
Articles
https://doi.org/10.1038/s41562-019-0804-2

1Eye Center, Dept. of Ophthalmology, the First Affiliated Hospital of USTC, Hefei National Laboratory for Physical Sciences at the Microscale, School of 
Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. 2Department of Statistics and Finance, 
School of Management, University of Science and Technology of China, Hefei, China. 3School of Engineering and Information Technology, University of New 
South Wales, Canberra, Australian Capital Territory, Australia. 4Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Centre, Shanghai 
Jiao Tong University School of Medicine, Shanghai, China. 5The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of 
Science and Technology of China, Hefei, China. 6Key Laboratory of Applied Brain and Cognitive Sciences, School of Business and Management, Shanghai 
International Studies University, Shanghai, China. 7Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wakoshi, Japan. 
8Department of Physics, The University of Michigan, Ann Arbor, MI, USA. 9Hefei Medical Research Centre on Alcohol Addiction, Anhui Mental Health 
Centre, Hefei, China. 10Academy of Psychology and Behaviour, Tianjin Normal University, Tianjin, China. 11Centres for Biomedical Engineering, University of 
Science and Technology of China, Hefei, China. *e-mail: zxcustc@ustc.edu.cn

Originating from early behavioural psychology, reinforce-
ment learning is now a widely used approach in the fields 
of machine learning1 and decision psychology2. It typi-

cally formalizes how one agent (a computer or animal) should take 
actions in unknown probabilistic environments to maximize its 
total reward. The agent selects actions according to value functions 
that describe the expectations for alternative decisions (value-based 
decision-making) and are influenced by reward, penalty and its 
beliefs about the current situation.

Recently, quantum computation techniques were successfully 
applied in the field of machine learning3. Based on the quantum 
superposition principle and quantum parallelism, quantum rein-
forcement learning (QRL) was proposed4, combining quantum 
theory and reinforcement learning. This approach was later applied 
to robot navigation5,6 and quantum machine learning7,8. Computer 
simulations4,5 showed that QRL performs better on a large search 
space, learns faster and balances better between exploration and 
exploitation compared with classical reinforcement learning (CRL). 
It was shown theoretically that QRL can achieve quadratic improve-
ments in learning efficiency and exponential improvements in per-
formance for a broad class of learning problems8. This algorithm 
was also generalized to better adjust weights on favourable actions6, 
which further demonstrated the robustness of this framework.

In a similar way to the introduction of quantum-inspired tech-
niques in machine learning, quantum-inspired frameworks have 
also been introduced in psychology. There is evidence supporting 
quantum models for human behaviour: in the last decade, several 
cognitive scientists found that some behavioural paradoxes and 
effects (for example, the conjunction fallacy and the order effect) 
that resist explanations from classical probability theory could be 

explained well by quantum probability theory9–16. For example, one 
work showed the superiority of a quantum random walk model over 
classical Markov random walk models for a modified random-dot 
motion direction discrimination task and revealed quantum-like 
aspects of perceptual decisions12. Another study proved the superi-
ority of one quantum model over the standard prospect model for 
a two-stage gambling task using the Bayesian factor model com-
parison11. In these works, the mathematical structure of quantum 
probability theory was emphasized, rather than the physical expla-
nations for quantum mechanics. The assumption of low-level quan-
tum physics processes is not necessary in these cases.

Although these quantum models were successful for some kinds 
of human decision-making, value-based decision-making17 (the 
central issue of decision neuroscience and neuroeconomics18–20 and 
a hallmark of high-level cognition) has not yet been tackled using 
quantum frameworks. Over the past decades, neuroscientific and 
psychological research on value-based decision-making has con-
verged on the standard model of CRL2,21,22, providing highly fruit-
ful explanations and surprisingly accurate predictions. Due to some 
seemingly quantum-like features of value-based decision-making 
(in real life, making a choice per se can influence one’s subjective 
values for the alternatives) and the theoretical efficiency of quan-
tum learning algorithms, we aimed to test whether the QRL frame-
work could also be useful and insightful for modelling value-based 
decision-making.

Moreover, previous quantum models for human behaviour were 
mainly supported by behavioural data. Only a few of them were 
supported by evidence from electroencephalography (EEG) analy-
sis, lacking spatial resolution and locality information23. We have 
little knowledge about how these quantum-like mechanisms are 
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implemented in the brain (for example, which brain area might par-
ticipate in quantum-like processes).

Our goal is to explore quantum-like aspects of processes under-
lying value-based decision-making. To this end, we applied QRL 
to value-based decision-making and studied how this quantum 
framework could be implemented at both the behavioural and the  
neural levels.

First, we collected behavioural and functional magnetic reso-
nance imaging (fMRI) data from 58 healthy subjects (control 
group) and 43 nicotine addicts (smoking group) performing 
the Iowa Gambling Task (IGT)24. This is a value-based decision- 
making task that is well known among psychiatrists and neurosci-
entists, designed to evaluate the degree of decision-making defects. 
Its complexity and high ecological validity endow it with the abil-
ity to capture important components (motivational, learning and 
choice processes) underlying real-life decision-making. In previous 
works, many CRL models for the IGT were developed25 to break 
down single task performance into these components. Some of 
these models were very successful in illustrating the subprocesses 
of value-based decision-making and explaining the behavioural dif-
ferences between healthy people and patients with decision-making 
defects, such as drug addicts and brain-damaged populations. The 
smoking group was chosen based on the following considerations: 
smokers were reported to show impaired decision-making in the 
IGT26,27; the results from the smoking group could further vali-
date the conclusions about the mechanisms of decision-making in 
healthy people; and, by means of behavioural modelling and model-
based fMRI analysis, the mechanisms of addiction disorders were 
better understood25.

Second, we developed two additional QRL models (quantum 
superposition state learning (QSL) and quantum superposition 
state plus perseverance (QSPP)) for the IGT and compared them to 
several well-established CRL models. We found that, in all groups, 
the QSPP model provided goodness-of-fit and simulation perfor-
mance comparable to the best CRL models. We further replicated 
these results in 504 healthy subjects (super group) from an online 
IGT data pool28.

Third, we executed fMRI analyses to compare the neural sub-
strates relevant to the learning processes in the QSPP model and the 
best-fitting CRL model. Because learning involves the updating of 
outcome-evaluation-based internal states29, we proposed and ana-
lysed several internal-state-related variables (generalized quantum 
distance and uncertainty-related interaction in the QSPP model) 
that are important in the QRL models and found that they were rep-
resented in the medial frontal gyrus (MeFG).

Altogether, our findings support the idea of quantum-like pro-
cesses during value-based decision-making at both the behavioural 
and neural levels and provide the fMRI evidence connecting quan-
tum cognition to neuroscience.

Results
Task design and subject performance. Healthy (control group) 
and smoking (smoking group) subjects were recruited to perform 
the IGT24 in an fMRI scanner (Fig. 1a). In this task, the subjects 
selected one of four decks in each trial to obtain potential reward 
or penalty points. They were required to learn the goodness of each 
deck to maximize their total rewards. Regardless of which group 
they were in, subjects chose the good decks significantly more 
often in the last 20 trials than in the first 20 trials (control group 
(two-tailed paired t test): t(57) = 17.84, P < 0.001, Cohen’s d = 3.52, 
95% confidence interval: 0.54, 0.68; smoking group: t(42) = 10.02, 
P < 0.001, Cohen’s d = 2.20, 95% confidence interval: 0.39, 0.60), 
meaning that most of them gradually learned the task (Fig. 1b,c). 
In addition to these two groups, we also analysed behavioural data 
from an online IGT data pool (super group of 504 healthy subjects; 
see also Supplementary Fig. 1).

The QSPP model performed well. After a careful search of the lit-
erature, we implemented 12 CRL models designed to break down 
the IGT performance into subcomponents. Roughly speaking, all of 
them contained three stages30 (Fig. 2a; see also Supplementary Fig. 2):
	1.	 Evaluate the outcome (for example, the value plus perseverance 

(VPP) rule).
	2.	 Update the expectancy (for example, the Decay learning rule).
	3.	 Make a choice (for example, the trial-independent choice  

(TIC) rule).
Most of these models were developed in past works30–32, some of 

which were very successful in understanding the mechanisms 
and defects of decision-making32–35.

Using the principles of QRL, we developed two additional QRL 
models (Fig. 2b; see also Supplementary Fig. 2), the QSL model 
and the QSPP model, by replacing each classical component in the 
CRL models with its quantum counterpart (see also Supplementary 
Table 1):
	1.	 The CRL models use the set-theoretic representation a1, a2, 

a3, a4 to describe four actions (selecting each deck), while the 
QRL models use the geometric representation |a1〉, |a2〉, |a3〉, 
|a4〉, with the four eigenvectors spanning an action space  
(Hilbert space).

	2.	 The CRL models use the classical probability pj(t) to describe 
the tendency of selecting action aj, while the QRL models use 
the quantum probability amplitude ψj such that the internal 
state can be represented as a superposition state in the action 

space, ∑ψ ψ∣ ⟩ = ∣ ⟩= a
j j j1
4

.
	3.	 The CRL models evaluate actions explicitly by value functions, 

while the QRL models evaluate actions implicitly by the prob-
ability amplitude.

	4.	 The CRL models learn value functions from outcomes using 
various learning rules, while the QRL models learn the proba-
bility amplitude from experience using an amplitude-updating 
algorithm (Grover iteration, ÛG).

	5.	 The CRL models generate actions according to various choice 
rules, while the QRL models generate actions by superposition 
state collapse. Therefore, the QRL models work in a quantum-
like manner different from the CRL models.

We proposed a geometric and algebraic explanation for the main 
operator ÛG in the QRL framework (Fig. 2c; see also Supplementary 
Figs. 3 and 4 and the Further explanations of the quantum operator 
ÛG section in the Supplementary Methods). On the Bloch sphere, 
in each trial, the north pole ̂z = |a〉 represents the chosen action 
and the south pole |a⊥〉 represents the unchosen actions. The vector  
̂z′ = |ψ〉 is the internal superposition state, while its closeness to the 

poles reflects the weights on actions. If |ψ〉 moves to the north pole, 
the agent will choose the same action in the next trial, but if |ψ〉 is 
rotated to the south pole, the agent will never choose the same action 
in the next trial. During learning, the main operator = ̂ ̂Û Q QG 2 1 takes 
a two-step rotation: ̂Q1 first rotates |ψ〉 into |ψ′〉 around ̂z = |a〉 (blue 
circle) and then ̂Q2 rotates |ψ′〉 into |ψ′′〉 around ̂z′ = |ψ〉 (purple 
circle), changing the closeness of the state vector to the two poles. 
The rotation angles are computed from the outcome (a linear map-
ping from utility to rotation angles).

For simplicity, the VPP models (models with the VPP rule) and 
the QSPP model are considered to be two-term models, while the 
others are considered to be one-term models, based on whether the 
perseverance part is included.

These models were fitted using the optimization algorithm to 
maximize the log likelihood (LL) of each subject’s choice sequence. 
To test the feasibility of the QRL models, we performed model 
comparisons based on the goodness-of-fit criterion and the  
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simulation method30 (see also Supplementary Results, section II for 
statistical test results).

For the goodness-of-fit criterion, the corrected Akaike’s 
Information Criterion (AICc)36 and the Bayesian Information 
Criterion (BIC)37 provide a direct assessment of one-step-ahead 
predictions. Smaller AICc or BIC values represent better fits. The 
mean AICc values for all of the models in each group are presented 
in Fig. 3a–c. Here all models outperformed the baseline model, 
which assumes that the agent chooses each deck at a fixed prob-
ability. The QSL model provided better fits than all of the one-term 
CRL models (red bars) in the smoking and super groups and was 
comparable to the best one-term CRL PVLDecayTDC model in 
the control group. The QSPP model provided better fits in all three 
groups than all other CRL models, including the VPPDeltaTIC 
model, which was reported to be the best-fitting model among CRL 
models in former works32. The BIC values for all models provide 
similar results (Fig. 3d–f). In addition to frequentist model com-
parison, we further applied Bayesian model comparison based on 
the variational Bayesian method, treating the model as a random 

variable and estimating the distribution over model space38. Based 
on the AICc and BIC, we obtained the expected model likelihood, 
producing consistent results (Fig. 4). The QSPP model also showed 
an inferred frequency larger than any other CRL models. The two 
QRL models together provided an exceedance probability larger 
than 0.99 in all cases.

Unlike the goodness-of-fit criterion, the simulation method30 
was designed to assess the accuracy of one model generating pre-
dictions for entire choice sequences according to model parameters, 
without relying on the subjects’ choice history. Based on the simu-
lated sequences, we computed the mean square errors (MSEs) of the 
proportion of choice (PoC; Fig. 5a–c) and the MSEs of each deck 
selection (EDS; Fig. 5d–f). Here all the QRL models (orange bars) 
had a performance comparable to (or even better than) the best 
CRL models (red or blue bars) in all groups. Additional checks of 
the above distances between the behaviour of subjects and models 
are presented in Supplementary Fig. 5.

In conclusion, all comparison results indicate that the QSPP 
model is comparable to (or even better than) the CRL models at 
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Fig. 1 | Task diagram and task performance. a, An IGT diagram and fMRI scan processes. There were three 7-min fMRI scan runs, separated by intervals 
of about 1 min. Each scan consisted of one 30-s rest block and three 106-s task and 24-s rest cycles. The last 6 s of each task block were designed for good 
deck identification, which was not analysed in this study. The first 100 s contained 20 trials and each trial was divided into two events: during the decision-
making phase, 4 s were provided for card selection, and a random selection was made if no decision had been made during this period; during the outcome 
phase, the reward and penalty were presented on the screen for 1 s. There were no inter-trial intervals. The blue bar above the decks showed the initial 
3,000 points throughout the task and the orange bar showed the current accumulated points. b, The proportion of good minus bad deck selections in the 
20-trial blocks. The shaded regions indicate the standard error. c, Subjects chose the good decks significantly more often in the last 20 trials than in the 
first 20 trials. The markers are slightly jittered to show all subjects (blue circle, control group; orange triangle, smoking group). The dashed diagonal line 
represents the equality line.
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the behavioural level, proving the QRL to be a powerful frame-
work to describe value-based decision-making behaviour. For the 
following analyses, we mainly concentrated on our QSPP model 
and the best-fitting VPPDecayTIC model as the representatives of 
the QRL and CRL models, respectively. We analysed the similar-
ity in their parameters, showing that the VPPDecayTIC model was 
a reasonable counterpart of the QSPP model (see Supplementary  
Results, section III).

Generalized quantum distances were represented at the neural 
level. To illustrate the learning process formalized by the QSPP 
model, we factorized the main unitary operator ÛG and acquired 
one of the most important properties of this unitary operator: 
quantum transition amplitudes (see the Quantum transition ampli-
tudes and probabilities section in the Supplementary Methods). 
Just as electrons can jump between energy levels when absorbing 
or releasing energy, the agent’s preference can change between the 
unchosen actions and the chosen action when acquiring informa-
tion from the environment (learning from outcomes). Another 
way to depict the learning-induced change is the quantum distance 
between superposition states in two adjacent trials. Such distances 
are pervasive and meaningful in the field of quantum informa-
tion39, providing an approach to evaluate the distinguishability 
of different states (how close two states are). In our case, this dis-
tance evaluates to what degree the state is influenced by learning 
through unitary iteration (see the Quantum distances section in 
the Supplementary Methods).

Although the transition amplitude and the quantum distance 
have different definitions, meanings and concrete values, we 
found that there is a mathematical duality between the transition 
amplitude and the quantum distance (see the Relations between 
quantum transition amplitudes and quantum distances section in 
the Supplementary Methods), similar to the two sides of a coin. 
Therefore, we defined the generalized quantum distance as the 
geometric average of these two signals, catching the overall effect 
of ÛG. We computed the generalized quantum distance for each 
trial (Supplementary Fig. 6) and found that, on average, there was 
a downtrend over time, which means that the transition of prefer-
ences and the change of states induced by outcome learning are 
reduced gradually by accumulated knowledge about the task rule.

We then executed model-based fMRI analysis40, which can relate 
model predictions to fMRI data to locate hypothesized decision-
making processes in the brain and discriminate competing hypoth-
eses. We analysed the generalized quantum distance based on the 
blood-oxygen-level dependent (BOLD) data at the outcome period 
in two groups (see generalized linear model (GLM) 3 in the fMRI 
data analyses section in the Methods). All reported voxels sur-
vived the family-wise error correction at a cluster level threshold of 
P < 0.05, with Puncorrected < 0.001.

In the control group, the generalized quantum distance signifi-
cantly activated the MeFG/anterior cingulate cortex (ACC), the 
precentral gyrus, the insula, the precuneus, the left fusiform gyrus, 
the inferior parietal lobule (IPL), the middle frontal gyrus (MiFG) 
and the right inferior temporal gyrus (ITG)/fusiform gyrus (Fig. 6;  
see also Supplementary Table 2), showing a unique quantum-like 
neural mechanism for how the internal state is changed due to  
external information.

In addition, we did not find activation related to generalized 
quantum distances in the smoking group, indicating that their rep-
resentation might be impaired in smokers.

Neural substrates related to uncertainty revealed by the QSPP 
model. Uncertainty might be another useful variable to study to 
better understand the differences between the learning processes 
reflected by the VPPDecayTIC and QSPP models. Uncertainty 
about internal states, an important task-related variable represented 
at the neural level41,42, reflects the external unstable environment, 
interacts with outcomes43 and assists learning44,45. We computed the 
uncertainty provided by the two models (see the Uncertainty sec-
tion in the Supplementary Methods). Uncertainty decreased over 
time (Supplementary Fig. 7), meaning that the subjects’ uncertainty 
about the task rule dropped gradually. We then performed another 
model-based fMRI analysis, studying uncertainty and the interac-
tion of uncertainty and penalty/reward based on the BOLD data 
(see GLM4–5 in the fMRI data analyses section in the Methods, 
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VPPDecayTIC31 is a CRL model containing three stages: (1) evaluate the 
outcome with the VPP rule; (2) update the expectancy with the Decay 
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CRL models and in the one-term QRL model (QSL). Model details and 
comparisons can be found in the main text. c, A geometric explanation of 
ÛG that adjusts the weights of the chosen action and unchosen actions. 
The north pole zz ̂ = |a〉 on the surface of the unit sphere is the chosen 
action and the south pole |a⊥〉 is the unchosen one. The vector zz ̂′ = |ψ〉 
is the internal state, while its closeness to the poles reflects the weights 
on the actions. The spherical coordinate parameters (polar angle θ and 
azimuthal angle φ) and the rectangular coordinate axes (xx ̂ and yy ̂) are 
determined by the Bloch sphere representation for our QRL models. During 
learning, the main operator ÛG first rotates |ψ〉 into |ψ′〉 around zz ̂ = |a〉 
(blue circle) and then rotates |ψ′〉 into |ψ′′〉 around zz ̂′ = |ψ〉 (purple circle), 
changing the closeness of the state vector to the two poles (for details, 
see the section “Further explanations of the quantum operator ÛG” in the 
Supplementary Methods).
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fMRI results of uncertainty in Supplementary Results, section VI 
and Supplementary Table 3). Penalty and reward were separated 
because they were reported to have different roles in IGT process-
ing and performance46.

In the control group, the difference (control QSPP − control 
VPPDecayTIC) in the effects of the uncertainty × penalty interac-
tion showed significant activation in the right MeFG, the left orbital 
frontal cortex (OFC), the left MeFG/ACC, the middle temporal 
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Fig. 3 | The AICc and BIC of each model, computed separately for each group. a, The AICc in the control group. b, The AICc in the smoking group.  
c, The AICc in the super group, with a different range from the first two because there were fewer trials for the super group. d–f, The BICs in the control 
(d), smoking (e) and super groups (f). The orange bars represent the QRL models, including the QSL (one-term) and the QSPP (two-term) models.  
The light blue bars represent the two-term CRL models, while the red ones show the one-term CRL models. All panels demonstrate the good performance 
of the QRL models. The error bars indicate the standard error.
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Fig. 4 | The inferred model probability of each model, computed separately for each group. a–c, The AICc-based inferred probability in the control  
(a), smoking (b) and super groups (c). d–f, The BIC-based inferred probability in the control (d), smoking (e) and super groups (f). The orange bars 
represent the QRL models. The light blue bars represent the two-term CRL models, while the red ones show the one-term CRL models. All panels 
demonstrate the good performance of the QRL models; the dotted line shows the average level.
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gyrus (MiTG) and the left MiTG/angular gyrus/posterior cingulate 
gyrus (PCC)/precuneus (Fig. 7a,b; see also Supplementary Table 4). 
These results revealed distinct quantum-like mechanisms for how 
learning from a penalty is modulated by uncertainty.

In the smoking group, we also found the difference (smoking 
QSPP − smoking VPPDecayTIC) of effects of the interaction posi-
tively related to the left MeFG, left MiTG and left IPL (Fig. 7a,c). 
The other areas activated in the control group showed no activation 
in the smoking group.

For the interaction of uncertainty and reward, we found acti-
vation in the left MeFG (nearly significant), left MiTG and left  

MiTG/angular gyrus in the control group (Fig. 7d; see also 
Supplementary Table 5). No significant difference was found 
between the two models related to the interaction of uncertainty 
and reward in the smoking group.

Discussion
In the present study, we developed two additional QRL models for 
the IGT. We compared these two QRL models with 12 CRL models 
and found that the QSPP model was comparable to the best CRL 
models. We also studied the generalized quantum distances and 
the uncertainty × penalty/reward interaction based on fMRI data 
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Fig. 5 | The simulation results of each model, computed separately for each group. a–c, The MSEs of the PoC in the control (a), smoking (b) and super 
groups (c). d–f, The MSEs of EDS in the control (d), smoking (e) and super groups (f). All panels demonstrate the good performance of the QRL models. 
All error bars indicate the standard error.
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in healthy subjects and smokers. We found several consistencies 
and differences in brain activity between the control and smoking 
groups, which reveal the important brain regions for QRL; they are 
discussed below.

To compare these models, we used the goodness-of-fit criterion 
and the simulation method. The goodness-of-fit criterion evalu-
ated the accuracy of the one-step-ahead predictions of the models. 
Using the AICc and BIC, the QSPP model provided a better fit than 
all CRL models. Unlike one-step-ahead predictions, the simulation 
method produced whole selection sequences without relying on the 
subjects’ real choices. With two MSE indexes, the QSPP model kept 
its good performance. More importantly, the QSPP model showed 
superior performance in all three groups, indicating that this can be 
generalized for more diverse subjects.

The superiority of the one-term Decay models over the one-term 
Delta models using the goodness-of-fit criterion was reversed with 
the simulation method (see Supplementary Results, section I). This 
phenomenon was also reported in previous works; this could be 
because the two rules have different reliances on past outcomes and 
past choices30,47. The Delta rule provides better long-term (whole 
sequence) predictions and the Decay rule makes better short-term 
(one-step-ahead) predictions. The QRL models achieved good per-
formance in both the goodness-of-fit criterion and the simulation 
method, indicating that they make good predictions for both the 
long term and short term.

Generally, the learning process in value-based decision-mak-
ing is the adjustment of the weights on each action (for example, 
the preference/tendency for each deck). In the CRL models, the 

weights are implemented by value functions (the expectancy for 
decks), while in the QRL models, the weights are expressed by the 
probability amplitude for each action (superposition state overall). 
Cognitively, during each trial’s learning period in the CRL mod-
els, the weight on the chosen action is updated (for example, by 
prediction errors) and the weights on unchosen actions decay or 
remain unchanged, independently of the chosen action. However, 
in the QRL models, the superposition state can be visualized as a 
point (vector) on the surface of a three-dimensional sphere (Bloch 
sphere) and the adjustment of weights on each action is simulta-
neously reflected in the movement of the point location, which is 
implemented as the rotation of the point (superposition state) on 
the sphere surface around an axis. In short, the CRL models we 
used adjust the weights on the chosen action and unchosen actions 
independently, separably and locally during the valuation process, 
while our QRL models adjust the weights on the chosen action and 
unchosen actions dependently, inseparably and globally.

In contrast to simple modifications of the CRL models (for 
example, adding or deleting components in the CRL models), our 
QRL models provide us with a different perspective from traditional 
ones and point out other possible directions for modelling, such as 
geometric state representation, unitary state evolution and Grover 
iteration updating.

The QRL models are also different from the original QRL frame-
work4,6, in which the cumulative value function (such as the expec-
tancy for decks in the IGT, the state value function V(s) and the 
state-action value function Q(s, a) in reinforcement learning) was 
used for superposition state updating. In practice, we found that the 
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Fig. 7 | fMRI results of the uncertainty × penalty/reward interaction. a, The uncertainty × penalty interaction positively related to the left MeFG and 
left MiTG in both the control group (left panel; control QSPP − control VPPDecayTIC) and the smoking group (right panel; smoking QSPP − smoking 
VPPDecayTIC). b, The uncertainty × penalty interaction positively related to the right MeFG, left OFC and left MiTG/angular gyrus/PCC/precuneus in 
the control group. c, The uncertainty × penalty interaction positively related to the left IPL in the smoking group. d, The uncertainty × reward interaction 
positively related to the MiTG and the left MiTG/angular gyrus in the control group (control QSPP − control VPPDecayTIC). All coordinates are plotted  
(in mm) in RAI order (i.e., −right, +left; −anterior, +posterior; −inferior, +superior).
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incorporation of cumulative value functions did not significantly 
increase model performance. In the field of decision neuroscience, 
all reinforcement learning models involve the calculation of cumu-
lative values, while our QRL models do not assume the use of such 
a component. It seems to be consistent with our daily life experi-
ences: we sometimes do not feel the existence of such a computa-
tional process during this kind of decision-making. Although we 
can explain that this process is automatic, habitual and unconscious, 
our QRL models provide a potential different way: cumulative value 
computation could be absent during value-based decision-making. 
Whether cumulative value functions are profitable in the QRL mod-
els is an open question. In future research, it is worth investigating 
whether they can further improve the performance.

Although the QRL models did not overwhelmingly outper-
form the CRL models (for example, some behavioural effects can 
be explained by only the QRL models), one should be aware that 
the QRL framework is still in its infancy and undoubtedly deserves 
additional studies. Compared with the classical framework, the 
QRL framework has several potential theoretical advantages:
	1.	 Quantum probability theory, as a generalized probability the-

ory, provides a stronger representation for tasks and internal 
states (such as allowing the internal states to be in an indefinite 
state before an action is taken10).

	2.	 From the perspective of information processing, there are am-
ple quantum features (such as coherence and entanglement) 
not (fully) utilized in the current models that could be benefi-
cial in the future.

	3.	 In principle, the Grover algorithm can have a quadratic speed-
up (i.e., the improvement of time complexity from O(N) to 
O(N1/2)) on learning over classical algorithms48. Recently, sev-
eral theoretical works8,49 showed that quantum enhancement 
can be achieved in learning efficiency, learning performance 
and meta-learning using the QRL framework.

We also discuss the possible limitations of our QRL models, 
point out areas for improving them and call attention to potential 
future directions:
	1.	 The general QRL algorithms consist of two sequential stages: 

mapping outcomes (reward or penalty) to learning factors and 
mapping learning factors to a parametric transformation (uni-
tary operator). In our models, we used the utility function in 
the first stage and a two-step rotation on the Bloch sphere in 
the second stage, while a substantial number of function forms 
remain largely unexplored.

	2.	 The learning process of our QRL algorithm (and of previous 
QRL algorithms) is described by an equivalent two-dimen-
sional subspace (spanned by the chosen action vector |a〉 and 
the unchosen action vector |a⊥〉) of the full four-dimensional 
space, enabling its visualization on the Bloch sphere. To show 
more detailed information during high-dimensional learning, 
new geometric visualization methods are required, such as the 
generalization of the Bloch sphere to higher dimensions50.

	3.	 There are many other advanced techniques in quantum cogni-
tion modelling51 (such as mixed state, von Neumann entropy 
and positive operator valued measures) and developments  
in QRL algorithms (such as reinforcement learning using  
quantum Boltzmann machines52) that may be enlightening  
and useful.

	4.	 We showed the superior performance of our models for only 
the IGT, while more decision-making tasks are worthy of future 
investigation. In addition, new value-based decision-making 
tasks should be designed to further explore the differences be-
tween the QRL and CRL models.

We think it is too early to conclude that we should abandon one 
framework and accept another one because they both remain largely 

undeveloped and have much potential. More importantly, the QRL 
framework reveals a different perspective on human behaviour and 
these two frameworks can reap a substantial number of benefits 
from each other.

This fMRI study supports the idea of quantum cognition at the 
neural level. For the learning process of unitary iteration in the 
QSPP model, the quantum transition amplitude describes the tran-
sition between actions due to external information. The quantum 
distance measures the distinguishability between two quantum 
states (that is, how close they are) and thus describes the influ-
ence on internal states by learning from outcomes. The generalized 
quantum distances take into consideration the duality between the 
quantum distance and the transition amplitude and thus catch the 
overall property of the main operator. The transition amplitude and 
the quantum distance showed activation consistent with the gener-
alized quantum distance, indicating the rationality of the definition 
of our generalized quantum distance (see Supplementary Results, 
section V). The generalized quantum distance can be considered 
as the interaction between the internal superposition state and the 
outcome, sharing a similar critical concept with the interaction of 
uncertainty and outcome (also discussed in the next paragraph). We 
found that the generalized quantum distances were represented in 
the MeFG/ACC, the precentral gyrus, the insula, the MiFG, the pre-
cuneus, the IPL and the fusiform gyrus (because the MeFG is also 
activated for the uncertainty × penalty/reward interaction, which 
we discuss later). The MiFG, the precuneus and the fusiform gyrus 
were reported to be activated in many decision-making tasks under 
uncertainty53–56. The IPL was reported to play a role in decision-
making under uncertainty, updating the evaluation for actions56,57. 
The precentral gyrus is related to the preparation and execution of 
motor responses in decision-making55. The insula was implicated 
in interoception, emotion and risky decision-making, such as risk 
experience representation and prediction error representation55,56,58. 
Therefore, the activation in these brain areas reveals quantum-like 
aspects of state representation, learning and other possible down-
stream processes, such as evaluation and action generation related 
to internal states.

Uncertainty is an internal-state attribute that reflects the exter-
nal environment; it is influenced by outcomes (penalty and reward). 
Therefore, similar to generalized quantum distance, the uncer-
tainty × penalty/reward interaction revealed a unique quantum-
like modulation effect of outcomes on the internal state, involving 
integration and learning. Consistent with previous results, we 
found the same brain area (the MeFG) activated again in both the 
control and the smoking groups, indicating that the quantum-like 
mechanisms in the MeFG may be the hub of quantum-like effects 
in valued-based decision-making, affecting well-known cognitive 
processes (for example, uncertainty influenced by penalty) during 
reinforcement learning. Our MeFG is a part of the medial frontal 
cortex, which was reported to be involved in decision-making21,59–62, 
such as the generation of internal voluntary action selection guided 
by memory and endogenous cues. Therefore, the MeFG might par-
ticipate in state representation and collapse (action generation) in a 
quantum-like manner.

We also found that the uncertainty × penalty interaction acti-
vated the ACC, the OFC, the MiTG, the angular gyrus/MiTG and 
the PCC/precuneus and that the uncertainty × reward interaction 
activated the MiTG and the angular gyrus/MiTG. The ACC was 
reported to represent prediction errors and learning rate63 and mon-
itor and integrate outcomes44. The OFC was reported to represent 
prediction errors, update values64, evaluate the amount of uncer-
tainty65,66, optimize learning rates under uncertainty54 and repre-
sent abstract features of external outcomes63. The angular gyrus has 
been implicated in risky decision-making requiring visual atten-
tion67. The PCC was reported to have functional connections with 
the MeFG, the precuneus, the MiFG, the fusiform gyrus and the  

Nature Human Behaviour | VOL 4 | March 2020 | 294–307 | www.nature.com/nathumbehav 301

http://www.nature.com/nathumbehav


Articles NaTuRe HuMan BehavIouR

precentral gyrus during the IGT56, which were activated by gener-
alized quantum distances. These areas activated by the interaction 
might reflect a role in monitoring learning processes and connect-
ing relevant brain areas and functions. Altogether, these areas acti-
vated by internal-state-related variables, including the MeFG hub, 
might work as a network in a quantum-like manner, representing 
internal states, learning from the outcomes and generating actions.

The MeFG and MiTG were also activated by uncertainty × pen-
alty interaction in the smoking group, supporting the generalization 
of our fMRI results. By contrast, the ACC, the OFC, the angular 
gyrus/MiTG and the PCC/precuneus showed quantum-like inter-
action-related activity in the control group but not in the smoking 
group, meaning that they are more sensitive to smoking addiction. 
This phenomenon indicates that the decreased decision-making 
ability in smokers might relate to the inability of these regions to 
represent the interaction, although further work is warranted to 
determine the exact causation. Combining these results and the dis-
cussion in the last paragraph indicates that the smokers were still 
able to represent the internal states and generate actions in a quan-
tum-like way, but show an injured ability to represent outcomes and 
learn from experience.

In addition, the uncertainty × reward interaction showed only 
nearly significant activation in the MeFG between the two models, 
which might be because people are usually more sensitive to pen-
alty than reward68. Moreover, the IPL was activated by the uncer-
tainty × penalty interaction in the smoking group but not in the 
control group; this requires further studies. This activation in the 
IPL also indicates that the reduced activation in other areas in the 
smoking group is not due to the number of subjects or our data 
quality, but reflects the effect of addiction.

Although quantum frameworks are successful in modelling cog-
nition, how quantum-like mechanisms are feasible in the brain is still 
unclear69. Of course, unlike other quantum phenomena in biology70, 
our fMRI results do not suggest that our brain is quantized. Even a 
classical brain can generate quantum-like functions and behaviour 
following quantum principles. Many scientists believe that quantum 
probability theory is usually more emphasized in quantum cogni-
tion than its physical counterpart71. Physicists showed that the clas-
sical dynamic system might have quantum-like behaviour under 
coarse-grained measurements72–75 and that an artificial neural net-
work can approximate the wave function of a system efficiently76. 
There was also an existence proof that the common quantum prob-
ability operators can be implemented in classical recurrent neural 
networks with neural oscillation and synchronization77. Based on 
these and our work, we could imagine a possible approach bridging 
quantum cognition and neural implementation (see Supplementary 
Discussion, section II).

In conclusion, we have shown that the QRL framework can be 
useful in the fields of decision neuroscience and neuroeconomics 
and that it is a potential competitor of CRL. In view of the great 
success achieved by CRL in studies of emotion78, psychiatric disor-
ders such as addiction and depression79,80, social behaviour81, free 
will82 and many other cognitive functions, we hope that QRL will 
also shed light on them. It is necessary to perform wider and deeper 
studies on the QRL framework. Since QRL is one type of quantum 
learning10, we also hope that other methods, including quantum 
Bayesian learning83 and quantum neural network learning84, will be 
explored in the future. Because of the marriage of QRL and deci-
sion neuroscience, the possible resulting discipline could be termed 
as quantum neuroeconomics. “Is there a quantum neuroeconom-
ics?” asked Piotrowski and Sladkowski85. Now, we are approaching  
the answer.

Methods
Participants. Fifty-eight healthy subjects (control group: 9 females; mean 
age ± s.d.: 23.42 ± 2.36 yr; mean education ± s.d.: 16.58 ± 1.79 yr) and 43 smokers 

(smoking group: all men; mean age ± s.d.: 24.44 ± 2.34 yr; mean education ± s.d.: 
16.13 ± 1.92 yr; more than 10 cigarettes per day for at least 1 yr) participated in the 
IGT and were included in the following behavioural modelling analysis. While  
no statistical methods were used to predetermine sample sizes, previous works  
on the IGT using fMRI used sample sizes typically between 15 and 30 (for example, 
see refs. 86–88) and our study had a reasonable number of subjects to produce  
stable results.

All subjects, with no prior knowledge of the task, were recruited by internet 
advertisements. They had normal or corrected-to-normal vision and were 
right-handed. They did not have any major medical illnesses, major psychiatric 
disorders, neurological illnesses or a history of dependence on any drug (except 
nicotine in the smoking group), or gross structural abnormalities in their 
T1-weighted images. Informed consent was collected from all subjects and the 
study was authorized by the Research Ethics Committee of the University of 
Science and Technology of China and conformed to the tenets of the Declaration 
of Helsinki.

Procedure. Subjects were required to make repeated choices from four decks to 
gain or lose a certain number of points and were told that the final payment was 
determined by their final scores. Next, subjects completed the training session for 
the task outside the fMRI scanner; this lasted 5 min without any real payment.  
The session presented only equal pay-offs across all decks during the training 
session of the IGT to avoid disturbance. All the subjects were told that there were 
‘good decks’ and ‘bad decks’ that would give rise to a net gain or net loss in the 
long term, respectively. Their purpose was to find out the invariable rule in the 
IGT through exploration from the beginning of the task and the training was just 
to become familiar with the operational interface. The difference between the 
training and experimental sessions was clear to the subjects. After a 10-min break, 
the subjects executed three in-scanner runs of the IGT. They had 3,000 initial 
task points as the ‘start-up capital’ and received a payment corresponding to the 
task points they obtained in the scanner. Every 100 points could be exchanged for 
1 Chinese yuan (about USD 0.15). The 3,000 initial points were not included in 
behavioural analyses.

Data collection and analysis were not performed blind to the conditions of the 
experiments. There was no randomization in the data collection, the organization 
of the experimental conditions or stimulus presentations.

Task and stimuli. The IGT is exactly the same as in the previous studies27,56. In 
this task, there were four decks of cards (decks A, B, C and D, presented from left 
to right). On the front of each card there were gain points and possible loss points. 
The subject would obtain net points (gain − loss) in each trial.

Deck A gave 100 (gain) points for each card and −150, −200, −250, −300 and 
−350 (loss) points for five cards, respectively, out of every ten cards. Deck B also 
gave 100 (gain) points for each card and −1,250 (loss) points once out of every ten 
cards. On average, ten choices of deck A or deck B resulted in −250 net points. 
Deck C gave 50 (gain) points for every card and −25, −40, −50, −60 and −75 
(loss) points for five cards, respectively, out of every ten cards. Deck D also gave 
50 (gain) points for every card but −250 (loss) points once out of every ten cards. 
On average, ten choices of deck C or deck D resulted in 250 net points. Deck A and 
deck B were disadvantageous because they resulted in an overall loss, although they 
gave a relatively larger gain in most trials. Deck C and deck D were advantageous 
because they resulted in an overall gain, despite giving a relatively smaller gain in 
most trials. To encourage as many subjects as possible to find the rule, the task was 
extended to 180 trials from the original 100 trials.

The 180 trials were separated into three scan runs. Each scan run included 
three task blocks separated by a 24-s rest (fixation) block and each task block 
consisted of 20 trials. Each trial contained a 4-s decision period and a 1-s  
outcome period.

Online data pool. There was an online IGT data pool28 of 617 healthy subjects 
from 10 studies. These subjects completed the IGT with 95–150 trials (95 trials:  
15 subjects from 1 study; 100 trials: 504 subjects from 7 studies; 150 trials:  
98 subjects from 2 studies). We analysed only the data from the 504 subjects, 
because the remaining 113 subjects performed IGT with a different number  
of trials and the group of 504 subjects could already represent the whole  
IGT data pool.

Computational modelling. The baseline model. This model serves as a baseline 
reference89. It assumes that the agent chooses each deck at a fixed probability. There 
are three free parameters here, pA, pB and pC, for the probability of choosing A, B 
and C decks, respectively. pD = 1 − (pA + pB + pC) is the remaining probability.

Expectancy valence learning (EVL) and prospect valence learning (PVL) models. The 
architecture of these two types of model can be found in Supplementary Fig. 2a.

Utility function. The expectancy utility function simply assumes that the utility is 
the weighted difference of current gain and loss90:

= − × − × ∣ ∣u t W t W t( ) (1 ) gain( ) loss( ) (1)
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where W (0 < W < 1) measures the weights for loss points against gain points.
The prospect utility function68 is believed to explain the gain–loss frequency 

effect91. The prospect utility u(t) is:




 λ

= ≥
− ∣ ∣ <

α

αu t x t x t
x t x t

( ) ( ) if ( ) 0
( ) if ( ) 0

(2)

where x(t) = gain(t) − |loss(t)| is the net outcome in trial t, α (0 < α < 2) is a shape 
parameter of the utility function and λ (0 < λ < 10) is a loss-aversion parameter. 
Raw pay-offs within data are divided by 100 (default scale)92.

Learning rules. The Delta learning rule, or the Rescorla–Wagner rule93, is widely 
used in the fields of reinforcement learning and IGT studies89,90:

δ= − + − − − −E t E t k t u t E t( ) ( 1) ( 1)[ ( 1) ( 1)] (3)j j j j

where Ej(t) is the expectancy for deck j in trial t (t ≥ 2 and Ej(1) = 0) and δj(t) is 
1 if deck j is chosen in trial t and 0 otherwise. Here k is the learning rate of the 
prediction error [u(t − 1) − Ej(t − 1)].

The Decay learning rule94 assumes that the expectancy about each deck will 
decay with time and the expectancy of the chosen deck in trial t is updated by u(t):

δ= − + − −E t AE t t u t( ) ( 1) ( 1) ( 1) (4)j j j

where A (0 < A < 1) is a decay parameter describing the strength of  
expectancy discounting.

Choice rules. A choice rule can be described as a balance between exploration and 
exploitation. At first, agents explore the goodness of decks and after several trials 
they exploit the knowledge acquired before, to maximize their overall pay-off.  
A common choice rule is the Boltzmann exploration or SoftMax selection89:

∑
δ

θ

θ
= =

=

t
t E t

t E t
Pr[ ( ) 1]

exp{ ( ) ( )}

exp{ ( ) ( )}
(5)j

j

k k1

4

where Pr[•] is the probability function. The sensitivity parameter θ(t) can be 
determined by a trial-independent choice (TIC) rule:

θ = −t( ) 3 1 (6)c

where c (0 < c < 3) is a consistency parameter. A large c value indicates a 
deterministic choice and a small one suggests a random choice47.

The sensitivity parameter θ(t) can also be computed from a trial-dependent 
choice (TDC) rule:

θ = ∕t t( ) ( 10) (7)c

where the consistency parameter c (−5 < c < 5) indicates gradually more 
deterministic choices if c > 0 (for example, because of confidence) and gradually 
more random choices if c < 0 (for example, because of boredom).

Model description. By combining these two utility functions (EVL and PVL), two 
learning rules (Delta and Decay) and two choice rules (TIC and TDC), we obtain 
the eight models30: EVLDeltaTDC, EVLDeltaTIC, EVLDecayTDC, EVLDecayTIC, 
PVLDeltaTDC, PVLDeltaTIC, PVLDecayTDC and PVLDecayTIC.

VPP models. The VPP model (VPPDeltaTIC) is an improved version of the 
PVLDeltaTIC model, incorporating the influence of perseverance31.

The VPPDeltaTIC model assumes that the agent will take the perseverative 
strategy into consideration (Supplementary Fig. 2c). The perseverance strength 
Pj(t) on deck j in trial t (t ≥ 2 and Pj(1) = 0) is defined as:










δ
ϵ δ
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j j

j j

j j

pers
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pers n

where Apers (0 < Apers < 1) is a free decay parameter on the perseverance strengths of 
all decks. Also, εp (−10 < εp < 10) is the influence of the net gain on perseverance 
and εn (−10 < εn < 10) is the influence of the net loss on perseverance.

The value Vj(t) is the weighted average of the expectancy Ej(t) and the 
perseverance strength Pj(t):

= + −V t wE t w P t( ) ( ) (1 ) ( ) (9)j j j

where w is the reinforcement learning weight (0 < w < 1). A high w value indicates 
that the agent prefers reinforcement learning rather than perseverative strategy 
and vice versa. Note that Ej(t) here is updated by the Delta learning rule for the 
VPPDeltaTIC model and by the Decay learning rule for the VPPDecayTIC model.

The choice probability here is also calculated by the SoftMax function but  
with Vj(t):
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By replacing the TIC rule with the TDC rule, we similarly obtain the 
VPPDecayTDC and the VPPDeltaTDC models.

The QSL model. The architecture of this model can be found in Supplementary  
Fig. 2b.

State representation and action selection. In the IGT, there are four actions 
representing the selection of each deck. In the classical models, they are modelled 
as elements of the action set. Thus, the probabilities of each action form a measure 
on the discrete action set, requiring the sum of all the probabilities to equal 1. If we 
consider pj(t) as the probability of choosing deck j in trial t, then the constraint is:

∑ =
=

p t( ) 1 (11)
j

j
1

4

The QSL model allows the agent to be in an indefinite state (action state), 
formally called the superposition state. The superposition state is a vector in a 
D-dimensional Hilbert space (action space) spanned by D orthogonal basis vectors 
denoted by the symbol |aj〉, j = 1, …, D, if using the Dirac bra-ket notation. For the 
IGT, D = 4 and these basis vectors, or eigenvectors, |a1〉, |a2〉, |a3〉 and |a4〉 represent 
the actions of choosing the A, B, C or D deck, respectively. Then the superposition 
state of the agent in trial t is:

∑ψ ψ∣ ⟩ = ∣ ⟩
=

t a( ) (12)
j

j j
1

4

ψ ψ= |a t( ) (13)j j

where ψj, the inner product of |ψ(t)〉 and |aj〉, is the probability amplitude of each 
action, which can be a complex number.

During the decision period, the superposition state |ψ(t)〉 collapses onto one 
of the eigenvectors |aj〉, with the probability of the squared magnitude of the 
corresponding amplitude. The collapse process is the so-called “action selection”:

δ ψ= = ∣ ∣tPr[ ( ) 1] (14)j j
2

Thus we have the corresponding constraint:

∑ ψ∣ ∣ =
=

1 (15)
j

j
1

4
2

This constraint, also called the normalization condition of the wave function, 
keeps the norm of |ψ(t)〉 at unit length.

At the beginning of the IGT, the agent does not have any preference among the 
four decks. Therefore, we assign an equal amplitude to each action in the first trial, 
as with the equal expectancies at the beginning of the CRL models:

∑ψ∣ ⟩ = ∣ ⟩
=

a(1) 1
2 (16)

j
j

1

4

Probability amplitude updating. After the agent observes the outcome of the action 
selection, he updates his estimation of the goodness of each deck. The updating 
algorithm, also known as the amplitude-amplification algorithm, lies at the core 
of QRL. Amplitude amplification is a technique in quantum computing that 
generalizes the idea behind Grover’s search algorithm95 and gives rise to a family 
of quantum algorithms. Here, one specific version of amplitude amplification was 
used6 and further modified to accommodate our task.

We have two unitary operators based on the current chosen action |a〉:

̂ = − − ∣ ⟩ ⟨ ∣ϕQ Î a a(1 e ) (17)i
1 1

ψ ψ̂ = − ∣ ⟩ ⟨ ∣ −ϕQ t t Î(1 e ) ( ) ( ) (18)i
2 2

where 〈a| in the dual space represents the complex conjugate (Hermitian 
conjugate) of |a〉 and Î is the identity operator. The exponents ϕ1 and ϕ2 are the 
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learning factors that control the amount of amplification or attenuation of the 
amplitude in each trial. These matrices are the generalization of the oracle O in 
the Grover algorithm4. A unitary operator Û means Û†Û = ÛÛ† = Î. Thus, these 
operators do not change the unit length of any normalized state vector.

The Grover operator is then the unitary transformation:

= ̂ ̂Û Q Q (19)G 2 1

After the unitary transformation operates L times, the amplitude vector in the 
next trial becomes:

ψ ψ∣ + ⟩ = ∣ ⟩t Û t( 1) ( ) (20)L
G

The parameters ϕ1, ϕ2, and L are determined by the current utility u(t).  
We have at least two approaches to deal with this. One is to fix ϕ1 and ϕ2 (usually 
equal to π) and determine L using the current utility4. The other is to fix L = 1 and 
calculate ϕ1 and ϕ2 from the current utility6. We chose the latter because the former 
approach has the disadvantage that the amplitude could jump only discretely. 
However, the way we set ϕ1 and ϕ2 is different:








λ
λ

=
≥

− ∣ ∣ <

α

αu t
x t x t
x t x t

( )
( ) if ( ) 0
( ) if ( ) 0

(21)gain

loss

where x(t) is the net outcome, α (0 < α < 1) is the shape parameter, λgain (0 < λgain < 2) 
and λloss (0 < λloss < 2) are the reward-seeking and loss-aversion parameters. A scale 
for pay-offs is also used here. Then ϕ1 and ϕ2 are defined as:

ϕ η= π π +u t b[ ( )cos ] (22)1 1

ϕ η= π π +u t b[ ( )sin ] (23)2 2

If we consider (ϕ1, ϕ2) as the vector-valued function of u(t), then (ϕ1, ϕ2) 
delineates a line in two-dimensional Euclidean space, passing through the point 
(b1, b2) with slope tanπη (−1 < η < 1). We refer to the free parameters η, b1, and b2 as 
the learning parameters.

The QSPP model. Inspired by the hybrid VPP models, we also implemented 
a hybrid QSPP model that combined the QSL model and perseverance 
(Supplementary Fig. 2d). The probability of choosing deck j in trial t is defined as:

δ δ δ= = = + − =t w t w tPr[ ( ) 1] Pr [ ( ) 1] (1 )Pr [ ( ) 1] (24)j j jQSL pers

where w (0 < w < 1) is the QRL weight. PrQSL is the probability determined  
by the QSL amplitude and Prpers is the classical probability using the SoftMax  
trial-independent rule:
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Here, the perseverance strength Pj(t) on deck j is defined in a similar way  
as above:
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but here both εp and εn are not free parameters. They are now determined by ep and 
en according to:
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where ep (−5 < ep < 5) and en (−5 < en < 5) are designed to absorb the consistency 
parameter c into εp and εn.

One-term and two-term models. For convenience, the VPP and QSPP models are 
described as two-term models because they have both the reinforcement learning 
part and the perseverance part, while the others (EVL, PVL and QSL) are described 
as one-term models. The baseline, the EVL, the PVL, the QSL, the VPP and the 
QSPP models have 3, 4, 4, 6, 8 and 10 free parameters, respectively.

Statistical analyses. We used an alpha level of 0.05 for all behavioural statistical 
tests reported.

Maximum likelihood estimation. The parameters in each model were estimated by 
maximizing the LL of each subject’s one-step-ahead predictions. The LL of subject  
i and model m is defined as:
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where T is the number of trials, D is the number of decks and Oi(t) is the  
actual choice and consequent outcome in trial t. We used an optimization  
method called Bayesian Adaptive Direct Search that showed a comparable  
or even better performance than other common optimization methods for 
behavioural modelling96.

Model comparison with the goodness-of-fit criterion. For the goodness-of-fit 
criterion, the corrected AICc36 and the BIC37 provide a direct assessment of the 
one-step-ahead predictions. The AICc avoids the disadvantage of the Akaike’s 
Information Criterion97 when facing a small sample size. The BIC more strongly 
penalizes the number of parameters. For each model i, the AICci is:

= − + + +
− −

L K
K K
T K

AICc 2log 2
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(30)i i i
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and the BICi is:

= − +L K TBIC 2log log (31)i i i

where T is the total number of trials, Li is the maximum LL for model i and Ki is the 
number of free parameters in the model. A smaller AICc or BIC value represents a 
better fit to the data. Average values for each model are calculated in each group.

Bayesian model comparison with variational Bayes method. We performed the 
Bayesian model comparison using the variational Bayes algorithm38. In the 
Bayesian graph, by treating the model as a random variable, the parameters from 
a Dirichlet distribution over models was estimated. Given the parameters, the 
distribution of a multinomial variable was used to describe the probability that one 
specific model generated the data from one specific subject. We entered −AICc/2 
and −BIC/2 as the model log evidence into the estimation iteration process. 
The expected likelihood measures how likely it is that one model will generate a 
randomly selected subject’s behaviour, where the exceedance probability describes 
how one model is more likely than all other models.

Simulation method. Unlike the goodness-of-fit criterion, the simulation method30 
was designed to assess the accuracy of one model generating predictions for entire 
choice sequences according to model parameters rather than the subjects’ choice 
history. The computer agent uses the parameters estimated from the subjects’ 
behaviour to perform the IGT several times according to the corresponding 
model. Here, for each subject and each model, we used the best 10 combinations 
of estimated parameters to run 100 simulations for total trials, producing 1,000 
performing sequences. The combination of parameters that generated the best 
simulation performance was chosen for the following analyses. We then defined 
two types of MSE for these simulations. For all the MSEs defined below, standard 
errors were calculated among all subjects.

First, we let Bi j,
0  denote the frequency of selecting deck j averaging over all T 

trials for subject i and Bi j
m
,  denote the frequency of selecting deck j averaging over 

all T trials and 100 simulations for an agent using the parameters of model m 
estimated from subject i. We have the MSE of the PoC for each deck:
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where N is the number of subjects and D is the number of decks.
Second, Pi j b, ,

0  is the frequency of selecting deck j of subject i during block b; Pi j b
m
, ,  

is the frequency of selecting deck j during block b of an agent using model m with 
estimated parameters from subject i. The MSE of EDS curve is defined as:
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where B is the number of blocks (one block contains 20 trials).

fMRI data acquisition. Gradient echo-planar MRI data were acquired during the 
whole task procedure using a 3 Tesla Siemens Magnetom Trio scanner (Siemens 
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Medical Solutions) in the Anhui Provincial Hospital. A circularly polarized 
head coil was used. The fMRI images were collected using a T2*-weighted echo-
planar imaging sequence (repetition time = 2,000 ms, echo time = 30 ms, field of 
view = 240 mm, matrix = 64 × 64, flip angle = 85°) with 33 axial slices (no gaps, 
voxel size: 3.75 × 3.75 × 3.70 mm3) covering the whole brain. Before entering 
the scanner, all subjects were asked to not move their head during all scans. 
Three functional scan runs of 420 s occurred during the IGT. Between each scan 
run, there was an interval of about 1 min. High-resolution T1-weighted three-
dimensional gradient-echo images were also obtained (repetition time = 1,900 ms; 
echo time = 2.26 ms; inversion time = 900 ms; 1-mm isotropic voxel; 250-mm field 
of view) for stereotaxic transformation.

fMRI data preprocessing. The imaging data were analysed with Analysis of 
Functional Neuroimages (AFNI-17.3.01)98. As in the previous study56,99, each 
subject’s raw data were corrected for temporal shifts between slices and for motion 
using the midmost sub-brick as the base, spatially smoothed with a Gaussian 
kernel (full width at half maximum = 8 mm) and temporally normalized (for each 
voxel, the signal of each sub-brick was divided by the temporally averaged signal). 
Then images were normalized to the Talairach coordinate.

Data from eight subjects in the control group and nine subjects in the smoking 
group were discarded because of relatively large head movement in the MRI 
scanner (more than 2 mm or 2°) or scanning technique issues. Therefore, data from 
50 subjects in the control group and 34 in the smoking group were included in the 
following fMRI whole-brain analysis.

fMRI data analyses. We implemented seven GLMs to analyse the fMRI data. In 
GLM1, for the QSPP model, we included the regressor of the current quantum 
transition amplitude at the outcome period. GLM1 also included two additional 
regressors corresponding to the stimulus and the outcome display, six additional 
regressors for head motion, one additional regressor for the reaction time and one 
nuisance regressor for onsets of no-response trials. Standard GLM analysis was 
performed using a gamma haemodynamic response function model. In GLM2, 
we included the regressor of quantum distance at the outcome period and also 
other additional or nuisance regressors. In GLM3, we included the regressor of 
generalized quantum distance at the outcome period and also other additional or 
nuisance regressors.

In GLM4, we included the outcome, the loss (penalty), uncertainty, the 
interaction of uncertainty and loss (penalty) and the current choice probability 
as the regressors at the outcome period and also other additional or nuisance 
regressors. The differences of each regressor between two models in the control 
group (control QSPP − control VPPDecayTIC) and the smoking group (smoking 
QSPP − smoking VPPDecayTIC) were calculated. In GLM5, we included the 
outcome, the gain (reward), the uncertainty, the interaction of uncertainty 
and gain (reward), the current choice probability and also other additional or 
nuisance regressors. In GLM6, we included the generalized quantum distance, the 
uncertainty, the interaction of uncertainty and generalized quantum distance and 
also other additional or nuisance regressors. In GLM7, we included the reward 
prediction error and the current action value provided by the VPPDecayTIC model 
as the regressors at the outcome period and also other additional or nuisance 
regressors. The results of GLM3–5 are reported in the main text while the rest are 
in the Supplementary Results. All reported voxels survived the family-wise error 
correction at a cluster level threshold of P < 0.05, with Puncorrected < 0.001 (two-sided 
threshold cluster size = 65).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data are available from the corresponding author on reasonable request.

Code availability
All code used to generate the results central to the main claims in this study is 
available from the corresponding author on reasonable request.
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