MiFG), and the right inferior temporal gyrus

(ITG)/fusiform gyrus (Figure S11a). The quantum distance significantly activated the MeFG/ACC,

the precentral gyrus, the insula, the precuneus, the left fusiform gyrus, the IPL, the MiFG, and

the right ITG/fusiform gyrus (Figure S11b). These results were consistent with the generalized

quantum distance (Figure 6 in the main text, also see the Supplementary Table S2), showing the
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rationality of the definition of the generalized quantum distance.

VI - Uncertainty and uncertainty modulation are represented at the neural

level

In the control group, uncertainty from the QSPP model positively related to the activation in a set

of regions, including the right ITG/fusiform gyrus, the left fusiform gyrus, the left MeFG, and the

left MiFG (see Figure S12 and the Supplementary Table S3). These brain regions might play a

role in the representation of uncertainty computed by the QSPP model. The corresponding regions

of VPPDecayTIC were similar to that of the QSPP model and there was no significant difference

between them.

We further studied the interaction of uncertainty and the generalized quantum distance, and found

that it activated the PCC, the vmPFC/ACC, and other areas (Figure S13). These results indicate

that uncertainty modulates the main computation of the QRL models.

Supplementary Discussion

I - Uncertainty is represented at the neural level

Uncertainty decreases with time, meaning the subject’s uncertainty about the goodness of decks

(the first-order uncertainty for each deck) diminishes gradually. Therefore, it can be considered

as the second-order uncertainty, or estimation uncertainty17,18. Our uncertainty results were con-

sistent with former studies, like the middle frontal gyrus (MiFG)17,18. These regions might serve

to provide second-order uncertainty for uncertainty-driven exploration19 and are also involved in
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other kinds of uncertainty and ambiguity18,20.

Though uncertainty is not a direct component in the QRL formulas, it plays a significant role in

understanding the QRL algorithms cognitively. First, uncertainty is important to general reinforce-

ment learning and value-based decision making. Uncertainty adjusts the weights of different ex-

periences and optimizes learning rate during value-based decision making according to the agent’s

environment20,21. It also drives exploration and belief updating19,22 and is involved in arbitration

between different reinforcement learning systems23. Second, uncertainty is especially important

to the IGT. Indeed, the IGT was first introduced to explore decision making under uncertainty24:

uncertainty fosters learning through somatic markers. In addition, uncertainty modulates learning

of prediction errors in the IGT16. Third, uncertainty is also important to QRL because it modu-

lates the general reinforcement learning process, including QRL-related learning. Our results of

interaction of uncertainty and penalty/reward reflect the influence of learning on internal states.

We further studied the interaction of uncertainty and the generalized quantum distance and found

that it activated the PCC, the vmPFC/ACC, and other areas. The PCC and the vmPFC/ACC were

previously reported to be activated during updating the expectancies of decks and modulated by

uncertainty in the IGT16. These results indicate that uncertainty modulates the QRL computation

and the learning from outcomes in the IGT.

II - The QRL algorithm can function at the neural level with the assumption

of classical recurrent neural networks

We have discussed that the medial frontal gyrus (MeFG) and other regions related to the internal-

state-based variables, might work as a network in a quantum-like manner, integrating the outcomes
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to update internal states in the QRL models. We refer to such a network as a quantum-processing

network.

According to the theoretical existence proof25, quantum algorithms can function if there exist three

kinds of classical recurrent neural networks: the unitary evolution network, the choice probability

network, and the state reduction network. The former two are implied in our QRL models. We

can assume a possible mechanism of how QRL could be implemented in the quantum-processing

network.

First, the superposition state |ψ(t)⟩ is kept persistently in the unitary evolution network and sent

to the choice probability network in each trial. The quantum-processing network might altogether

represent the internal states.

Second, the choice probability network calculates the probability from the probability amplitude

and generates an action selection. Such processes might rely on the MeFG and the connections

between the MeFG and motor control areas (such as the precentral gyrus) involving motor planning

and preparation.

Third, the unitary evolution network receives external outcomes (might be represented in the OFC),

performs Grover iteration operator ÛG on |ψ(t)⟩, and generates |ψ(t+ 1)⟩ for next trial.

The function of the unitary evolution network is based on neural synchronization and oscillation

which are important in cortical computation26 and high-level cognitive functions like learning and

memory27.
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III - Notes on the groups studied

We did not match the control group with the smoking group in the present study in the aspects of

sex, age, and education years. One main reason was that the two groups were collected separately

and we did not particularly aim at studying the mechanism of smoking addiction. Therefore,

controlling these factors was not necessary. In addition, it was rather difficult to recruit female

smokers in China, since 52.9% of Chinese adult men smoke, compared with the 2.4% of adult

women who smoke28.
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Supplementary Figures

1 3 5

Block

−5

0

5

Super Group
G

oo
d 

- 
B

ad
 D

ec
k 

S
el

ec
tio

ns

Figure S1: The task performance in the super group, showing proportion of good minus bad deck
selections in 20-trial blocks. The shaded regions indicate the standard error.
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a b

c d

Figure S2: The diagrams for the architecture of reinforcement learning models. a, one-term clas-
sical reinforcement learning (CRL) models, containing three stages: (1) evaluate the outcome;
(2) update the expectancy; and, (3) make a choice. b, one-term quantum reinforcement learning
(QRL) model (Quantum-Superposition-state-Learning, QSL). c, two-term classical reinforcement
learning (CRL) models. d, two-term quantum reinforcement learning (QRL) model (Quantum-
Superposition-state-Plus-Perseverance, QSPP). Model details and comparisons should be referred
to the main text and Supplementary Methods: "Computational modeling".
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Figure S3: Geometric explanation of simple ÛG for fixed learning factors. Q̂1 rotates |ψ⟩ into |ψ′⟩
(blue), and Q̂2 rotates |ψ′⟩ into |ψ′′⟩ (purple).
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Figure S4: The algebraic visualization of the Grover iteration, showing the case when the proba-
bility of the current action is p = 0.4. a, the new probability pnew of the current action as a function
of ϕ1 and ϕ2. b, LR = log pnew/p as a function of ϕ1 and ϕ2. A LR value larger than zero means
reinforcement (red) and smaller than zero means penalization (blue). The mapping from u(t) to
(ϕ1, ϕ2) (determined by the parameters (η, b1, b2) from one subject) then delineates a line with
slope tanπη moving from the starting point (b1, b2) (cyan line: the outcome is smaller than zero;
orange line: the outcome is larger than zero). c, LR as a function of the outcome. d, pnew as a
function of the outcome.
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Figure S5: The proportion of each deck selection (EDS) computed by the QSPP and the VPPDe-
cayTIC models in the control group (averaging over subjects). The shaded regions indicate the
standard error.
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Figure S6: The generalized quantum distance provided by the QSPP model. a, the generalized
quantum distance of one example subject in the control group. b, the generalized quantum distance
averaging over subjects in the control group. All shaded regions indicate the standard error.
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Figure S7: Uncertainty provided by the QSPP and the VPPDecayTIC models. a, uncertainty of
one example subject in the control group. b, uncertainty averaging over subjects in the control
group. All shaded regions indicate the standard error.
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y=-16 x=4

Reward prediction error Action value

Figure S8: fMRI results of the reward prediction error and the current action value signal in the
VPPDecayTIC model in the control group. Reward prediction error signal was related to the
activation in the striatum (in the caudate and extended into putamen) and the current action value
signal was related to the activation in the ventromedial prefrontal cortex (vmPFC). All coordinates
are plotted in RAI (DICOM) order (-right +left, -anterior +posterior, -inferior +superior).
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Figure S9: Correlation between the reinforcement learning weight w in the QSPP and in the VP-
PDeltaTIC models as well as between w in the QSPP and in the VPPDecayTIC models in the
control and the smoking groups. a, the correlation between the QSPP and the VPPDeltaTIC mod-
els (first row: scatter plot of w; second row: correlation of four perseverance parameters). b, the
correlation between the QSPP and the VPPDecayTIC models.
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Figure S10: Correlation between the reinforcement learning weight w and the increase of model
fit (log likelihood) by incorporating the perseverance term in the QSL, the PVLDeltaTIC and the
PVLDecayTIC models in the control and the smoking groups. a, the case for the QSPP and the
QSL models. b, the case for the VPPDeltaTIC and the PVLDeltaTIC models. c, the case for the
VPPDecayTIC and the PVLDecayTIC models.
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Quantum Transition Amplitude (QSPP, Control Group)a

Quantum Distance (QSPP, Control Group)b
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Figure S11: Activity related to the quantum transition amplitude and the quantum distance in
the control group. The quantum transition amplitude significantly activated the medial frontal
gyrus (MeFG)/anterior cingulate cortex (ACC), the precuneus, the left fusiform gyrus, the infe-
rior parietal lobule (IPL), the middle frontal gyrus (MiFG), and the right inferior temporal gyrus
(ITG)/fusiform gyrus. The quantum distance significantly activated the MeFG/ACC, the precen-
tral gyrus, the insula, the precuneus, the left fusiform gyrus, the IPL, the MiFG, and the right
ITG/fusiform gyrus. All coordinates are plotted in RAI (DICOM) order (-right +left, -anterior
+posterior, -inferior +superior).
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Figure S12: The uncertainty-related activity in the control group. Uncertainty computed by
the QSPP model positively related to these regions, including the right inferior temporal gyrus
(ITG)/fusiform gyrus, the left fusiform gyrus, the left medial frontal gyrus (MeFG), and the left
middle frontal gyrus (MiFG). All coordinates are plotted in RAI (DICOM) order (-right +left,
-anterior +posterior, -inferior +superior).
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Figure S13: The activity related to the uncertainty × generalized quantum distance interac-
tion in the control group. The interaction significantly activated the anterior cingulate cortex
(ACC)/ventral medial prefrontal cortex (vmPFC), the posterior cingulate cortex (PCC)/precuneus,
the fusiform gyrus, and the inferior frontal gyrus (IFG). All coordinates are plotted in RAI (DI-
COM) order (-right +left, -anterior +posterior, -inferior +superior).
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Supplementary Tables

Table S1: From classical to quantum models.
Framework CRL QRL Original QRL

Action representation
Set-theoretic
a1, a2, a3, a4

Geometric
|a1⟩, |a2⟩, |a3⟩, |a4⟩

Geometric

State representation
Probability distribution
pj(t)

Wave function
|ψ⟩ =

∑4
j=1 ψj |aj⟩

Wave function

Action valuation Value function Wave function Value function
Action selection Boltzmann exploration Superposition state col-

lapse
Superposition state col-
lapse

Outcome evaluation Utility Utility Outcome
Learning rule Value or perseverance

updating
Grover iteration Value updating and

Grover iteration
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Table S2: Brain areas correlated with the generalized quantum distance computed by the QSPP
model in the control group.

Region x (mm)∗ y (mm) z (mm) Extent (voxels)
MeFG/ACC -2 -5 44 731
L precentral 28 10 53 88
R Precentral -31 13 59 466
L Insula 28 -16 11 84
R Insula -31 -13 11 162
Precuneus 4 70 50 1185
L fusiform 19 79 -18 1865
R ITG/fusiform -52 58 -12 267
L IPL 31 52 38 85
R IPL -49 40 47 593
L MiFG 40 -34 23 69
R MiFG -31 -37 29 638

* Coordinates are in Talairach space and RAI (DICOM) order and corre-
spond to the peak of the cluster.
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Table S3: Brain areas correlated with the uncertainty computed by the QSPP model in the control
group.

Region x (mm)∗ y (mm) z (mm) Extent (voxels)
R ITG/fusiform -55 46 -9 308
L Fusiform 34 58 -18 251
L MiFG 28 -16 38 253
L MeFG 4 -7 44 68

* Coordinates are in Talairach space and RAI (DICOM) order and corre-
spond to the peak of the cluster.
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Table S4: Brain areas correlated with the uncertainty × penalty interaction.
Group Region x (mm)∗ y (mm) z (mm) Extent (voxels)

Control group

L MeFG/ACC 19 -52 23 852
L MiTG/STG 55 10 -12 748
R MiTG -61 13 -6 273
R MeFG -13 -28 38 99
L OFC 28 -40 0 134
L MiTG/angular/PCC/precuneus 43 61 29 1393

Smoking group
L MeFG 10 -28 47 72
L MiTG/STG 58 10 8 226
L IPL 31 40 56 144

* Coordinates are in Talairach space and RAI (DICOM) order and correspond to the peak of the cluster.
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Table S5: Brain areas correlated with the uncertainty × reward interaction in the control group.
Region x (mm)∗ y (mm) z (mm) Extent (voxels)
L MiTG/STG 61 40 2 86
L MiTG/angular 40 70 32 244
L MeFG 16 -31 41 53∗∗

* Coordinates are in Talairach space and RAI (DICOM) order and corre-
spond to the peak of the cluster.
** Nearly significant.
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Table S6: Brain areas correlated with the uncertainty × generalized quantum distance interaction
computed by the QSPP model in the control group.

Region x (mm)∗ y (mm) z (mm) Extent (voxels)
L vmPFC/ACC 4 -52 2 363
R Fusiform -16 88 -9 171
L Fusiform 22 88 -15 169
L Culmen 13 49 -12 166
L IFG 25 -16 -18 129
L PCC/precuneus 10 55 26 91
R IFG -22 -34 -6 77

* Coordinates are in Talairach space and RAI (DICOM) order and corre-
spond to the peak of the cluster.
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